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0.1 Introduction

One of the features that differentiates language from other forms of commu-
nication is the ability to communicate a greater number of meanings than
there are basic signals in the repertoire of the speaker. In human languages
syntactic and morphosyntactic constructions allow combinations of simpler
elements to express complex meanings. With advances in computational
techniques it has become possible to model some of the processes by which
populations of communicating agents come to agree on a convention for com-
bining smaller linguistic elements into larger ones.

An interesting idea to emerge from computational studies of this issue is
that the dynamics of language transmission (i.e., the process through which
speakers of a language teach it to the next generation) may be responsible for
some of the phenomena that have been solely attributed to an innate linguis-
tic competence. The proposed hypothesis is that languages adapt to become
more easily acquired by their learners and that this process of adaptation
may be responsible for some of the observed constraints on cross-linguistic
variation (Kirby 1999a). Thus, syntactic conventions are partly determined



by the process of linguistic transmission, rather than simply reflecting an
underlying innate grammatical competence.

A major goal of the computational modelling research is to determine the
conditions under which syntactic conventions can be established in a popu-
lation. That is, to determine when language-like systems of communication
(i.e., those that combine simpler elements to form larger constructions) can
emerge. Humans are alone in their use of structured communication. Which
aspects of human brain organisation and human social organisation allowed
humans to make the advance beyond the signalling systems found in other
species? A secondary goal is to determine the types of structural conventions
that can be established in a population. The set of human languages are the
only examples that are evident in the real world. However, it is unknown
which aspects of this set of languages are inevitable emergent properties and
which are idiosyncratically human.

Batali (1998) has demonstrated the emergence of rudimentary syntactic
structures in a population of communicating neural networks. Despite the
absence of a sophisticated, innate linguistic competence in the networks,
Batali was able to show how the population converged on a language with
compositional characteristics. Are there other reasons for the emergence
of compositional structures? An alternative candidate explanation is the
language transmission dynamic itself. Kirby (1999b) has extended Batali’s
work by showing how compositional structures may be a result of a language
transmission dynamic. As languages are passed from one generation to the
next, they are filtered through the learning experience. Importantly, the
learning experience acts as a bottleneck since a language learner can never
observe every sentence in the language. Kirby argues that a consequence of
this bottleneck is a pressure for languages to evolve towards forms that are
easy generalisable by learners, and presents some intriguing simulations to
demonstrate his point.

It is worth emphasising at this stage that the goal of this research is not
necessarily to determine the particular properties of humans that give rise
to every facet of human languages. Humans are amazingly complex beings
who cannot be modelled accurately, and it is not feasible to separate those
aspects that are important for structured communication from those that
are coincidental. Rather, the long-term goal of the research is to establish
the conditions under which language-like systems in general can emerge and
the range of properties that such systems exhibit. While achieving this goal
will not inform us of how every feature of human language came to be,



it will shed light on the necessary and sufficient conditions for structured
communications systems to emerge, of which human languages are but a
subset. It will also be informative about the general properties of structured
communication systems, such as whether they are necessarily compositional.

Kirby’s simulations, like all computational models, consider an idealised
system. Consequently, although Kirby shows that a language-learning evolu-
tionary dynamic is sufficient to evolve a learnable language under a particular
set of circumstances, the generality of his results is open to debate. For com-
putational models such as Kirby’s, it is important to establish the features
of the abstraction that lead to the observed results. That is, we should strive
to understand the parts of the abstraction that are required, those which are
superfluous, and those that must be constrained to a critical range of values.

In this paper we explore Kirby’s simulations in greater detail. Kirby cred-
ited his results to the ‘learning bottleneck’ but didn’t examine variations in
learners, tasks or parameters. His choice of language learning mechanism
was based on a learning algorithm that had been previously used in com-
putational linguistics. The choice of semantic domain was constrained so as
to have combinatorial structure. The question we consider is whether the
learning bottleneck is the primary factor with a different kind of learning
mechanism and a differently structured semantic domain.

In previous work, we have considered communication between a pair of
agents that try to communicate a meaning, represented by a value between 0
and 1, using an utterance composed of a sequence of symbols. For each mean-
ing one agent produces an utterance which the other receives and processes
back into a meaning. Using this framework, we have shown how a language
can evolve to mediate the different computational demands of sender and
receiver (Tonkes, Blair & Wiles 1999), and how language evolution can fa-
cilitate learning by adapting towards the forms that exploit the weak biases
of a general purpose learner (Tonkes, Blair & Wiles 2000). It is this com-
munication task that we incorporate into Kirby’s population model in the
simulations presented in this chapter.

In section 0.2 we review Kirby’s simulations in greater detail and raise
issues related to his learning mechanism that we believe are crucial for his
results. His learning mechanisms looked for common substrings and inferred
generalised rules for generating them. We believe that this assumption is
unnecessarily strong, and that a weaker assumption can be tested in an al-
ternative framework. In section 0.3 we present our alternative framework and
highlight the similarities and differences to Kirby’s, particularly the learner,



the differently structured domain and the parameters. These simulations are
performed varying two parameters: the amount of training data supplied to
the learners (the size of the bottleneck), and the size of the population. The
results of these simulations, presented in section 0.4, reveal that the training
corpus size has a significant impact on the communicative accuracy in the
population, while changes to the size of the population merely alter the rate
at which change occurs. Section 0.5 provides an analysis of why the results
vary across changes in these parameters. In section 0.6 we further explore
how Kirby’s results depend upon experimental conditions, by varying aspects
of the learning environment.

0.2 Kirby Revisited

Kirby (2000) presents a compelling demonstration of the emergence of gram-
mar in the absence of any phylogenetic adaptation. A population of ten
language users, modeled as context-free grammars, are arranged in a ring so
that each individual has two neighbours. Individuals are capable of talking
about simple meanings (agent/action/patient tuples) using strings produced
from a restricted alphabet of five symbols. While individuals are equipped
with a learning mechanism, the initial population has no vocabulary and
no grammar. That is, the initial population consists of a mechanism for
acquiring language, but no language to acquire.

To bootstrap the system, Kirby introduces the notion of random inven-
tion: if an individual wants to talk about a particular meaning but has no way
of expressing that meaning, it either says nothing or, with small probability,
produces a random string. The course of a simulation runs as follows.

1. Replace a randomly chosen individual with a new individual.

2. Produce a corpus of training examples from the utterances produced
by the new individual’s neighbours.

3. The new individual induces a new grammar based on this corpus. Dur-
ing this training phase, the learner is presented with both the utterance
and its intended meaning. During normal operation, only the utterance
is presented. The learner is thus required to generalise the relationship
between utterances and meanings from the subset of observed exam-
ples.



4. Return to step (1).

At the start of a simulation run, the training corpora are typically small
and contain examples that are more-or-less random. That is, there is no sys-
tematic relationship between utterance and meaning. Gradually, the training
corpora become larger as each individual’s grammar becomes more expres-
sive. After a period of time, individuals start to reqularise their grammars
in a compositional manner using common substrings for common parts of a
meaning. For example, a meaning such as (mary, john, likes) may correspond
to an utterance such as ‘marylikesjohn’ while a meaning such as (mary, fred,
likes) may correspond to an utterance such as ‘marylikesfred.” Eventually,
the population comes to use a fully compositional language where every ut-
terance can be broken into subcomponents, each representing a part of the
meaning tuple.

Kirby deliberately chose the size of the training corpora so that it was
highly unlikely that an individual would be exposed to the full set of (mean-
ing, utterance) pairs. That is, the only way that an agent could acquire
a complete grammar was to generalise from a limited subset of exemplars.
Kirby hypothesises that it was this feature of the simulations — the ‘learning
bottleneck’ — that caused the fundamental shift in the languages produced,
from non-compositional to compositional.

If meanings and utterances are randomly associated, then there is noth-
ing on which to base a generalisation mechanism. An unobserved association
is therefore unlearned. Conversely, with a systematic relationship between
meanings and utterances, it is possible to generalise from a limited set of
observed exemplars. This dichotomy, Kirby argues, introduces a ‘glossoge-
netic’ selection pressure for languages that can be expressed by a few general
purpose rules that can be induced from a fewer set of examples. For these
languages, it is not necessary to see every (meaning, utterance) pair, rather,
it is learnable from any subset of exemplars from which the general rules can
be derived.

Although there is no phylogenetic adaptation during the course of Kirby’s
simulations, the model incorporates phylogenetic adaptation implicitly in the
design of the individuals’ language learning mechanisms. That is, the start-
ing point of the simulations is a population of individuals that are innately
endowed with a particular learning mechanism. It seems to us that the cho-
sen induction algorithm is highly biased towards language-like, compositional
structures, which is perhaps not surprising given that the algorithm was orig-



inally developed for computational linguistics. Although Kirby highlights the
importance of languages themselves being systems that adapt to their hu-
man hosts, inherent in his choice of learning algorithm is a strong form of
language-specific learning bias.

0.3 Methodology

The design of the simulations in this paper owe much to previous work.
The overall dynamic of linguistic interactions, outlined above, is taken from
Kirby’s (2000) work. The linguistic agents are of the same type used by Batali
(1998) and the semantic domain is one that we have used in previous work
(Tonkes et al. 2000). While we present here an overview of the simulation
design, the interested reader is directed to the original sources for a more
in-depth treatment.

0.3.1 Something to talk about

Whereas in Kirby’s original simulations, the agents attempted to communi-
cate simple predicates denoting agent, action and patient (‘Who did what
to whom.’), in our simulations we use a much simpler semantic domain.
Meanings are represented as values between 0 and 1, which for simplicity
are restricted to 100 values of 0.01 increments (i.e., 0.00,0.01,0.02,...,0.99).
These meanings are numerically related so that is possible to measure the
similarity of two meanings by taking their numeric difference (for example,
0.00 is more similar to 0.01 than it is to 0.30). It thus makes sense to in-
troduce the notion of degrees of understanding, rather than deciding that
an utterance has been either ‘understood’ or ‘not understood.” To this end,
the domain lends itself to a convenient way to measure communicative error,
which we will take to be the squared difference between the meaning intended
by the sender and the meaning as interpreted by the receiver.! The similar-
ity between items in this space is analogous to similarity between real-world
items. For example, the similarity between red and pink may be analogous
to the similarity between 0.40 and 0.50. However, we are trying to model the

'For example, if the sender tries to communicate the meaning 0.45 which the receiver
(mistakenly) understands as 0.65, then the communicative error for that interaction is
(0.45 — 0.65)% = 0.04.



similarity structure between items rather than the labels attributed to par-
ticular items. The model may thus be interpreted as an abstract conception
of the similarity amongst meanings in a semantic domain.

0.3.2 Communicative agents

As noted earlier, our communicative agents are modelled as simple recurrent
networks (SRNs) of the same type as those used by Batali (1998, see the
enlarged section in Figure 0.1). SRNs (Elman 1990) are a type of neural
network that are particularly well suited to sequential tasks such as language
processing, where they have demonstrated some impressive results (Elman
1991). SRNs can be trained to associate a sequence of patterns (in this case,
an utterance that is a sequence of symbols) with an output pattern (in this
case, a meaning value).?

In previous work (Tonkes et al. 1999, Tonkes et al. 2000), we have differen-
tiated between senders (those agents that generate utterances from meanings)
and receivers (those agents that recreate meanings from utterances). For this
chapter we use an alternative approach first introduced by Batali, where the
same network is used for both sending and receiving. SRNs are not normally
capable of such dual-mode operation, so to achieve the desired behaviour,
Batali used networks that were designed to be receivers and applied a special
operation to make them capable of sending (for this reason, Figure 0.1 shows
only a receiving network). The operation that Batali applied is known as an
‘obverter’ procedure (Oliphant & Batali 1996). The essential idea is that to
communicate some meaning M, an agent searches for an utterance U such
that if the agent itself were to hear U, it would interpret it as meaning M.
(That is, the agent tries to work out the inverse of its own receive function.)
Note that understanding the precise mechanics of the obverter procedure is
unnecessary for understanding the remainder of the chapter.

Similar to both Batali and Kirby, the utterances themselves consist of
sequences of up to six symbols which are taken from an alphabet of size four.
Following common neural network practice, the symbols are represented as
four-dimensional binary vectors [1,0, 0, 0], [0,1,0,0], [0,0,1,0] and [0,0,0,1]
which we denote A, B, C and D respectively. These vectors are used as the
activations for the utterance input units in Figure 0.1.

2For the simulations in this chapter, we used the backpropagation-through-time algo-
rithm (Rumelhart, Hinton & Williams 1986) with a learning rate of 0.01 and a momentum
term of 0.9.
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Figure 0.1: A population of communicating agents. Each agent is modeled
by a simple recurrent network and can communicate with two neighbours so
that the population forms a ring. The operation of the SRN shown in the
enlarged section can be described as follows. Each of the blocks represents a
set of simple processing units whose activations are determined by both the
activations of the processing units in the previous layer and the strengths of
the connections between them (also called ‘weights’). The process by which
activations flow from the utterance inputs to the output is known as prop-
agation. The activations of the utterance inputs are determined externally
by an incoming utterance which is received one symbol at a time. The ac-
tivations of the context units are copied from the activations of the units in
the hidden layer after each symbol is processed. These units are used to pro-
vide the network with a working memory and are the characteristic feature
of the SRN. The hidden units may be viewed as an internal working space.
The meaning that the SRN associates with the utterance is read off the sin-
gle output unit after the final symbol in the utterance has been propagated
through the network.



The communication of a meaning from sender to receiver might proceed
in the following manner:

1.

2.

The sender decides to communicate a value such as 0.43.

Using the obverter procedure outlined earlier, the sender determines
the sequence of no more than six symbols (an utterance) that it under-
stands as the best approximation to 0.43. In this example the sender
might understand ACDBA to mean 0.41, which is the closest approxima-
tion it can find.

. The utterance, ACDBA, is sent to the receiver.

. The activations of the processing units of the receiver are initialised to

zero so that there is no memory of previous utterances. The vectors
of activation values corresponding to each symbol in the utterance are
propagated through the receiver’s SRN, one at a time. Each SRN has
four utterance input units corresponding to the size of the symbol vec-
tors, five hidden units, and a single output unit used for the interpreted
meaning.

. The meaning as understood by the receiver is read from the activation

of the receiver SRN’s output, in this case it might be 0.46.

. The next step depends on whether or not the receiver is being trained.

e If the receiver is in its learning phase then it is informed of the
intended meaning. It then uses the discrepancy between the in-
tended meaning (0.43) and the interpreted meaning (0.46) to up-
date the weights between processing units so that future presen-
tations of the utterance ACDBA will tend to be understood as a
meaning closer to 0.43. Because of the nature of neural network
learning, it may take many presentations of the same training
material before the learner makes no errors.

e If the receiver is not being trained then it is unaware of the in-
tended meaning. It is possible however, for an external observer to
measure the squared communicative error, (0.43—0.46)% = 0.0009.



0.3.3 Population dynamics

A population of networks is arranged in a ring so that each individual has
two neighbours (Figure 0.1). Simulations are run for 2500 time-steps. In
each time-step of a simulation, the following sequence of events occur.

1. Replace a randomly chosen network by a new network. Set the con-
nection strengths of the network to small random values.

2. Create a training corpus by using the new individual’s two neighbours
to generate a set of utterances corresponding to a randomly chose set
of meanings. The training set contains utterances produced by both
neighbours as well as their intended meanings.

3. Train the new network on the training corpus using the process outlined
earlier. The entire training corpus is presented to the network 1000
times.

4. Evaluate the communicative accuracy of the population in the following
way. Every combination of sender and receiver, regardless of location,
attempts to communicate the 100 meanings. The squared communica-
tive error for each meaning is summed giving a communicative error
score for each (sender, receiver) pair. These scores are then averaged,
giving a measure of the average communicative error for the population.

We vary two parameters of the simulations — the size of the training
corpus and the size of the population — and consider three variations of
these parameters. In the first variation we use a population of size ten and
a training corpus of size ten. The second variation increases the size of the
training corpus to twenty while keeping the population size at ten. The
third variation increases the size of the population to twenty while keeping
the training corpus size at ten. We refer to this set of simulations as series
1 and the three combinations of parameter settings as studies 1A (small
population, small corpora), 1B (small population, large corpora) and 1C
(large population, small corpora). Importantly, the size of the training corpus
is chosen to always be significantly less than the size of the full meaning set.
Consequently, networks are required to generalise well beyond the examples
in the training corpus to communicate about the full set of meanings.

10



0.3.4 Putting it all together

In this section we briefly describe what happens during a typical run. The
initial population of networks are untrained and generally produce uninter-
esting languages. Networks are unable to produce enough unique utterances
to differentiate every meaning. Typically, networks are only able to produce
three or four different strings which are reused for many of the 100 meanings.
In almost all cases each unique utterance is used for a single contiguous range
of meanings. For example, a network may send DDDD for meanings with val-
ues between 0.00 and 0.35, DDBD for meanings with values between 0.36 and
0.65 and DBBB for meanings with values from 0.66 to 0.99. Furthermore, the
agents in the population disagree on which utterance corresponds to a given
meaning. The average communicative accuracy is consequently very poor
and agents have little success even in understanding their own utterances.
(The degree to which an agent comprehends its own utterances can be tested
by taking two copies of the agent, one which acts as sender, the other as
receiver, and measuring their communicative error.)

One of the agents is then replaced with a new individual. The new indi-
vidual is trained on a set of examples produced by its two neighbours. Since
the output of the two neighbours is unrelated, the training data for the new
network is likely to be a confusing blend. After training, the new network
shares some characteristics of the languages produced by its neighbours and
is usually able to understand its own utterances. The communicative accu-
racy of the newly trained network is typically better than the remainder of
the population.

After several agents have been replaced and new ones trained, contiguous
sections of the population begin to have reasonably high agreement on which
utterances to use for which meanings. The consistency is never perfect, but
networks do tend towards using similar strings for a given meaning. Often,
one contiguous subset of the population will use one convention for a region of
the meaning space, while the remainder of the population will use a different
convention. For example agents one to five may use AAAB to communicate
0.50 while agents six to ten use DDDC to communicate the same meaning. At
this stage, the vocabulary of the agents expands to around twenty unique
utterances. That is, agents are capable of differentiating twenty regions of
the meaning space where initially they were able to differentiate only three
or four. From this point onwards, the course of the simulation is dependent
on the choice of parameters. We elaborate on this point in the next section.

11



0.4 Base Results

For each of the three combinations of population size and training data pa-
rameters, three separate runs of the simulation were performed with differ-
ent seeds of the random number generator producing different sets of initial
weights and different choices of training examples. In all cases, simulations
performed under the same parameters yielded qualitatively and quantita-
tively similar results. The results presented here are based on the communica-
tive accuracy of the populations, averaged across the three trials performed
for each set of simulation parameters. The communicative error between a
sender and a receiver is determined by the squared error between the mean-
ing intended by the sender and the meaning as understood by the receiver,
summed across the 100 possible meanings. The communicative error for the
population as a whole is taken to be the average communicative error for ev-
ery possible combination of sender and receiver. From previous studies, we
have determined that a communicative error score of one or less corresponds
with acceptable communicative accuracy.

With a small population size and with small training corpora (study 1A),
the populations always failed to reach consensus on a language, as shown
in Figure 0.2. After a brief initial period where communicative error drops
quickly, the error increases again. Throughout the course of a run, the com-
municative accuracy of the population continues to oscillate, and even during
the better periods, the populations fail to communicate with an acceptable
degree of error. During the initial improvement in accuracy and during subse-
quent periods of good performance, individual’s languages show a reasonable
level of agreement with some other members of the population, and there are
easily distinguishable ‘families’ of languages. The populations that are re-
sponsible for the periods of high error show little coherence. Although small
subsets of the population (two or three individuals) may use languages that
are somewhat similar, there is no consensus amongst the population at large.

Keeping the same population size as for the previous study while in-
creasing the amount of training data presented to new agents (study 1B)
significantly improves performance (see Figure 0.3). There is a rapid initial
convergence as the population reaches consensus on a language. The lan-
guages produced across the population are not identical, however they are
sufficiently similar for accurate communication. While the performance of
the population remains on average quite good, there are several transient
increases in error. During these periods part of the population uses a com-

12
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Figure 0.2: Communicative error over time for a population of size ten, using
ten examples to train new individuals (study 1A). With these parameters,
the population fails to converge on an acceptable language (i.e., one with
mean communicative error score lower than threshold at 1.0, shown on the

graph).

pletely different language where the population agrees on some regions of the
meaning space but not on others. Interestingly, the populations on either side
of these transient failures may use languages that are different. That is, fol-
lowing the ‘corruption’ of the language, the population may reconverge on a
different language to the one used previously.

Increasing the population size (study 1C) significantly slows the rate of
change of the population (see Figure 0.4). With the larger population size
there is a prolonged period before convergence to an acceptable level of agree-
ment. Indeed, for an initial period the communicative error of the population
is substantially higher than at the start. In this region the utterances used by
some agents for meanings close to zero are the same as those that other agents
use for meanings close to one, and vice versa, giving a worse-than-chance error
when they attempt to communicate with one another. Furthermore, under
these conditions the population remains unstable in the same way as the case
above. Running the simulation for more that 2500 generations reveals that
after the population converges, the same increases in error occur. Moreover,
the periods of increased error are of greater duration than those observed in
the smaller populations. A representative example of the types of languages

13
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Figure 0.3: Communicative error over time for a population of size ten,
using twenty examples to train new individuals (study 1B). Although the
population converges to a good language, there are several periods of high
error during which two competing languages appear. In these situations the
original language may be replaced by a new variant.

found in a population is shown in Table 0.1.

0.5 Analysis of Base Results

From observing the change in the languages of the population over time we
conclude that much of the behaviour shown in Figures 0.2, 0.3 and 0.4, and
the differences between them can be attributed to one cause. Namely, that if
a learner fails to acquire the language of its neighbours, then nothing prevents
that individual teaching its poorly formed language to subsequent learners.
The most significant factor in the failure of an individual to learn is the data
presented to the learner. If the ten or twenty training examples are chosen
poorly (for example, if they are all less than 0.5), it is much harder for the
learner to successfully generalise to the remainder of the space. Utterances
for similar meanings tend to be similar so if an agent knows the utterance
associated with a meaning such as 0.78 it is more likely to be able to guess
the meaning of the utterance associated with 0.75 that it is to guess the
meaning of the utterance associated with 0.10.

As the number of training examples increases, the probability of an in-

14
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Figure 0.4: Communicative error over time for a population of size twenty,
using twenty examples to train new individuals (study 1C). The population
behaves similarly to that in Figure 0.3 but on a much slower time-scale. If
the population is allowed to run beyond the 2500 generations shown here,
similar intrusions of rogue languages cause intermittent periods of high error.

adequate sampling of the space diminishes. Hence, the population shown in
Figure 0.2 which uses ten training examples is far less stable than the popula-
tion shown in Figure 0.3 which uses twenty training examples. Other factors,
such as the initial connection strengths of the learner may also cause learning
failures. However, further simulations (section 0.6.1) indicate that the initial
weights do not play as significant a role as the distribution of training data.

The differences in time to convergence between Figures 0.3 and 0.4 can
be attributed to greater propagation delays associated with the increase in
population size. With a population of size ten, individuals are at most five
neighbours away from any other individual. Consequently, the speed with
which a change in a language can propagate through the entire population is
much greater than with the larger population size (twenty). Once a popula-
tion forms two (or more) distinct languages it also takes a greater time before
one comes to dominate. Assuming that the languages are equally learnable,
one comes to dominate only through providing a disproportionate number of
examples in the training corpora of new individuals. Since there is random
selection of which neighbour provides a training example, language dispersal
involves a degree of chance. An increase in population size increases the size
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of the region that must be ‘conquered’, slowing the dispersal process.

0.6 Varying the Learning Environment

Just as in Kirby’s simulations we have seen the emergence of co-ordinated,
structured communication as a result of the dynamics of linguistic transmis-
sion. While not all of Kirby’s results have been replicated (which we would
not expect given the changes made to Kirby’s simulation design), we have
seen that one of significant outcomes (structured communication) does repli-
cate with a different learning mechanism and a different semantic domain.
We have also see that a successful outcome can be highly dependent on such
factors as the size of the population and the amount of training data avail-
able to new individuals. In this section we consider alternative aspects of
the learning environment that can influence the outcome of language evo-
lution. The analysis of the first series of simulations indicated that part of
the reason why populations failed to converge was that a single learner with
an idiosyncratic language could corrupt future generations. Kirby explicitly
sought to simulate language emergence in the absence of selection pressure
to explore the power of glossogenetic adaptation alone. Hence, idiosyncrasies
could not be eliminated from a language by a mechanism that removed the
poorer speakers from the population. Consequently, the three factors that we
vary in series 2—4 are chosen for their potential to either prevent learners from
failing, or to stop failed learners propagating their half-formed languages.

It is well understood that failures in neural networks to learn a task can
often be attributed to the choice of the initial weights (Kolen & Pollack 1990).
In simulation series 2, we repeat the simulations of series 1, but instead of
generating the initial weights of new individuals randomly, all new individuals
start with the same weights. In making this change we allow a language to
emerge that is learnable from a specific starting point. This technique has
proven successful in other work (Tonkes et al. 2000, Batali 1994).

Another potential cause of learning failure that we have identified is the
selection of training data from which new individuals learn. Learners are
presented with a set of (meaning, utterance) pairs, where the meaning is a
value between 0 and 1. If the selection of meanings in the training sample
fails to provide sufficient coverage of the full meaning space, then it is much
harder for the learner to generalise to unseen examples as they are dissimilar
to the previously seen examples. In simulation series 3, rather than training
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new learners on different, randomly chosen examples, new learners are trained
on the same (randomly chosen) meanings.

In series 4, the variation to series 1 is that we remove the ‘neighbourhood’
assumption. Instead of using neighbours to provide the training data for new
individuals, a ‘teacher selection’ principle is applied. After every time-step,
each individual is given a score based on how well it is understood by the rest
of the population (i.e., the portion of error that an individual contributes to
the overall error, as plotted in Figures 0.2, 0.3 and 0.4). This score is used to
select which networks generate the examples in a training corpus presented
to a learner, based on a proportional selection mechanism (the probability
of selection is inversely proportional to error). If a network fails to learn
the language of its community then it will be unlikely to be selected to
provide examples to train new individuals, thus limiting its impact on future
generations.

In summary, the simulations of series 1 (section 0.3) are repeated under
three different conditions:

1. Using the same set of initial weights for each new learner (series 2: fixed
weights).

2. Using the same set of meanings to train each new learner (series 3:
fixed examples).

3. Choosing the ‘best’ networks to generate the training examples for the
new learners (series 4: teacher selection).

Again, population size and the training corpus size are varied and the sim-
ulations from three different random seeds are repeated under each condition
(i.e., we perform studies 2A, 2B, 2C, etc.).

0.6.1 Results of Varying the Learning Environment

In all cases, the three repetitions of a condition yielded quantitatively similar
results. However, across the conditions, the results varied radically. In the
‘fixed weights’ condition, the populations rapidly achieved reasonably low
communicative error (see Figure 0.5). This effect may be attributed to the
fact that all members of the initial population were identical (having the
same, unadjusted connections). However, as in the original series of simu-
lations, the population was unable to maintain this low degree of error and
the error fluctuated markedly.
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are originally identical, the population converges quickly. However, as in sec-
tion 0.4 the population frequently departs from an established convention.




In stark contrast, the populations in the ‘fixed examples’ condition took
longer to converge in each case but showed a remarkable degree of stability
(see Figure 0.6). Although there are some increases in error after the pop-
ulation has apparently converged, the error remains low. Surprisingly, there
is no significant difference in the accuracy of the networks when the amount
of training data is varied.

The populations in the ‘teacher selection’ condition demonstrate yet an-
other pattern of error (see Figure 0.7). Again, the population rapidly attains
a reasonable degree of communicative accuracy (low error). However, any
increases in error are very short-lived, far more so than in the original simu-
lations. With a small population and a small amount of training data (study
4A) the population is still unstable, but is much better on average than in
the original simulations (Figure 0.2). Even with a larger size, the population
very quickly arrives at a point of low error and tends to remain there, despite
the occasional increases in error.

0.6.2 Analysis of Learning Environments

Again we performed an analysis of the changes in the population by observ-
ing the changes in the languages generated by each population. Apart from
the initial improvements in communicative accuracy, the results of the ‘fixed
weights’ populations are effectively the same as in section 0.4, indicating that
the choice of initial weights is largely irrelevant. Conversely, the performance
of populations in the ‘fixed examples’ condition suggest that the choice of
training data is of vital importance. In this condition, only a single training
corpus is generated. The probability that this particular corpus is unrepre-
sentative of the meaning space is small, as it is for networks trained in the
original simulations. In the original simulations 2500 different corpora are
generated, one for each learner. The probability that some of these corpora
are unrepresentative of the meaning space far exceeds the probability that the
single corpus in the later simulations is unrepresentative. If, by chance, the
single corpus was chosen poorly, we might expect that the population might
never be successful. The results of the ‘fixed weights’ and ‘fixed examples’
simulations lead us to hypothesise that the populations evolve languages to
a point where they are reliably learnable regardless of the initial weights of
a network, and that only poorly chosen training samples prevent individuals
from learning.

Populations in the ‘teacher-selection’ condition successfully reduced the
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influence of rogue learners. The impact can be best seen from the length of
time that any population experiences high error. Particularly with a popu-
lation size of ten and a training corpus of size twenty (study 4B, the middle
graph in Figure 0.7), the length of periods of increased error closely follow
the expected lifespan of an individual (ten time-steps on average). This ob-
servation suggests that while a rogue learner may lower the communicative
error of the population, it does not pass its incompatible language to fu-
ture generations. Communicative accuracy is thus restored once the rogue
learner leaves the population. The effect is much less clear with the smaller
training corpus since the probability of multiple successive failed learners is
considerably higher. Increases in the number of inconsistent networks in the
population increases the probability of further inconsistent networks, hence
the instability in this case.

0.7 Discussion and Conclusions

In this final section we consider what correspondences can be drawn between
the framework of these studies and characteristics of human language learn-
ers and environments. Simulations of populations of communicating simple
recurrent networks showed that in favourable circumstances, languages could
emerge in the absence of phylogenetic adaptation (section 0.4).

Our results demonstrate that one of Kirby’s major findings — that a
structured communication system can emerge from the dynamics of language
transmission — has a generality beyond his original domain. While the kinds
of language structures that emerge in our simulations are significantly differ-
ent to those that emerged from Kirby’s simulations, such a result should not
be unexpected. The agents will employ the most appropriate structures for
their respective communication tasks. Given the structure of the languages
produced in our simulations, the results of the simulations may be used to
refute claims that classical compositional syntactic structures are the only
viable form of linguistic structure. Thus, human languages exhibit composi-
tional structure not because it is the only valid alternative, but because other
constraints on human communicative needs (such as the similarity structure
of meanings as represented in the human mind) necessitate compositionality.

The effect of manipulating the two parameters in the simulations — popu-
lation size and training corpus size — suggests some interesting implications
for human languages. The results showed that populations converged on
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languages regardless of the population size, although time to convergence
was slowed by the larger population. Conversely, increasing the size of the
training corpus (which can be viewed as increasing a learner’s exposure to
language, perhaps by increasing the critical period) vastly improved the suc-
cess of populations. While it is not possible to state categorically that the
same would be true of human populations, the results suggest an interesting
hypothesis for the emergence human languages.

The modifications to the learning environment made in section 0.6 are
also suggestive of the desirable conditions for language emergence. The first
modification (fixed weights) may be viewed as analogous to a very weak
genetic endowment of linguistic knowledge. This modification proved unsuc-
cessful at improving the communicative accuracy of the population. In the
second modification (fixed examples), the learning environment is consistent
for every individual — every learner has the same set of experiences. With
this environment, populations were far more successful at accurate communi-
cation. It is not outlandish to suggest that for humans, there is some degree
of commonality between learning environments, although no two humans will
share the exact same set of experiences.

Preventing failed learners from acting as teachers was also effective in
maintaining the language of a population, but still required that learners
were given sufficient training data. This condition introduced a selection
mechanism, something which Kirby deliberately avoided adding. However,
in populations where learners can fail, and then corrupt future learners, our
simulations show that some kind of selection mechanism is important to
maintain population stability. Such a mechanism may be manifested in a real-
world situation by the direction of a learner’s attention away from speakers
with impaired language abilities.

Although Batali (1998) also used neural networks in his simulations, he
did not include any generational component, instead using a static popu-
lation. In his model, the agents in the population communicate amongst
themselves until a consensus is reached. Consequently, after the first round
of ‘negotiations,” agents are no longer naive about the language of the com-
munity, making it difficult to look at changes in the language due to selection
pressure for (naive) learnability. Batali also used a different semantic domain
and his population lacked any kind of spatial organisation. However, it is
interesting to note that Batali’s populations were successful in producing ba-
sic combinatorial language structures despite the lack of an explicit ‘learning
bottleneck’ — the very mechanism to which Kirby ascribes the success of his
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simulations. One possible explanation for this disparity is that the learning
mechanism itself may provide an implicit bottleneck. One feature of neural
networks is their tendency to generalise based on similarity. Consequently,
it is much easier for a neural network to learn a regular language than an
irregular one; it may even be the case that a neural network will be unable
to learn some irregular forms. In a series of negotiations, it would thus be
expected that the more easily learnable forms (i.e., the regular languages)
would persist — networks would compromise on the easier forms. By con-
trast, in Kirby’s simulations, learners were not able to ‘forget’ associations
between meanings and utterances: once a learner acquired an association, it
remained for life. Thus, Kirby’s learners lack the implicit bottleneck since
they will always succeed at finding a grammar that is consistent with the
training data.

To provide a comparison between Kirby’s explicit bottleneck, and the
hypothesised implicit bottleneck of the neural network learner, we ran a con-
trol study which repeated the first series of simulations (described in section
0.3), without removing individuals from the population. Instead, an individ-
ual was chosen to be given additional (learning) exposure to the language of
its neighbours as in Batali’s simulations. With small populations and small
training corpus sizes, the population quickly reached a communicative error
score of around one. The languages of these populations were still unsta-
ble, although not to the same extent as the population shown in Figure 0.2.
Increasing the amount of training data received in each round resulted in a
much more stable population. Even though populations in this condition pe-
riodically disagreed, such events were not as catastrophic as those in Figure
0.3. With a large population and large training corpora, populations were
slow to attain reasonable communicative accuracy, much as in Figure 0.4,
though the initial period of very high error was much shorter.

These results, although they are only preliminary, suggest that Kirby’s
explicit learning bottleneck may not be necessary. Certainly, they indicate
that the role of the bottleneck is not as straightforward as Kirby described.
Of course, in the case of human languages there clearly is such a bottleneck
between generations of learners. Further work may help to determine whether
this bottleneck plays a fundamental role, or is merely incidental to the course
of language emergence. What seems plausible is a relationship between the
implicit bottleneck of the learning mechanism, and the explicit bottleneck in
Kirby’s simulations.

The major contribution of this chapter is to broaden our ideas of when
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structured communication systems emerge (and are stable) and when they do
not. The chapter also considers the types of language structures that emerge
from a given situation. Human languages are the only natural example of
symbolic structured communications systems that we have. It is difficult
to establish the causes for such unique phenomena. Computational models
allow us to construct a variety of communication systems and to explore the
conditions under which language-like systems can emerge. By examining the
conditions under which language does, and does not emerge, we can draw
conclusions about the significant aspects of the human environment that
led to the evolution of human languages. The long-term goal is to deduce
the general principles behind the emergence of language and properties of
those languages. The work presented in this chapter represents a small step
towards that goal.

0.8 Key further readings

Much of the simulation design used in this chapter was taken from the first
three papers.

Batali, J. (1998). Computational simulations of the emergence of grammar,
in J. R. Hurford, C. Knight & M. Studdert-Kennedy (eds), Approaches
to the Evolution of Language, Cambridge University Press, Cambridge,
England, pp. 405-426.

Kirby, S. (2000). Syntax without natural selection: How compositionality
emerges from vocabulary in a population of learners, in C. Knight, J. R.
Hurford & M. Studdert-Kennedy (eds), The Evolutionary Emergence of
Language: Social function and the origins of linguistic form, Cambridge
University Press, Cambridge, England.

Tonkes, B., Blair, A. D. & Wiles, J. (2000). Evolving learnable languages,
in S. A. Solla, T. K. Leen & K. R. Miiller (eds), Advances in Neural
Information Processing Systems 12, MIT Press, pp. 66-72.

Elman, J. L. (1991). Distributed representations, simple recurrent networks
and grammatical structure, Machine Learning 7: 195-224. The clas-
sical introduction to simple recurrent networks with applications for
grammatical processing.
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Steels, L. (1997). The synthetic modeling of language origins, Fvolution of
Communication 1(1): 1-34. A taxonomy of problems in evolutionary
linguistics to which computational approaches have been applied, and
a review of the range of different computational approaches.
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Table 0.1: The utterances used by a neighbourhood of a population for a sub-
set of the meaning space. This small sample shows two competing language
forms. Where the first three agents use strings beginning with B for meanings
with low numerical values, the other three agents use strings beginning with
D. Note that agent 4 shows some similarities to both families. This example
also demonstrates that even within one language ‘family’ there is significant

variability.
Concept Agent 1 Agent 2 Agent 3 Agent 4 Agent5 Agent 6
0.00 BBBBBB BBBBBB BBBBBB DDDDDD DDDDDD DDDDDD
0.01 BBBBBB BBBB BBBBBB DDDDDD DDDDDD  DDDDDD
0.02 BBBBBB BBB BBB DDDDD DDDDDD  DDDDDD
0.03 BBBBBB BB BBB DDDD DDDDD DDDDDD
0.04 BBBBBB BB BB DDDB DDDD DDDDDD
0.05 BBBBBB BB BB DDD DDD DDDDDD
0.06 BBBBBB B BB DDD DDD DDDDDD
0.07 BBBBBB B B DDD DD DDDDDD
0.08 BBBB B B DDB DD DDDDDD
0.09 BBB B B DDB DD DDDDDD
0.10 BBB B B DDB DD DDDDDD
0.11 BB B B DD DD DDDDDD
0.12 BB B B DD D DDD
0.13 BB BDB B DD D DDD
0.14 BB BDB B DD D DD
0.15 BDD BDB B DD D DD
0.16 BDD BDB BDB D D DD
0.17 BD BDB BDB D D DD
0.18 BD BD BD D D DD
0.19 BD BD BD D D D
0.20 B BD BD DB D D
0.21 B BD BD DB D D

28



