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Abstract. What permits some systems to evolve and adapt more effec-
tively than others? Gell-Mann [3] has stressed the importance of “com-
pression” for adaptive complex systems. Information about the environ-
ment is not simply recorded as a look-up table, but is rather compressed
in a theory or schema. Several conjectures are proposed: (I) compression
aids in generalization; (II) compression occurs more easily in a “smooth”,
as opposed to a “rugged”, string space; and (III) constraints from com-
pression make it likely that natural languages evolve towards smooth
string spaces. We have been examining the role of such compression for
learning and evolution of formal languages by artificial agents. Our sys-
tem does seem to conform generally to these expectations, but the trade-
offs between compression and the errors that sometimes accompany it
need careful consideration.

1 Introduction

Why are some systems more adaptable than others? A core feature of nearly
all successful adaptive systems is the ability to distill experience into schemas,
models or theories and then employ those abstracted structures in new circum-
stances. Information about the environment is not simply recorded as a look-up
table, with generalization to new situations happening only at look-up time.
Rather, it is plausible that salient features of situations are noted, and then
departures from expectations are noted. This is the essence of compression.

Gell-Mann [3] has argued that a compressed form “is usually approximate,
sometimes wrong, but it may be adaptive if it can make useful predictions in-
cluding interpolation and extrapolation and sometimes generalize to situations
very different from those previously encountered. In the presence of new infor-
mation from the environment, the compressed schema unfolds to give predictions
or behavior or both.” We would like to know more about the role of compression
in adaptation. For example, can we identify features of compression that make
some forms more or less likely to be successful? What sorts of compression are
best? How much is desirable?

This perspective on learning is not new, especially for cultural evolution. It
is evident, for example, that there is frequently a practical necessity to simplify
things so that we can understand them. Hence the ubiquitous use of simplified



models in science. Which models are themselves best, is also a matter of sim-
plicity. William of Ockham, among others, has observed that “it is futile to do
with more what can be done with less” [18]. In another domain, Chomsky [2]
has placed the desirability of compressed, “minimal” grammar at the heart of
his theory of human language. Nonetheless, there have been few attempts to
explore, in a systematic way, how compression alone may affect adaptation.

In this paper we first state some heuristics that we conjecture to be generally,
if not always, true. We then introduce some elementary definitions and principles
about data compression and formal languages. We have chosen to work with
formal languages because it is possible to discuss them concretely and because
such systems quite clearly show changes in their ability to generalize [14,6,11,
10]. We next discuss how compression can occur as an agent learns a language by
hearing examples of it. We also describe some experiments where agents learn
the languages with compressed grammars, and where the languages evolve as
a result. Finally, we discuss some features of compression and evolution in our
system in the light of our conjectures. We emphasize that while our discussion
will be directed mostly to cultural evolution - scientific theory and language, we
believe these heuristics apply to other adaptive complex systems, such as organic
evolution, immune systems, and neural networks.

2 Conjectures about compression and adaptation

Conjecture 1. Compression aids in generalization.

From a series of observations like “Crow A is black” and “Crow B is black”
we compress a look-up table of crows and their colors to the generalization that
“All crows are black.” The generalization is clearly smaller, more “compressed”
than a list of many instances. The precise characterization of the circumstances
in which such generalization is appropriate, the problem of induction, is a long-
standing philosophical problem.

The history of science is a history of finding generalizations that allow a
succinct statement of the facts. Following the invention of the spectroscope, the
spectral emissions from various elements, including hydrogen, were cataloged.
About 1885 J. J. Balmer discovered formulae that would describe the frequencies
for hydrogen emissions both compactly and accurately, though they were simply
formulas without a model behind them. In 1913, Niels Bohr published a model
for the atom that would compactly describe emissions from hydrogen, and several
other atoms, in very compressed and desirable form.

While the history of science can be regarded as a series of successively better
compressions, it should also be recognized that the resulting compressions may
make predictions that are only approximate or even wrong. Although models can
give us insight into systems, the actual model used greatly affects the predictions
that can be made and the types of behaviors that can be explained. Many
scientific theories, no matter how well they might compress a set of observations,
are subsequently proven wrong.



Conjecture 2. Compression occurs more easily in a “smooth”, as op-
posed to “rugged”, string space.

Related or connected sets of observations form a better basis for generaliza-
tion than do similar or unrelated ones. We would like to be concrete about the
meaning of “related or connected” in this context. Kauffman [8] has explored the
use of adaptive landscapes in a variety of contexts, and we build on his example
by exploring a string space of languages, below.

Unrelated observations, like Lord Morton’s mare for Darwin’s theory of in-
heritance, can make theory formation quite difficult [13]. As a result, it is thought
generally better to focus initial scientific study on simple and well-defined sys-
tems, where the smoother space is more easily explored, as Mendel did.

Smoothness and ruggedness are, to some extent, a property of the substitu-
tion operators. In molecular evolution for example, adding or deleting tandem
repeats of 2 or 4 nucleotides is often easier than adding or deleting a single
nucleotide [21].

Conjecture 3. Constraints from compression make it likely that natural
languages come to have smooth string spaces.

Language learners are regarded as systems that aim to identify rule systems
that describe the (infinite) language of the community on the basis of finite
evidence. This can only be successful in certain circumstances, whether one as-
sumes that success is perfect identification in the limit (the “Gold” paradigm) [4],
or that success is feasible convergence to arbitrarily good approximate identifi-
cation [9,20]. Since humans clearly learn to speak natural languages that can
generate an infinite number of sentences, and do so largely from examples and
without conscious awareness of grammatical rules, most linguists believe that,
roughly speaking, when a young person is confronted with a new sentence they
will “try out” candidate grammars and then, from those grammars that can
accommodate it, choose the one that is simplest [1,5,19].

Of course, human language learners hear ungrammatical sentences and sen-
tence fragments, but this “noise” apparently does not make communication with
the community impossible. We postulate that sufficiently rare complications are
typically not incorporated; they will be catalogued as exceptions or simply ig-
nored. As a result, there will be a natural selection for languages that are pro-
gressively smoother. This is perhaps analogous to the way that biological systems
sometimes “solve” other NP-complete problems. They seem to employ only those
parts of the problem space that can be solved simply, even though the general
problem might be insoluble [15].

3 Data compression

Data can be compressed only when it contains some regularity that can be
exploited. [17]. When there is a regularity, listing it repeatedly makes for an
eliminable redundancy.



It is important to recognize that some schemes might provide very efficient
coding of data, but would involve lengthy and complicated specifications of the
decoder. The decoder could, for example, simply contain a list of any finite set
of strings to be encoded. A better measure of compression would recognize both
costs. The minimum description length algorithm (MDL) we use accomplishes
this. In the formal language framework the sum of the grammar-encoding-length
(the cost of the rule set) and the data-encoding-length (the cost of the coding of
the data) is minimized [12,16].

4 Formal Languages

A (formal) language is a set of strings of symbols drawn from some alphabet.
Here we shall be concerned only with regular languages, languages that can be
accepted by a finite automaton. Such automata can be described by a quintuple,
(Q,X,0,q0, F), where @ is a set of states, X is an input alphabet, go € @ is the
initial state, § C @ x X x @ is a transition function, and F' C () is the set of
final states [7]. An automaton is said to be deterministic if the transition § is
a function § : @ x ¥ — @ with respect to its first two arguments. Associated
with each finite state automaton is a transition diagram, with an arc connecting
states ¢; and g2 labeled with vocabulary element a if, and only if, (g1, a,gz) € d.
The automaton accepts a string s if, and only if, the string labels a path from
the initial state to a final state.

For purposes of illustration, consider languages 1-s and 1-r. Language 1-s
consists of the strings aaaa, aaab, aaba, abaa and abba. Language 1-r con-
sists of aaab, abaa, aaba, abbb, and bbab. Their respective “prefix tree”
transition diagrams are shown in Figure 1.
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Fig. 1. Transition state diagrams for uncompressed grammars: (a) language 1-s (b)
language 1-r.

Since each string can be specified by a path through a deterministic automa-
ton, we calculate one simple approximation of the data-encoding-length in bits
given by the formula:
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where m is the number of sentences in the sequence of strings encoded, |s;| is
the length of the 7’th string s;, and z; ; is the number of ways to leave the state
reached on the j’th symbol of sentence s;. (A more succinct encoding is obviously
possible when the probabilities of the transitions are not uniform. The simple
approximation suffices for purposes of this preliminary investigation.)

To specify the automaton itself, we must specify all the triples (q1,a,q2) € §
and we must also specify the final states, so we calculate the grammar encoding
length:

191[2(log, |QI) + log, | X]] + |F'|[log, |Q],

where |d| is the number of triples in § and |F'| is the number of final states in F.
The M DL of a language is defined as the sum of its grammar-encoding-length
and its data-encoding-length. For language 1-s the M DL is 119.3 and for 1-r
it is 168.0.

We refer to language 1-s as “smooth” and language 1-r as “rugged.” The
reasons for this are evident from Figure 2, which shows how the strings in each set
are related by symbol substitution. (More generally, one might use deletion and
duplication operators, as well as symbol-substitutions. Duplication and deletion
are known to be important for the evolution of DNA and for natural language,
but these operators add considerable complication for some of the comparisons
we are interested in, so for this paper we shall restrict our attention to operators
that are simple symbol substitutions.)

(a) azb abbb (b) asb abbb
agab abab . abab
babb babb
bbbb bbb
bazb biab bazb biab
ha bbba ha bbba
baaa] bbaa baaa) bbaa
| ™) aiha abba
aaba aaba
azaa abaa aaaa. abaa

Fig. 2. Hypercube representation of the landscape for strings of length 4. Nodes con-
nected by lines are one symbol-substitution away from each other. Black dots are
included in the language. Gray dots are not included. (a) Representation of language
1-s (b) Representation of language 1-r.

Each string in 1-s is one symbol-substitution away from its nearest neighbor.
The symbol in only one position is changed from one string to the next, and
the strings are very similar or regular, while in 1-r no string is closer than
two substitutions away, making the strings not very related. Further, in the
hypercube representation, there is a hyperplane in 1-s that provides regularity
which might be utilized for compression, while such regularity is not evident
in 1-r. This occurs in much the same way that the equation of a line offers a
compressed representation of a set of data points in linear regression. These two



grammars also differ in their MDL measures: the M DL of 1-s is only 71% that
of 1-r.

5 Grammar compression

Our model of language learning will be that of a child, who when listening to
an adult speaking a language s/he does not yet understand, tries out different
candidate grammars that might accept that language. The minimalist theory
supposes that those grammars found suitable are then examined further, and
the grammar with the shortest M DL is preferred and tentatively accepted as
describing the parent’s language.

In our study, an agent is exposed to all the legal sentences in the language
—say of 1-s or 1-r. It constructs an automaton with associated grammar as
shown in Figure 1, above. The agent then compresses the original grammar by
attempting to combine states and transitions in such a way that the outcome
is still a deterministic automaton and then combines them iff the M DL of the
new automaton is smaller than that of the starting one. Given a machine A =
(@, %,0,q0, F), the result of merging states ¢;,¢; € @ is the machine A" which
has these two states replaced by a new state g;; as follows:

AI = ((Q - qiaqj) J {qij}5276,5q65F1)

where: ¢, = g;; if go is either ¢; or ¢;, F' = (F — ¢;,¢q;) U {q;;} if either ¢; or
g; € F,and ¢' is the result of replacing all instances of both ¢; and g; by g;; in all
the triples (¢n,a, g ) that define §. This is applied recursively in a hill-climbing
manner.

The compressed transition diagrams and hypercubes for languages 1-s and
1-r are shown in Figures 3 and 4.
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Fig. 3. (a)Transition diagram of the compressed grammar for language 1-s. (b) Hy-
percube representation of the sentences included in the compressed grammar.

The compressed 1-s is much smaller than that of the original (M DL = 56.8
vs. 119.3), due to changes both in the number of states (11 to 5) and in the
number of transitions (12 to 7). All of the accepted strings in this example are of
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Fig. 4. (a)Transition diagram of the compressed grammar for language 1-r. (b) Hy-
percube representation of the sentences included in the compressed grammar.

the correct length, but the compressed version generalizes to include the entire
outer cube of sentences in the hypercube. In “real life” such a generalization
may or may not be desirable.

The compressed version of language 1-r is also substantially smaller than
the original (M DL = 92.6 vs. 168.0). Again this resulted both from a decrease
in the number of states (15 to 7) and in the number of transitions (15 to 11).
Compression did not lead to new planes or observable regularities, except that
the one new sentence of length 4 which was added, bbba, was also a distance 2
from its nearest neighbor. Here, however, generalization was such that sentence
lengths other than 4 were allowable, ranging from lengths of 2 to infinity, so long
as certain regularities, such as embedded tandem repeats of bb, are observed.

6 Compression of languages

Compression results from exploiting regularities in the data. We expect that
languages with smooth string spaces contain more regularity to be exploited than
languages with rugged string spaces. Therefore, we expect more compression
from smooth languages. Is this the case?

We created 40 languages with each of several degrees of smoothness. Each
consisted of 10 strings, with lengths of 6 symbols drawn from the alphabet {a, b}.
Smoothness was varied as follows: distance-1, distance-2, distance-8 and random.
All strings were 1, 2, 3 or random symbol-substitutions, respectively, from their
nearest neighbor, drawn successively from a random starting string.

These languages were presented to agents who created the finite state au-
tomata grammars for them, then compressed the grammars using the algorithm
described above. Compression was measured by M DL of original and compressed
grammars. Error was measured by presenting the agents with all possible strings
of length 6, then counting the number that were accepted but were not strings in
the original language. Recall that the compression algorithm will always accept
the original language, so error can also be viewed as the amount of generalization
(to strings of length 6) that the grammar achieves; it says nothing about error
in recognizing strings of other lengths.



As would be expected, smoother languages could be encoded more econom-
ically than the rugged ones. The amount of compression that was achieved is
measured by the compressed M DL which was: 126.6 for distance-1, 199.6 for
distance-2, 174.8 for distance-3 and 181.4 for the random language.

It is evident that compressed M DL was much less (i.e. more compression
was possible) for the distance-1 languages than for the distance-2 ones. This
was expected. But the grammars for distance-3 and random languages suddenly
became more compressible.

One possibility for the higher compression of distance-3 and random might
be that they were unable to extract regularity and simply accepted more strings
into the language. The mean numbers of errors was consistent with this expla-
nation: 7.18 for distance-2, 29.37 for distance-3 and 27.42 for random languages.
However, the mean number of errors for distance-1 was also large, 23.48, so at
best the explanation is still unclear. It is possible that this will change if the
agents are presented with more examples, so that the cost of encoding the data
is significantly higher for distance-3 and random landscapes. We are attempting
to understand this better.

7 Evolution of language

We explored the role of compression in the evolution of language in a simple
way. Each language initially began with 10 strings of length 6, drawn from the
alphabet {a, b} as above. There were 10 replicates of distance-1 languages and
10 of distance-2. The parent in generation n then produced 10 sentences, at
random from its language, and presented these to generation n + 1, who would
generate the appropriate grammar. The generation n + 1 would then compress
that grammar and, with the compressed grammar, produce 10 more sentences
for generation n + 2 and so on. This was continued for 10 generations.

There were clear changes observed with all languages. Foremost among the
changes were the numbers of strings in the language. While all began with an
average 7.7 strings without duplicates, after 10 generations this had changed to
an average of 11.8 for distance-1 and to 6.1 for distance-2. This is statistically
significant at the .05 level by a paired t-test. Transmission from generation 0
to 10 was lossy, with the average number of strings that were included in the
original set of examples lost by generation 10 being 2.3 for distance-1 and 5.3
for distance-2.

The mean smallest distance between strings stayed about the same in both
distance-1 (from 1.0 to 1.18) and distance-2 (from 2.0 to 1.72). We had expected
that smoothness would increase with time, but this apparently was not the case
since there were not significant changes. An increase must be expected from
the distance-1 languages, because they began at the lowest value possible, and
there is nowhere else to go but up. The mean distance did increase slightly. For
the distance-2 languages, however, the mean smallest distance decreased only
slightly.



Somewhat paradoxically, the mean M DL for both grammars decreased, in
spite of their lack of change in ruggedness. Figure 5 illustrates the change in
M DL which occurred, showing a large difference in the early generations, with
only modest change later.

500

Distance-1 ——
Distance-2 -->¢--

250k

Mean MDL

Generation

Fig. 5. Mean Minimum Description Lengths for evolving languages of symbol substi-
tution distances 1 and 2 for generations 0 to 10.

It is clear that while the complexity of the grammar was decreased in both,
the distance-2 grammars remained more complex, though they admitted a much
smaller number of sentences.

8 Discussion

We have examined several conjectures about compression in adaptive complex
systems. We employed agents that could learn and evolve one class of formal
languages, using one compression algorithm. This learning and evolution was
based on syntax alone, without any reference to semantics, which is likely to be
important [10]. Our results, while so limited, do seem illuminating.

Conjecture 1: Compression aids in generalization This was examined with
systems that learned and compressed languages of varied ruggedness. In all cases
we observed a compression of grammar, and in nearly all cases the compressed
grammars generalized to admit new strings into the language.

It should be recognized that such generalization may be desirable, because
it reduces the complexity of rules, but it can also admit mistakes. To date we
have made only a cursory study of the tradeoff between M DL and error in our
system, but there clearly are important issues that will warrant further study.

Conjecture 2:Compression occurs more easily in a “smooth”, as opposed to
“rugged”, string space We explored compression in systems where strings were
1-, 2-, or 3- symbol substitutions apart from their nearest neighbor or were ran-
domly placed in the sentence space. We observed that even the uncompressed
grammars were smaller for the smooth than for the rugged languages. Com-
pression, as measured by compressed M DL, was clearly greater in in languages



where sentences were 2 symbol substitutions apart than if they were only 1
substitution apart. We interpret this to mean that patterns can more easily be
identified and exploited by the compression algorithm in the smoother language.
However, where smoothness is still less, in the distance-3 and random languages,
the compression is also greater than for distance-2 languages. The reason(s) for
this remain unclear, but there is a correlation between compression ratio, error
rate, and number of examples presented that is important here and needs further
exploration.

Conjecture 3: Constraints from compression make it likely that natural lan-
guages come to have smooth string spaces

For the purposes of this paper we accept as true the theory that when learning
language we (a) compress grammar with simple rules and (b), all else being equal,
apply these compressed rules preferentially to new situations. The agents in our
study automatically created grammars which admitted all legal sentences. These
grammars eliminated some redundancy, but retained logical equivalence. They
were already programmed, quite literally, to conform to this theory. They were
also programmed to compress those grammars, when so directed.

Here it is important to distinguish carefully between the smoothness of a
language and the complexity of the grammar needed to describe it. While related,
they are not the same. Both distance-1 and distance-2 languages evolved into
languages with sentences that were, on average, separated by about the same
number of symbol substitutions as when they started. That is to say, they did
not become smoother in the sense of becoming more connected or to consist of
strings lying together on the same hyperplane. At the same time, the grammars
describing them came to have smaller M D Ls. That is, both languages came to be
described by simpler grammars. When we generated languages for compression,
we observed that the smoother languages did have, on average, smaller M D Ls,
but not invariably so. Clearly there is some subtlety. The suggestion here is that
grammatical complexity does, indeed, become simpler, but that this is not the
same as saying that the languages become smooth, as smoothness is used in this
paper.

In his study of evolving bit strings, albeit with semantic content, Kirby [10]
observed two phase transitions in grammatical structure. The first of these oc-
curred when the languages became suddenly more expressive, with a concomitant
increase in grammatical complexity. The second phase change occurred after a
high degree of expressivity was achieved, then the grammatical complexity sud-
denly started to become much less. That study, and ours, are in agreement that
even in such simple cases as evolving bit strings there are unlikely to be simple
rules about changes in smoothness of languages, or grammatical complexity —
though in the long run both studies did result in simpler grammars after suffi-
cient time.

In summary, we observed broad agreement with the conjectures made prior
to the start of the study. It is evident, however, that even in our simple system
there is significant subtlety that must be recognized in the inductive tradeoff of
generalization through compression versus error of overgeneralization.
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