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Abstract

For many adaptive complex systems information about the en-
vironment is not simply recorded in a look-up table, but is rather
encoded in a theory, schema or model, which compresses informa-
tion. The grammar of a language can be viewed as such a schema
or theory. In a prior study we proposed several conjectures about
the learning and evolution of language that should follow from these
observations: (C1) compression aids in generalization; (C2) com-
pression occurs more easily in a “smooth”, as opposed to a “rugged”,
problem space; and (C3) constraints from compression make it likely
that natural languages evolve towards smooth string spaces. This
previous work found general, if not complete support for these three
conjectures. Here we build on that study to clarify the relationship
between Minimum Description Length (MDL) and error in our model
and examine evolution of certain languages in more detail. Our re-
sults suggest a fourth conjecture: that all else being equal, (C4) more

complex languages change more rapidly during evolution.



1 Introduction

A key feature of nearly all successful complex adaptive systems is the ability
to distill information about the environment into schemas and then use these
models to make predictions or adapt to new situations [5, 6]. Instead of
simply recording information in a look-up table, compact representations are
created by identifying and using regularities that exist in the data [18]. This
compression not only allows large amounts of information to be stored more
efficiently, but can also enable the system to generalize.

Language learning, as a mapping from a set of observed data to a grammar,
or model, of the language, is a paradigm for which compression is extremely
important. Sentences cannot simply be recorded in a look-up table. Recording
sentences in a look-up table is not only an inefficient use of space, but only sen-
tences previously heard could be spoken and no novel sentences or words could
be generated. Human languages are extremely complex with semantics, syntax
and an inherent linguistic structure all potentially important factors for learn-
ing [3, 16]. While this makes human language difficult to study analytically,
formal languages can be used instead. These languages are well understood
and generally contain fewer confounding variables [10, 15, 9, 13, 12].

We have therefore chosen to study the effects of compression on language
acquisition in the context of formal languages. To minimize the number of
assumptions made about the way language is learned, we have developed a
model of language acquisition that learns syntactical languages from positive
input alone. It has been shown that regular languages can be learned from
this type of input [4, 20]. Our system is simple enough to be understood, but
contains two theoretical properties: input can be of varying complexity and

there is no genetic transmission of the data. Both of these are important for



our investigations. By using a simple system, with few model specific variables,
we hope that some of our results can be applied generally to language and
cultural evolution and other types of systems that employ compression.

In previous work we studied some of these general features of compression
as related to adaptation. In this work we proposed and investigated three con-
jectures. We initially found the first conjecture, (C1) that compression aids in
generalization, to be true. From this basis we proposed that (C2) compression
occurs more easily on a “smooth” as opposed to “rugged” problem space and
(C3) that constraints from compression make it likely that natural languages
come to have smooth problem spaces. In this paper we first provide some
background on the data compression and introduce the Minimum Description
Length algorithm which we use as the compression algorithm in our model.
Next, we discuss formal languages and finite state automata, the grammar
representation used. Then, we discuss methods used for language acquisition.
Last, we review some previous results, expanding on them to discuss problems
in conjectures 2 and 3, and extend them to investigate a fourth conjecture,

that (C4) more complex languages change more rapidly during evolution.

2 A Model of Compression

2.1 Data Compression

We are interested in how compression affects the ability of a system to gener-
alize and adapt. Compression requires a model of regularity, such as a linear
relationship in a set of data points. It is this model that permits generaliza-
tion [18]. Consider a set of points arranged more or less along a line in the zy

plane. These might be stored as a look-up table of z,y pairs; or they might



be represented as all points on a line, and stored simply as the equation for
a line in the x,y plane. From the compressed representation, the equation, it
is easy to interpolate or to extrapolate the data, in ways for which a look-up
table would not suffice. Of course it may also be the case that the true rela-
tionship among the variables is not linear — e.g. there might be gaps in their
arrangement, or it might plateau just after the highest data point, so that in-
terpolation or extrapolation is not warranted. Also, the relationship might be
just approrimately linear, and not exactly so. There is clearly a tradeoff be-
tween generalization and error that will be specific to each situation. It is also
important to recognize that some compression schemes might provide very ef-
ficient coding of data, but would involve lengthy and complicated computation

to encode and decode it.

The minimum description length (MDL) algorithm is a widely used algo-
rithm which recognizes both factors. First introduced by Rissanen and Ristad
[17], it states that the best model is that which permits the shortest encoding of
the observed data together with the model itself. The performance of a model
is therefore measured by both the length of the description of the theory and
the length of the data when encoded with the help of the theory. When this
combined code length is minimized a balance has been struck between the cor-
rectness of the model and its complexity [8]. The MDL measure has been used
extensively in the fields of statistics and machine learning, and its theoretical
properties have been well investigated [14, 17]. It has also been used to suc-

cessfully model language acquisition and biological computation [8, 14, 17, 1].



2.2 Formal Language and FSAs

The type of data we are encoding are strings which can be analyzed in the
context of formal languages. A formal language is a set of strings of symbols
from some finite alphabet, where a string is a finite sequence of symbols juxta-
posed and an alphabet is a finite set of symbols. For example, a, b and c are
symbols in the alphabet (a,b,c) and abac is a string [10]. A language consists
of a set of these strings. The language can be a random set of strings such as
abcc, bacbc, bbaca or it can contain some regularity such as the language
alab] [ab] which is the set of all strings drawn from the alphabet (a,b) of
length three that start with an a - i.e. aaa, aab, aba, abb.

These languages can be represented as directed graphs, termed “determin-
istic finite state automata” (FSA) having unique vertices for each symbol con-
necting the states [10]. This representation allows states to be combined
so that a more compressed model of the language can be found - a feature
important for our model of language acquisition. The graphs in Figures 1la
and 1b for Language 1 (aaab, aaaa, aaba, abaa, abba) and Language 2
(bbab, aaab, aaba, abaa, abbb) are deterministic finite state automata.
Each string or sentence in the language is a path along the nodes or states
represented by circles. The description of this FSA is then the grammar for
the language. The diagram is termed the finite state diagram for the language.

Another way to describe the language is with a quintuple, (@, 3,0, go, F),
where (Q is a set of states, X is an input alphabet, § C @ x X X () is a transition
function, go € @ is the initial state and F' C @ is the set of final states [10]. We
will use this representation for determining the MDL, below. For the examples
in Figure 1 it can be seen that () are states represented by circles, ¥ = (a,b),

0 is the set of all the transitions, or circle, arrow, circle combinations, ¢y = the



starting circle and F' = states represented by double circles. The automaton
accepts a string s if, and only if, the string labels a path from the initial state
to a final state. Since an FSA is the defining grammar for a language, any

string that can be accepted by the FSA is said to be a part of that language.

2.3 Language Acquisition

Language learners can be regarded as systems that identify rule systems that
describe the (potentially infinite) language of the community after being pre-
sented with a finite set of examples. This can only be successful in certain
circumstances, depending on whether one assumes that success is perfect iden-
tification in the limit (the “Gold” paradigm) [7], or that success is feasible

convergence to arbitrarily good approximate identification [11, 21].

2.3.1 The source of input

In our model the language being learned consists of sets of string of varying
smoothness, with string length 6 drawn from the alphabet (a,b) or (a,b,c).
The smoothness or ruggedness of the set, and therefore the language, is de-
termined by the set’s string-edit-distance, d. To generate the language which
will be used as the target language, a single string of symbols of length 6 is
randomly selected. The next string in the set is made by changing one or more
symbols of that string, depending on the string-edit-distance. For example,
if a language of d = 2 is being generated and string abaaba is drawn at ran-
dom, one position in the string would be chosen randomly and the symbol at
that position would be changed. Then another position in the string would
be randomly selected and its symbol changed. This process is continued until

the specified set size has been generated. Languages generated with d = 1 are



considered smooth, while languages of d = 4 are more rugged.

2.3.2 The model of language learning

Our model of language learning will mimic that of a child, who when listening
to an adult speaking a language s/he does not yet understand, tries out different
candidate grammars that might accept that language. The approach followed
here supposes that the child tentatively accepts the grammar with the shortest
Minimum Description Length from among those deterministic grammars that

accept all the input sentences.

To calculate the MDL we take the sum of the data-encoding-length (A), the
cost of the coding of the data, and the grammar-encoding-length (T"), the cost

of the rule set.

Since each string can be specified by a path through a deterministic au-
tomaton, we find A by counting the number of choices that have to be made

as each sentence’s path is traced out. This is calculated in bits by the formula:

m |8

A= Z Z 10g2 Zi,j5

i=1j=1

where m is the number of sentences in the sequence of strings encoded, |s;|
is the length of the 7’th string s;, and z; ; is the number of ways to leave the
state reached on the j’th symbol of sentence s;. (A more succinct encoding
is obviously possible when the probabilities of the transitions are not uniform.

This approximation suffices for purposes of this preliminary investigation.)

In this model, I is the number of bits required to encode the FSA. To specify

the automaton itself, we must specify all the triples (g1, a, g2) € 6 and we must



also specify the final states, so we calculate the grammar-encoding-lengths as

' = 0]2(log, |Q]) + log, [S[] + [F|[log, |Q]],

where |d]| is the number of triples in §, |@Q| is the number of states, |/Sigmal is

the size of the alphabet and |F| is the number of final states in F'.

Using this algorithm to determine the appropriateness of its grammar, the

agent learns the language presented in the following way:

An agent is exposed to all the legal sentences in the language — say of
Language 1 or Language 2. It constructs a deterministic automaton with an
associated grammar which accepts all of the sentences from the initial input
and nothing else. This is a prefix tree FSA where each sentence is explicitly
drawn out and no states are combined, as seen for Language 1 and Language 2
in Figure la and Figure 1b. The agent then compresses the original grammar
by attempting to combine states and transitions in such a way that the outcome
is still a deterministic automaton and then combines them if and only if the
MDL of the new automaton is smaller than that of the starting one. Given
a machine A = (@, %, 9, gy, F'), the result of merging states ¢;,q; € @ is the

machine A’ which has these two states replaced by a new state g;; as follows:
A =((Q — ¢i,4j) Y{ai}, 5,0, a0, F)

where: ¢ = ¢;; if qo is either ¢; or ¢;, F' = (F — g;,¢;) U {q;;} if either ¢; or
g; € F, and ¢' is the result of replacing all instances of both ¢; and ¢; by ¢;; in
all the triples (gn,a, ¢,,) that define §. This is the best grammar found at one

step according to Algorithm 1, outlined below.

A hill-climbing search is then performed using Algorithm 2, until the FSA



with the smallest MDL is found.

Algorithm 1 Best Grammar Derivable In One Step (current-grammar)

1: best-encoding < oo

2: best-grammar + ()

3: for all possible pairings (s1, s2) of states from current-grammar do

4: if sl and s2 can be combined into a single state without making a nondeterministic
FSM then

5 grammar < CombineStatesInGrammar(current-grammar, sl, s2)

6 Calculate the encoding length for this grammar via the equations given.

7: if encoding(grammar) < best-encoding then

8 best-encoding < encoding(grammar)

9 best-grammar < grammar

10: end if
11: end if
12: end for

Algorithm 2 Hill-Climbing Search (current-grammar)

1: current-length < encoding length of current-grammar
2: loop
3:  grammar < best grammar derivable in one step from current-grammar (Algorithm 1)
grammar-length < encoding length of grammar
if grammar-length < current-length then
current-grammar < grammar
current-length < grammar-length
else
return current-grammar
10: end if
11: end loop

R B A

Take, for example, Languages 1 and 2 above. The prefix tree FSA for
Language 1 shown in Figure 1a has I' = 119.3, A = 12.0 and M DL = 131.3.
The program runs until it cannot find an FSA with a smaller MDL. This gives
the grammar in Figure 3a with [' = 41.8, A = 15.0 and M DL = 56.8. The
cost tradeoffs between the data-encoding-length and the grammar-encoding-
length have been optimized. A language with string edit distance 2, Language
2, compresses to the grammar in Figure 3c with I' = 75.6, A = 17.0 and
the MDL = 92.6 from I' = 155.0, A = 13.0 and M DL = 168.0. Both of



these grammars accept more sentences than the original input, generalizing
the language from the original subset.

This procedure can be used to model language evolution. We allow an
agent who learned a language in the manner described above to teach a new
generation in the same way, and continue this process for several generations
with each generation presenting its own language to the next. That is, the first
generation learns the language which we create, just as described above. After
this first generation learner has developed a grammar, it has a set of sentences of
string length 6 that its grammar can accept or speak. From this first generation
grammar, a set of these sentences is chosen randomly and used as the input for
the learner of the next generation. This agent then uses the same model for
learning, and so on for as many generations as specified. Languages are thus
acquired and change through cultural evolution with vertical transmission [2].

In summary, the steps for an agent to learn a language are:

1. An input set of generated sentences is presented to the agent.

2. The agent constructs an automaton with an associated grammar which

accepts all of the sentences from the initial input and nothing else.

3. The agent then compresses the original grammar by attempting to com-
bine states and transitions in such a way that the outcome is still a de-
terministic automaton and then combines them if and only if the MDL of
the new automaton is smaller than that of the starting one. This enables

the best grammar to be found at one step.

4. A hill-climbing search is then performed until the FSA with the smallest
MDL is found and the language is learned.

10



5. A subset of all the sentences of length 6 that the agent can produce are
selected at random and used as the input for a new agent. Steps 2 through

5 are repeated for the desired number of generations.

This is the procedure used for all of our experiments.

3 Discussion

In previous work, we investigated how compression affects generalization and
how easy or difficult it is for languages to be generalized and proposed conjec-
tures C1, C2 and C3 described above [20]. Here we will give a brief summary
of our previous study and address outstanding issues regarding these conjec-
tures. We also extend our results and, based on our observations, propose
another conjecture: (C4) more complex languages change more rapidly during

evolution.

3.1 Conjecture 1: Compression aids in generalization

From a series of observations like “Crow A is black” and “Crow B is black” we
compress a look-up table of crows and their colors to the generalization that
“All crows are black.” The generalization is clearly smaller, more “compressed”
than a list of many instances. The precise characterization of the circumstances
in which such generalization is appropriate, the problem of induction, is a
philosophical problem dating back to Aristotle.

We addressed this question in previous experiments and found our first con-
jecture, that compression aids in generalization, to be true. As seen in the
hypercube diagrams in Figure 2 and Figure 3, when a compressed representa-

tion of the input for Language 1 are found, the input is generalized to include
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the outer edge of the cube. This was found to be true for all of the languages

we examined [19].

3.2 Conjecture 2: Compression occurs more easily on a “smooth”

as opposed to “rugged” problem space

Since there is more regularity to be exploited in smoother languages, com-
pression can occur more easily on “smooth” than “rugged” string spaces. In
previous work we looked at the grammars generated by languages with string
edit distances 1, 2, 3, 4 as well as random [20]. We found that the smoothness
of the language used as input affects the ability of the learner to general-
ize as well as the types of sentences the learner can produce once the gram-
mar is formed. For example, after compression Language 1 becomes the set
(aaaa, aaab, aaba, abaa, aabb, abab, abba, abbb) and Language 2 be-
comes (aaab, aaba, abaa, bbab, bbba, abbb). As seen in Figure 3a, the
representation of the grammar, or its finite state automata, becomes very com-
pressed. Language 1 easily generalizes to the outer cube of the hypercube in
this representation. However, for Language 2 there is still little structure in the
final language, as can be seen in Figure 3c. This FSA is much less compressed
because there is not enough regularity available to be used to develop a more
compressed representation.

In our experiments we found that compression generally did occur more
easily on smoother problem spaces, but the transition from smooth to rugged
languages was not so straightforward as we expected, since string-edit-distance
should be a correlate to compressibility. Figure 4 shows that for the languages
we studied with even string-edit-distances, d had higher MDL and lower error

than expected, where error is defined as the number of sentences that are in the
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final language which were not in the original input set. Error in this context is
not considered “bad”, but is simply used as a term for the defined measure. We
have conducted further experiments and found that this inconsistency seems
to be due to trade-offs between error and compression. While this tradeoff is
incorporated into the definition of the MDL algorithm, there is also the effect
that if data-encoding-length is optimized, there are few errors and the grammar
is not very compressed, but if the grammar-encoding-length is minimized, the
representation is smaller and more errors occur. The trade-offs we see between
error and compression in the final language should be due to and thus correlated
with the trade-offs made between the data-encoding-length and the grammar-
encoding-length in the generation of the grammar. These trade-offs should be
equilibrated so that overall MDL is minimized, but if grammar-encoding-length
or data-encoding-length is originally minimized over the other, languages can

get stuck at a local optimum.

To investigate this tradeoff, we first needed to ensure that the measurements
of error and compression are correlated with grammar-encoding-length and
data-encoding-length. We performed 20 runs of one generation for string edit
distances 1, 2, 3, 4 and random as described above. Compression was measured
by the MDL and the grammar-encoding-length (I') and data-encoding-length

(A) were measured separately as well.

We found that this trade-off between error and compression in the final
grammar is highly correlated with the data-encoding-lengths and grammar-
encoding-lengths of the grammars. The data-encoding-length is positively cor-
related with error (r?=0.82), and the grammar-encoding-length is positively
correlated with compression (r2=0.98) as expected, and as seen in Figure 5

there is a tradeoff between the two that matches the trade-offs seen in Figure
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With the high data-encoding-length and low grammar-encoding-length, it
seems likely that languages with even string-edit-distances are optimizing data-
encoding-length, but at the expense of grammar-encoding-length. Since the
MDL should balance A and I, it is possible that the search is getting stuck
at a local optima before the two factors are equilibrated. We found that fewer
steps were taken to find the final grammar for even d. The mean number of
steps to halt were 45.2 steps for d = 1, 40.3 steps for d = 2, 49.8 for d = 3,
43.8 for d = 4 and 53.0 for random d. This provides some evidence that a local
optimum is being found, although we could not determine this conclusively. We
attempted to overcome the possibily of a local optima by using a depth-first

search for a set of examples. However, this was computationally infeasible.

We believe that constraints causing an interplay between set of even string-
edit-distance and MDL is due to duplicate sentences in the input. They occur
with more frequency in the sets of even string-edit-distance because there is a
17% probability that the same position will be selected twice, thereby changing
the string back to the original in a system with an alphabet size of 2. Using
an alphabet size of 3 can correct for this somewhat, because while there is the
same probability that a position will be selected twice, there is a lower proba-
bility that it will be changed back to the original string. When we performed
10 runs of d = 1, 2, 3, 4 and random for the alphabet (a,b,c). shown in
Figure 6 we saw that the trade-offs are less extreme and the transition from
smooth to rugged languages is more gradual with an alphabet size of three.
The duplicates are providing another source of regularity in the data that is
not being accounted for by the string-edit-distance, which leads to these un-

expected results. This shows that the irregularities seen in our previous work
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probably resulted from constraints in the model, and that conjecture 2 still

holds.

3.3 Conjecture 3: Constraints from compression make it likely that

natural languages come to have smooth string spaces.

One benefit from formalizing the language acquisition system is that we can
study the effects of varying initial conditions, something that would be difficult
to do with human language learners [15]. In previous studies, we found that
regardless of input size or alphabet size, the language being learned is the most
important factor for generating the final language and grammar [19]. We expect
the grammar to become simpler or more compressed, but this simplicity is not
always reflected in the language that the learner finally speaks, or the sentences
accepted by the learner’s grammar. In previous work we saw indications that
constraints due to compression have more effect on the smoothness of the
grammars than that of the final languages, but we still thought Conjecture 3
to be true. Here we investigate the question further, looking at the data for
more generations and measuring the MDL, number of accepted sentences and
smoothness of the final grammars and languages.

Evolution of these languages was studied over a period of 20 generations.
We began by generating a target language as the input set. For each replicate
a target language was generated from an input set of 10 examples. The set of
examples had d = 1, 2, 3, 4 or random; there were 10 replicates of each.

As expected, we found that MDL decreases over time, with the greatest
decrease occurring in the first generation when the learner compresses the
language from the prefix-tree FSA. This can be seen in Figure 7.

Some disparity between the grammar compression and the smoothness of

15



the language was evident from the mean number of accepted sentences per
generation for each value of d. As language evolved, the number of accepted
sentences changed. While the dynamical behavior appeared to differ, all the
languages did eventually converge to have more or less the same number of ac-
cepted sentences, as seen in Figure 8. So while the sizes of grammars remained
ordered, the sizes of languages converged.

One can measure smoothness of languages, rather than of grammars, by
measuring average string-edit-distance (d) of the final languages. We found
that they did not decrease significantly from their original string-edit-distance.
Measuring a subset of each string edit distance, the average d of the final
languages for languages of string-edit-distance 1, 2, 3 and 4 originally were
respectively 1.2, 1.3, 2.2, and 3.4. Except for d = 1, which could only go up,
the ending distances were all just a bit less than when they started, and still
in the same rank order.

Summarizing, while compression acted to minimize the MDL of grammars,
this was not necessarily the same as acting on the size or smoothness of the
language. These results indicate that selection acted directly on the gram-
mars, and only indirectly on the languages. So the languages did not become
smoother, as we had originally expected. In the light of this new evidence

conjecture 3 was not supported, which refutes our claim in previous work [20].

3.4 Conjecture 4: More complex languages will change more rapidly

during evolution

Evolution of the most rugged of the languages was examined in the prior sec-
tion; for d = 4 in figures 7 and 8 the dynamics did seem different at the in-

termediate generations, suggesting that more complex languages might evolve
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differently than simpler ones.

From Conjecture 2, rugged languages compress less well than smooth ones, it
would follow that across generations the rugged languages continue to resemble
look-up tables, whereas smoother languages get compressed into more general
rules. General rules can be learned quickly, while look-up tables require each
example be separately encoded. That is to say, general rules are used by many
examples, and so will be acquired from being presentation of even a subset of
the language. Special instances, characteristic of complex languages, might be
generalized a bit, but the grammar will be more susceptible to chance omissions
in presentation from teacher to learner and thus drift more. The result would

be that more complex languages will change more rapidly.

To investigate this question we looked at the trajectories of the languages
as well as that of the grammars. We measured the mean number of accepted
sentences per generation. After the first few generations, from about generation
5, the number of accepted sentences was more or less constant in the smooth
languages, but fluctuated in the more rugged languages. There were typically
several changes in the language occurring from one generation to the next. This
can be observed in two ways: Figure 9a shows the mean difference between
the original input and the current language, for each generation; and Figure
9b shows the number of errors between the current language and that of the
generation prior. It is evident that the more rugged languages, d = 3 and 4
consistently show more differences from the original language, and the mean
difference from generation to generation tended to be greater for d = 4 than

for the others, especially from generation 10 to 18.

These results demonstrate that in simple, regular languages there is less

change over time. The best grammar to describe that language has been found,
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so similar examples are presented to it each generation, and the same language
is found in every generation. In more complex language systems however, there
is some fluctuation in the languages that are produced by the agents in each
generation. There is not enough structure to be able to find a completely
accurate model, so at each generation, the agent’s perception of the language,
is slightly different. The model of the language is dependent upon the input
received, and there are errors transmitted from one generation to the next. Due
to this mode of learning and transmission, languages of different complexity
follow different trajectories over time with more complex languages being able
to change the most quickly. While this study shows general trends, this subject

clearly needs further investigation.

4 Conclusions

We have shown that changes in language can occur as a result of transmis-
sion error alone. Different types of languages evolve differently; in our study
simpler languages changed considerably less through time. More complex or
rugged languages, which presumably more closely resemble human languages,
do converge towards grammars with an optimal M DL, but these grammars
still allow for significant changes in the languages over time.

There remain, however, some outstanding issues with regard to human lan-
guages, such as the role of semantics in language evolution and the effectiveness
of this model when using input from human languages. Would use of more
natural languages or a more realistic process of language acquisition affect the
results? Would a grammar representation different from FSAs help us avoid
the limits of local optimum? How would using a population of learners af-

fect the resulting languages learned? We are interested to see if these results
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regarding compression and adaptation can be applied to other situations.

The language trajectories could also be important in collective learning of
a language by agents or robots. Different types of environments might pro-
vide different information that would influence the language the robots learn.
Agents learning in different environments might have difficulty communicating
once their language has evolved for several generations and has followed a dis-
tinct communication trajectory. This would have important implications not
only for language learning, but any type of collective information sharing.

It seems likely that these results can be applied to other adaptive complex
systems that make use of lossy compression. Tradeoffs between error and com-
pression are likely to be critical for such systems; which compression algorithms
are employed and how they are used will affect both the ability of such systems

to adapt to new environments and their ability to evolve.
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(a) Mean compressed grammar-encoding-length for string edit distances
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the previous, or errors. Both graphs show values for each generation at
several-string-edit distances, d.



Th ko
OO
JREAVARYE

O O O
NN e



abbb

\m abba

abab
babb 4:
O
basb 5 bbb
baba ) bbba
baaa bbaa
aaba

e

Figure 2:

aabb
abab
babb é
(@)
basb 'y b
baba |~ ) bbba
baaa) bbaa
aaba

abbb

abba



abbb
Q a Q a a a 2aab abab
C C @ babb
b b b bbbb
baeb biab
baba o bbba
baaa, bbaa
g aita
aaba
(a) (b) i

ad<a
abab
O=0=0—0—0 -
babb
b b b bbbb
a bagb byab
haba bbba
baad, bbaa
't abba
aaba
(c) (d) e o

Figure 3:



= MOL
B Errors

S1011a J0 4 uea )

L = L = L =
m H& N NN = = 0 D
I m k k i 4 4
1 i I I 1 I I
1
= =2 = = = =
L - LI 1 L)
(| | - -—

T passaidwod ueapy

randarm

String edit distance

Figure 4:



200
180
160
140
120
100
&0
&0
40
20

Mean Grammar encoding length

1 2 3 4

String et distance

ramcom

Figure 5:

Mean D as encading length

B0 1

2 3
String edlit distance

Fandom



Mean MOL compressed

37

slphabet size
. 2
-8 3

Mean rumber of errors

Figure 6:

8 8.8 8 B




- N

I I

S

—ANM<ITT

IRININIR=

(@)
COT0oH
o
@©
S

Generation

QAN Passa1duiod ues |\

Figure 7:



[ [ [ [ [ . ”-w_

i Nt
+__.,x;v s

o .
AN T Lo
nunne L
dddd.m q i

C
)
—

]

20

o 0] © < AN o (0 0] O
— — — — —

S9JUBIUSS pa1dadde JO # Uea |\

20

15

10
Generation

Figure 8:



:6 2InJr

£
Mean number of different sentences
between original and current languages
o v » o ®» 5 K K
o T
o b J
Q)
]
2 o
> ;
@
o
°
& °
°
°
6
°
N :
—
=3
N
Mean number of different sentences
between previous and current languages
= I =
o N e (o2} oo o N e
o & T
” 4
@
S
85 1
2
=}

=

Socooao

Suunnn
QBDWNF

i

! ! ! ! !

nN
o



