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A simple model of language evolution proposed by Komarova, Niyogi, and Nowak is characterized by a
payoff in communicative function and by an error in learning that measure the accuracy in language acquisi-
tion. The time scale for language change is generational, and the model’s equations in the mean-field approxi-
mation are a particular case of the replicator-mutator equations of evolutionary dynamics. In well-mixed
populations, this model exhibits a critical coherence threshold; i.e., a minimal accuracy in the learning process
is required to maintain linguistic coherence. In this work, we analyze in detail the effects of different fitness-
based dynamics driving linguistic coherence and of the network of interactions on the nature of the coherence
threshold by performing numerical simulations and theoretical analyses of three different models of language
change in finite populations with two types of structure: fully connected networks and regular random graphs.
We find that although the threshold of the original replicator-mutator evolutionary model is robust with respect
to the structure of the network of contacts, the coherence threshold of related fitness-driven models may be
strongly affected by this feature.
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I. INTRODUCTION

Statistical physics has become a powerful framework to
investigate the collective behavior of individuals and is play-
ing an increasingly prominent role in quantitative social sci-
ences studies. A case in point is opinion dynamics �1�, which
aims at describing the emergent social behavior by consider-
ing models with simple rules of opinion formation, through
which “agents” update their internal state, or opinion,
through the interactions with other “agents.” The interactions
are typically local rules that consist in �a� following the ma-
jority or �b� random neighbor imitation, two simple mecha-
nisms that have been studied for decades as models for the
dynamics of Ising spin systems, known in the physics litera-
ture as the Glauber and Voter models, respectively �2,3�.

Traditional statistical physics models consider particles
�spins, agents� interacting �i� with all the other particles as
analytical solutions are often possible in this mean-field limit
or �ii� with a number of neighbors located on the vertices of
regular lattices in d dimensions, the topology characteristic
of crystalline solids. Recently, however, the field of complex
networks �4,5� paved the way for a better description of so-
cial dynamics by providing adequate models for networks of
social interactions that are neither well mixed as in �i� nor
completely regular as in �ii�. Since then, numerous studies
have considered the evolution of opinion models on complex
networks and investigated the effects of the network topol-
ogy on the model’s dynamical behavior. In particular, novel,
nontrivial behavior has been found for the ordering dynamics
of the zero-temperature Glauber and Voter models on com-
plex networks �6–11�.

Language competition may be viewed as a particular case
of consensus problems and as such has motivated related
studies �12,13�. Other aspects of language dynamics include
language change and evolution and language learning. In this

context the pioneering work of �14,15� considers a biologi-
cally inspired evolutionary model where the errors in learn-
ing are assumed to be the major determinant for language
change. This class of models for language change is based on
the assumption that languages evolve like individuals in a
population: the fittest survive and spread; the less fit are
eliminated. The two driving forces of evolution, selection
and mutation �i.e., language transmission with a bias that
favors the fittest or the dominant language and errors in the
transmission process�, are incorporated into the replicator-
mutator dynamics equations, and the time scale for change is
generational.

In the framework of replicator-mutator evolutionary mod-
els for language dynamics, the question that arises is, how
accurately do children have to learn the language of their
parents in order for the population to maintain a coherent
language? The question was answered in a series of papers
�14,16,17� that show that in the strong selection limit a criti-
cal threshold, largely determined by the error rate of lan-
guage acquisition, exists for infinite �14� and finite �16� well-
mixed populations, irrespective of the number of languages
in competition �14�.

More recently, language games such as the naming game
used to model the emergence of language understood as a
consensual lexicon �18,19� have attracted the attention of the
physics community �20,21�. This class of models focuses on
the horizontal transmission and “creation” of language as a
result of peer-to-peer interaction, in contrast with vertical
transmission, the basic scheme of language change in models
inspired by biological evolution. Apart from the time scale
for change, which is no longer generational, here the ques-
tion is to establish when the dynamics of a set of interacting
agents that can choose among several options leads to con-
sensus, or alternatively, when a state with several coexisting
options, or language diversity, prevails.
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Another class of evolutionary models of languages with
analogies with the theories of population genetics was pro-
posed by Baxter et al. �22�. The model was solved in the
limit of a single speaker as well as for multiple speakers in
the mean-field approximation, and �in these limits� it was
shown to be related to the model of Abrams and Strogatz
�23� for the extinction of languages.

Evolutionary age-structured models based on the Penna
model �24� have also explored the similarities between bio-
logical evolution and language learning and competition.
One model, applied to language competition, revealed the
existence of a �first-order� phase transition between the
dominance of a single language and language diversity,
driven by random mutations �25�, which is akin to the tran-
sitions described in this paper. In a different context, that of
learning foreign languages, a similar noise-driven transition
was reported for a related model �26�. In line with the critical
coherence threshold described in this paper, the transition
was found to be continuous for two languages and becomes
first order when more than two languages are taken into ac-
count �14,25�.

In this work we follow the view proposed by �14� in con-
sidering the investigation of noise induced thresholds for lin-
guistic coherence. In other words, we focus on the study
�both for deterministic and stochastic versions� of the effec-
tiveness of the rate of learning errors in precluding the emer-
gence of linguistic consensus. In this framework the coher-
ence threshold is the error rate of language acquisition above
which a multilingual community is stable and below which
there is a single dominant language.

In the following, we extend the work of �14� by analyzing
�i� a family of fitness-driven models that reduce to the
Glauber and Voter models in the limit of neutral evolution
and �ii� nontrivial networks of interaction. The results de-
tailed below are based on the original Komarova-Niyogi-
Nowak �KNN� �14� model with these generalizations, al-
though the time scale for change through learning and
selection is no longer generational. As in other models of
social interaction and opinion dynamics, learning and selec-
tion occur on a shorter time scale, associated with “horizon-
tal” �peer-to-peer� interaction.

The basic assumptions of our family of models are that
each individual in the population is a speaker of one of two
languages 1 or −1 and that an individual may change its
language through interactions with its neighbors. These in-
teractions follow certain rules, where the fitness of the indi-
vidual and of its neighbors determines the probability for
language change in the absence of errors. In line with the
usual replicator-mutator dynamics the state update that
comes out of these rules is reversed with probability u, which
models learning errors as the presence of noise in the system
coupled to the dynamics. In order to assess the robustness of
the coherence threshold of the KNN model we consider
models with more general fitness-driven rules, which reduce
to the Voter and Glauber models in the limit of neutral evo-
lution and zero noise. The latter are models of spin dynam-
ics, used to model the mechanisms of opinion dynamics and
cultural evolution, which play a role in the evolution of lan-
guages on short time scales.

We find that, in general, in well-mixed populations dy-
namical noise is not effective in driving a critical coherence

threshold. In models that reduce to the Voter and Glauber
dynamics in the limit of neutral fitness the noise-induced
thresholds, separating a dominant language regime from the
regime where different languages coexist, become noncriti-
cal in the mean-field limit. We derive analytical solutions for
the coherence thresholds of the models in complete and regu-
lar random graphs that are shown to provide a very good
description of the different types of cooperative behavior of
this family of models. In particular, the increase in robust-
ness of the coherent linguistic regime as the number of
neighbors increases is described quantitatively by the ana-
lytical solutions for all dynamical models.

Finally, we put our results in a more general context and
provide a complete classification of the threshold behavior of
a family of fitness-driven models that includes a flipping
rate, or noise uncoupled to the dynamics, instead of the dy-
namical noise of the replicator-mutator equations.

II. FITNESS-DRIVEN MODELS AND DYNAMICS

We consider the simplest case of the model introduced in
�14� characterized by strong selection and two equally fit
languages, with no affinity between them. We consider a
population of N individuals, where each individual i speaks
one of two languages �i= �1, and define the fitness f i of i as
the number of its neighbors that speak the same language:

f i = �
j

���i,�j
, �1�

where � j� is a sum over the neighbors of i and �k,l is 1 if k= l
and 0 otherwise. The evolution of the language follows two
general rules: �i� the language of the fittest individuals at a
given time step �generation� has a higher probability of being
learned by the population in the next time step �selection�;
�ii� in the process of learning there is a probability of error—
i.e., a probability that the new generation learns a language
with a lower fitness �mutation�.

The KNN model of language evolution �14� follows the
replicator-mutator rate equations of evolutionary dynamics
with fitness functions given by the language frequencies. It
was shown in �14� and �16� that, in well-mixed infinite popu-
lations, this model exhibits a critical coherence threshold,
determined by the rate of learning errors, below which a
dominant language is established and maintained in the
population. In what follows we analyze the robustness of the
linguistic coherence threshold when other mechanisms of
evolution and networks of interaction are considered.

In particular, we consider two generalizations of the KNN
model by introducing �i� more general fitness-driven dynam-
ics �including additional imitation/social pressure mecha-
nisms� and �ii� populations with nontrivial interaction net-
works.

We define the social fitness of an individual speaker,
F��i , t�, as the total fitness of the neighbors of i that speak
language �1 at generation t,

F��i,t� = �
j

�f j�t���j�t�,�1, �2�

and denote by u the probability of learning errors �0�u
�1�. Unless otherwise stated the population has a fixed
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number N of individuals. The language �of the population� at
a given time step t is characterized by the array
��1�t� ,�2�t� , . . . ,�N�t��. In the next time step the language is
determined by the probability that each individual changes
its language, through the combined effect of the dynamics
and learning errors. We have considered three fitness-driven
dynamical models, with learning errors, as detailed below.

A. Replicator-mutator dynamics (KNN model)

In this model the noise, or rate of learning errors, is in-
corporated in the probability of language change. If �i�t
−1�=1, the probability for language change �i.e., the prob-
ability that the outcome of the update rule is �i�t�=−1� is
given by �14�

P1→−1 =
�1 − u�F−�i,t − 1� + uF+�i,t − 1�

F−�i,t − 1� + F+�i,t − 1�
, �3�

while if �i�t−1�=−1 the probability for language change
�i.e., the probability that the outcome of the update rule is
�i�t�=1� is given by

P−1→1 =
�1 − u�F+�i,t − 1� + uF−�i,t − 1�

F−�i,t − 1� + F+�i,t − 1�
. �4�

As shown in �16�, in a well-mixed population the stochas-
tic process with these update rules corresponds in the deter-
ministic limit �infinite population� to the replicator-mutator
equations

ẋi = �
j=1

2

xj f jQji − �xi, �5�

where xi is the frequency of language i and f i=xi its fitness,
i=1,2, �= f1x1+ f2x2 is the average fitness of the population,
and Q11=Q22=1−u and Q12=Q21=u are the elements of the
mutation matrix Q.

B. Fitness-driven Voter dynamics

The update rule for this model is inspired in the simplest
opinion and imitation dynamics model, the Voter model: a
speaker changes language if its fitness is lower than a ran-
domly chosen neighbor that speaks a different language. In
addition, with probability u the outcome of the dynamical
rule is reversed. The update rule for a speaker i at time t is
the following: �i� choose one neighbor j at random; �ii� if
f j�t−1�� f i�t−1�, then �i�t�=� j�t−1�; �iii� if f j�t−1�� f i�t
−1�, then �i�t�=�i�t−1�; �iv� reverse the outcome of the dy-
namical rule with probability u.

C. Fitness-driven Glauber dynamics

The update rule for this model is inspired in the Glauber
dynamics of spin systems, which mimics the effect of social
pressure in opinion dynamics. In this model each individual
tends to adopt the fittest �dominant� language in its neighbor-
hood. The update rule for a speaker i at time t is the follow-
ing: �i� if F+�i , t−1��F−�i , t−1�, then �i�t�=1; �ii� if
F+�i , t−1��F−�i , t−1�, then �i�t�=−1; �iii� if F+�i , t−1�

=F−�i , t−1�, then �i�t�=�i�t−1�; �iv� reverse the outcome of
the dynamical rule with probability u.

III. SIMULATIONS FOR WELL-MIXED POPULATIONS
AND FOR REGULAR RANDOM GRAPHS

The models described above were first simulated on com-
plete graphs or fully connected networks—i.e., where all in-
dividuals are neighbors of each other. On these networks the
fitness of individuals speaking the same language is identical
in each time step �generation�: the fitness of individuals
speaking +1 �−1� is N1−1 �N−N1−1�, where N1 is the total
number of speakers of 1.

We start the simulations from a fully ordered system; i.e.,
at t=0 all individuals speak language +1 �say�. The language
of the next generation is determined according to the rules
described above for each model. The language of the popu-
lation evolves through a large number of generations �5000�
and the mean value of x=

N1

N is calculated for each value of
error rate in learning, u.

In Fig. 1 we plot the results of simulations of the three
dynamics for different population sizes N=100, N=1000,
and N=10 000. Although finite size effects are visible for the
smaller systems, they are negligible for populations of thou-
sands. While we find a critical coherence threshold at u
=1 /4, reproducing the results of �14� for the KNN model,
the results for the Voter and Glauber fitness-driven models
are quite different: the threshold is shifted to the value of the
noise that completely overrides the dynamics, u=1 /2, and
the fraction of speakers of the dominant language approaches
x=1 /2 linearly, at the threshold, revealing its noncritical na-
ture.

In order to investigate the effects of the network of inter-
actions on the linguistic coherence threshold we simulated
the same models on regular random graphs �RRGs�, where

0 0.1 0.2 0.3 0.4 0.5
u

0.5

0.6

0.7

0.8

0.9

1

x eq

0.4 0.45 0.5 0.55
u

0.5

0.55

FIG. 1. �Color online� Symbols: mean fraction of speakers of
language 1 �x� during 5000 generations for different values of u and
a population N=104 �simulation results in a fully connected net-
work for an initial condition x=1�. Circles: replicator-mutator dy-
namics. Triangles: fitness-driven Glauber dynamics. Squares:
fitness-driven voter dynamics. Lines: fixed points x� from �13�,
�20�, and �25� for x	

1
2 .
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analytical results may also be obtained. In RRG networks N
nodes are linked at random to a fixed number of neighbors, k,
without double links and self links. The models were simu-
lated on two of these networks for small �k=4� and large
�k=20� degree. The simulations for N=103 and N=104 start
�as before� in the ordered state where all individuals speak
+1. For each value of u, the language evolves through 10 000
generations at the end of which the average fraction of
speakers of the dominant language is computed. The results
for the three models are plotted in Figs. 2–4.

Note that the transition on RRGs exhibits a critical thresh-
old for all models. The value of u at threshold, uth, increases
with the number of neighbors and approaches the MF values
�1

4 for the replicator mutator and 1
2 for the Voter and Glauber

dynamics� as the number of neighbors tends to infinity.
Above threshold u�uth, the equilibrium value of x corre-
sponds to the coexistence of the two languages, x= 1

2 .

IV. ANALYSIS OF THE MEAN-FIELD EQUATIONS

In order to shed light on these results we proceed to cal-
culate the equilibrium values of N1 analytically in the infinite
population limit. Let x be the fraction of speakers of lan-
guage 1 �x�N1 /N�. The evolution of x is given by

ẋ = − xP1→−1 + �1 − x�P−1→1, �6�

where P1→−1 and P−1→1 are the rates of change of the two
competing languages.

In well-mixed populations P1→−1 and P−1→1 depend only
on x and can be computed exactly for the three models.

On RRG networks these probabilities are calculated using
the following �mean-field� assumptions: �i� each of the k
neighbors of any site is linked to �k−1� second neighbors,
with no loops �uncorrelated links�; �ii� the probability that
the language spoken at a given site is +1 is the average
density of speakers of that language, x �uncorrelated densi-
ties�. Within this mean-field approximation, the fitness of
each node is a random variable that results from the sum of k
independent and identical binomial variables. The calcula-
tion of the transition probabilities P1→−1 and P−1→1 depends
on the specific dynamics and proceeds in a straightforward
fashion.

Given the symmetry of the models the probabilities �6�
may be written as

P1→−1 = �1 − u�Q�x� + u�1 − Q�x�� , �7�

P−1→1 = �1 − u�Q�1 − x� + u�1 − Q�1 − x�� , �8�

where Q�x� is a function that depends on the network of
contacts and on the dynamics. Substituting �7� and �8�, Eq.
�6� becomes

ẋ = �1 − 2u��− xQ�x� + �1 − x�Q�1 − x�� + u�1 − 2x� . �9�

In what follows we discuss the meaning of Q�x� for each
dynamical model and calculate it for each network of con-
tacts.
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FIG. 2. Symbols: mean fraction of speakers of language 1 as a
function of u for the replicator-mutator dynamics from simulations
�10 000 generations for an initial condition x=1� in a random regu-
lar lattice with degree k. Solid symbols: k=4. Open symbols: k
=20. Circles: N=103. Squares: N=104. Lines: fixed points x� from
�9� and �16� for x	

1
2 . Solid line: k=20. Dot-dashed line: k=4.
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FIG. 3. �Color online� The same as in Fig. 2, but for the fitness-
driven Voter dynamics. The fixed points x� were calculated using
�9�, �22�, and �18� for x	
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FIG. 4. �Color online� The same as in Fig. 2, but for the fitness-
driven Glauber voter dynamics. The fixed points x� were calculated
using �9� and �26� for x	
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A. Replicator-mutator dynamics (KNN model)

We find by inspection of �3�, �4�, �7�, and �8� that for the
KNN model, Q�x� �Q�1−x�� is the normalized value of F−
�F+� in the neighborhood of a speaker of language 1 �−1�:

Q�x� =
F−

F− + F+
. �10�

In well-mixed populations, F− and F+ take their mean values
and Q�x� becomes

Q�x� =
�1 − x�2

�1 − x�2 + x2 . �11�

Substituting �11� into �9� yields the evolution equation

ẋ =
�− x�1 − x� + u��1 − 2x�

x2 + �1 − x�2 , �12�

and the �stable� fixed points x� are solutions of ẋ=0. It is
straightforward to show that

x� = 	
1

2
if u �

1

4
,

1

2
�1 � 
1 − 4u� if u �

1

4
,� �13�

confirming that uth= 1
4 is the threshold for linguistic coher-

ence. Furthermore, this threshold is critical since the deriva-
tive of x� with respect to u diverges there. The function �13�
is plotted for x�	

1
2 in Fig. 1, and excellent agreement is

found between the analytical solution and the simulation re-
sults for large systems.

The transition probabilities of the KNN model on RRGs
are calculated by determining the average value of the total
fitnesses F+�i� and F−�i� in the neighborhood of a given
node. Let us consider a node i that speaks +1 with n neigh-
bors that speak also +1. The average fitness of one of these
neighbors is 1+ �k−1�x and that of the neighbors speaking
−1 is �k−1��1−x�. The average values of F+�i� and F−�i� are,
then,

F− = �k − n��k − 1��1 − x� , �14�

F+ = n�1 + �k − 1�x� . �15�

The number of neighbors of i speaking the same language, n,
is a random variable that results from the sum of k random
binomial variables, each one taking the value 1 with prob-
ability x and 0 with probability �1−x�. The function Q�x� in
�10� is, then,

Q�x� = �
n=0

k

B�k,n�xn�1 − x�k−n F−

F− + F+
, �16�

where F− and F+ are given by �14� and �15� and B�i , j� is the
binomial coefficient:

B�i, j� =
i!

j ! �i − j�!
. �17�

The evolution equation is obtained by substituting �16� in
�9�. The stable fixed points as a function of the noise param-

eter are plotted in Fig. 2 for k=4 and k=20, respectively. For
regular random graphs with k=20 the agreement between the
simulation and the analytic results is almost quantitative for
populations of the order of a few thousand.

B. Fitness-driven Voter dynamics

In the fitness-driven Voter dynamics an individual that
speaks language 1 changes to language −1: with probability
�1−u� if the neighbor chosen at random speaks −1 and has a
higher fitness, with probability u if the neighbor chosen at
random speaks 1 or has a lower fitness. Thus, Q�x� �Q�1
−x�� is the probability to find a neighbor that speaks −1 �1�
and has a higher fitness. In the mean-field approximation,
Q�x� is

Q�x� = �1 − x�H�x� , �18�

the product of the probability �1−x� of finding a neighbor
that speaks −1 and the probability H�x� that a speaker of −1
has higher fitness than a speaker of 1.

In well-mixed populations, the probability that a speaker
−1 has a higher fitness is 1 �0� for x�

1
2 �x�

1
2 �, implying

that

Q�x� = �1 − x�
�1 − 2x� , �19�

where 
�z� is the step function: 
�z�=1 if z�0 and 
�z�
=0 if z�0. The dynamical equation is obtained by substitut-
ing �19� into �9� and has stable fixed point solutions ẋ=0
given by

x� = 	
1

2
if u 	

1

2
,

1

2
�1 � �2� − 
1 + 4�2�� if u �

1

2
,� �20�

where �= u
1−2u . Again, the rate of learning errors uth= 1

2 de-
fines two regimes: for u�uth a dominant language is estab-
lished and maintained while for u	uth there is the coexist-
ence of the two equally probable languages. Note, however,
that uth=1 /2 is a trivial threshold in the sense that for this
level of noise the evolution is totally random, while for
higher levels of noise the evolution rules actually hinder lin-
guistic coherence. This trivial threshold is noncritical since

lim
u→1/2−

dx�

du
= �

1

2
, �21�

the derivative at threshold being finite. The function �20� is
plotted for x�	

1
2 in Fig. 1, and apart from the finite-size

effects mentioned previously, quantitative agreement is
found between the analytical solution and the simulation re-
sults.

To calculate H�x� for RRG, let us consider a node i with
�i= +1 and a neighbor j with � j =−1. Using the definition of
fitness and the rules of the Voter dynamics we can compute
H�x� as the probability that j has a number m of neighbors
speaking −1 that is larger than the number n of neighbors of
i speaking +1:
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H�x� = �
n=0

k−2

B�k − 1,n�xn�1 − x�k−1−n �
m=n+1

k−1

B�k − 1,m�

��1 − x�mxk−1−m. �22�

The stable fixed points are calculated using �9� with Q�x�
given by �18� and �22� and solving for ẋ=0. In general, �x
� 1

2 � they are more easily written in terms of u�x��:

u�x�� = 	
V�x��

2x� − 1 + V�x��
if x� �

1

2
,

V�1 − x��
1 − 2x� + V�1 − x��

if x� �
1

2
,� �23�

where V�x�=x�1−x��H�1−x�−H�x��. u�x�� given by �23� is
plotted in Fig. 3 for x�

1
2 . The calculated x��u� is in line with

the results of the simulation, and for k=20 the agreement
becomes nearly quantitative.

C. Fitness-driven Glauber dynamics

In the fitness-driven Glauber dynamics, Q�x� is the prob-
ability that a speaker i of +1 has total fitness satisfying
F−�i��F+�i�.

In well-mixed populations, F−�F+ iff x�
1
2 and, there-

fore,

Q�x� = 
�1 − 2x� . �24�

Substituting in �9� and solving for the stable fixed points we
obtain

x� = 	
1

2
if u 	

1

2
,

1

2
� �1

2
− u if u �

1

2
.� �25�

The rate of learning errors uth= 1
2 is again a trivial threshold

that separates two regimes as in the fitness-driven Voter
model. Also as in the Voter model the threshold is noncritical
since, the derivative of u at threshold is finite and the fraction
of speakers of the dominant language approaches the thresh-
old linearly. The function �25� is plotted for x�	

1
2 in Fig. 1,

and excellent agreement is found between the analytical so-
lution and the simulation results for large systems.

In order to calculate Q�x� for RRGs, we consider in the
neighborhood of a given node i that is a +1 speaker �i� n
nearest neighbors that speak +1, �ii� n1 next-nearest neigh-
bors that speak +1 and share with i a nearest neighbor that
speaks +1, and �iii� n2 next-nearest neighbors that speak −1
and share with i a nearest neighbor that speaks −1. Then the
total fitnesses are simply given by F−�i�=n2 and F+�i�=n
+n1, and Q�x� is the probability that n2�n+n1 :

Q�x� = �
n=0

k

B�k,n�xn�1 − x�k−n �
n1=0

n�k−1�

B„n�k − 1�,n1…x1
n

��1 − x�n�k−1�−n1 �
n2=n+n1+1

�k−n��k−1�

B„�k − n��k − 1�,n2…

��1 − x�n2x�k−n��k−1�−n2. �26�

The fixed points are calculated using �9� and solving for ẋ
=0. The function u�x�� obtained is of the form �23� with
V�x�=−xQ�x�+ �1−x�Q�1−x� and Q�x� given by �26�. u�x��
is plotted in Fig. 4 for x�

1
2 and is found to be in line with

the results of the simulations. For k=20 the agreement is
almost quantitative.

Again, the transition exhibits a critical threshold and the
value of uth also increases with the number of nearest neigh-
bors on the network approaching the mean-field value, uth
=1 /2, as this number approaches infinity. Above threshold,
u�uth, the stable fixed point corresponds to the coexistence
of the two languages, x= 1

2 .

D. Coherence thresholds for social fitness-driven evolution

For all the models considered above, the mean-field de-
scription of the dynamics is given by Eq. �9� which is of the
form

ẋ = �1 − 2u�g�x� + u�1 − 2x� , �27�

with g�1 /2�=0 and g�x�=−g�1−x�. For �27� to describe the
mean-field dynamics of an evolution process that selects for
the dominant variant of two languages or species with the
same intrinsic fitness, the additional assumptions are that
g�0�=0 and g�x��0 for 0�x�1 /2, so that the coherent
states x=0 and x=1 are the only stable solutions in the ab-
sence of noise. The threshold behavior of this type of models
is easily understood if we consider the related family

ẋ = g̃�x� + u�1 − 2x� , �28�

where g̃�x� has the same symmetry properties as g�x� and
noise and dynamics are uncoupled, so that u represents a
constant rate of random flipping independent of the evolution
rules. Indeed, �27� can be brought to the form �28� with
g̃�x�=g�x��1−2x� / �1−2x−2g�x�� through a smooth rescal-
ing of time, provided that g�x� is smooth. From Eq. �28�, the
curve u�x� that relates the rate of random flipping u with the
corresponding equilibrium density x is

u�x� =
g̃�x�

2x − 1
. �29�

If we assume that g̃�x� is smooth, then given the symmetry

g̃�x� = g̃��1/2��x − 1/2� + O„�x − 1/2�3
… �30�

and therefore

uth = u�1/2� = g̃��1/2�/2,
duth

dx
= u��1/2� = 0. �31�

This means that models �28� and �27� always exhibit critical
coherence thresholds when g̃ and g are smooth. The values
of the critical thresholds found in this section are particular
cases of Eq. �31�, which for model �27� reads

uth = u�1/2� =
1

2

g��1/2�
1 + g��1/2�

,
duth

dx
= u��1/2� = 0. �32�

Equation �29� also shows that whenever g̃�x� is a step func-
tion with a discontinuity at x=1 /2, then model �28� has no
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coherence threshold: a dominant language persists for arbi-
trarily large levels of noise, because the right and left limits
u�1 /2+� and u�1 /2−� are both infinite. The behavior of model
�27� when g�x� is a step function with a discontinuity at x
=1 /2, as for the fitness-driven Voter and Glauber dynamics
on the complete graph, may be obtained directly from the
analog of Eq. �29� for model �27�:

u�x� =
g�x�

2x − 1 + 2g�x�
. �33�

Then

uth = u�1/2+� = u�1/2−� = 1/2, �34�

independently of g, and

duth

dx
= u��1/2+,−� = −

1

2

1

g�1/2+,−�
, �35�

which is always bounded away from zero. Therefore, this
class of models will exhibit a noncritical trivial threshold at
u=1 /2.

To summarize, the family of models described at the
mean-field level by Eqs. �27� and �28� exhibits three types of
threshold behavior. Models with nonsmooth density depen-
dence transition rates g�x� and dynamically coupled noise
exhibit a trivial noncritical threshold at the value of u=1 /2
for which noise completely overrides the dynamics. Models
with nonsmooth density dependence transition rates g̃�x� and
dynamically uncoupled noise do not exhibit a noise-induced
threshold; i.e., there is always a dominant language irrespec-
tive of the level of noise. Finally, in the generic case of
models with smooth transition rates g�x� and g̃�x� there is a
critical threshold below which language coherence may be
established and maintained.

V. CONCLUSIONS

We have considered different models for the evolution in
the presence of noise of two languages with the same intrin-
sic fitness that compete through the selective advantage of
the language that is perceived by each individual as the
dominant language. The language spoken by each speaker

has for that speaker a social fitness given by the number of
its neighbors that share the same language, and the
dynamics-driven by evolution rules based on this fitness
measure will depend also on the interaction network of the
population. Starting from a state where all individuals speak
the same language, mutations or transmission errors act as
noise terms that favor the balance of the number of speakers
of each language, while selection according to social fitness
drives linguistic coherence. The coherence threshold is the
level of noise or mutation rate above which the system
evolves to a state where both languages are equally frequent.

From simulations of these models on fully connected net-
works and on regular random graphs, we found that the criti-
cal threshold for the KNN model �14� is robust with respect
to the network structure, but that the coherence thresholds of
related models are strongly affected by this feature.

In particular, we have found that models with social
fitness-driven dynamics inspired by the Voter and Glauber
models, two of the simplest models for spin dynamics used
in opinion dynamics and cultural evolution studies, exhibit
different linguistic coherence threshold behavior, depending
on the network of interactions. On a regular random graph,
these models have a critical coherence threshold, while on
the fully connected network a dominant language persists up
to the level of noise for which the evolution rules are totally
random.

We have obtained analytical mean-field solutions for the
coherence thresholds on the fully connected network and on
regular random networks that are in agreement with the re-
sults of the simulations for the three models, providing a
quantitative description of the behavior of the different mi-
croscopic rules. We have shown that the noise threshold be-
haviors of these models, and, more generally, of evolution
processes that select for the dominant variant of two lan-
guages or species with the same intrinsic fitness, can be un-
derstood as well in terms of a simple mean-field analysis.
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