
Noisy Preferential Attachment and Language
Evolution

Samarth Swarup1 and Les Gasser1,2

1 Dept. of Computer Science,
2 Graduate School of Library and Information Science,

University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

{swarup, gasser}@uiuc.edu

Abstract. We study the role of the agent interaction topology in dis-
tributed language learning. In particular, we utilize the replicator-mutator
framework of language evolution for the creation of an emergent agent
interaction topology that leads to quick convergence. In our system, it
is the links between agents that are treated as the units of selection and
replication, rather than the languages themselves. We use the Noisy Pref-
erential Attachment algorithm, which is a special case of the replicator-
mutator process, for generating the topology. The advantage of the NPA
algorithm is that, in the short-term, it produces a scale-free interaction
network, which is helpful for rapid exploration of the space of languages
present in the population. A change of parameter settings then ensures
convergence because it guarantees the emergence of a single dominant
node which is chosen as teacher almost always.

1 Introduction

The study of communication and language is an important aspect of the study
of adaptive behavior. Predefined languages for multiagent systems may not be
appropriate as they reflect the designer’s viewpoint rather than the agents’, and
are unable to adapt to changing environmental conditions and task definitions.
It is much more desirable for the agents to be able to create and maintain their
own language. This is not an easy task, however, as the mechanisms of language
evolution are far from being well understood.
The last decade or so has seen increasing application of computational meth-

ods to the study of language evolution [1], [2], [3]. The main mathematical ap-
proach, meanwhile, is to apply models of biological evolution to the evolution of
language(s) [4]. In this case, the languages themselves are considered the units
undergoing selection and mutation. These models have been used to address
questions about convergence [5], and the emergence of syntax [6], for example.
One of the main problems in language evolution, which has received little

attention so far, is how to get a population of agents to converge to a common
language, without globally imposing some kind of hierarchy on the population. In



other words, how does the topology of agent interactions affect the convergence
to a common language?
The topology clearly has an important role to play in convergence. For ex-

ample, if the population is split into two disjoint subgroups, then they cannot
converge onto a single language except by chance. Even if the topology con-
sists of a single component, multiple languages might co-exist in the population,
especially if the rate of change of the language (in response to environmental
changes, for example) is high in relation to diameter of the network. In other
words, languages might be changing faster than they can propagate across the
network.
In this work we show that we can take advantage of evolutionary dynamics

to actually construct the agent interaction topology on the fly. This is done by
a subtle change of focus. Instead of the languages being treated as the units of
selection and replication, we treat the interaction links between agents as the
units undergoing selection and replication.
The rest of this paper is organized as follows. We first describe some recent

work investigating the role of the interaction topology in the convergence of
language and emergence of social conventions in multi-agent systems. This is
followed by a discussion of our model for generating agent interaction topolo-
gies, which is based on the evolutionary framework described by the replicator-
mutator equation. We show that this mathematical model is valid through some
simple simulations. Then we go on to do a language learning experiment using
simple recurrent neural networks. Finally we discuss the possibilities for expand-
ing on this work to include situatedness and further numerical exploration of the
theoretical model.

2 Related Work

There has been some significant work on the convergence of a population of
agents to a particular language. Komarova et. al [7], and Lee et al. [8] have stud-
ied the problem from the point of view of population dynamics, while Dall’Asta
et al. [9] have studied the dynamics of the naming game [10] on small-world
networks, and Lieberman et al. [11] have introduced evolutionary graph theory,
which is the study of evolutionary processes on graphs.
The model of Dall’Asta et al., while very interesting, is not really an evolu-

tionary model since there is no notion of selection or variation in it. Therefore
we will not discuss it further here.
Lee et. al studied the role of the interaction topology on the convergence of

a population to a single language. This study looked at a set of specific inter-
action topologies, including fully connected, linear, von Neumannn lattice, and
a bridge topology. Using the model of Komarova et. al, which assumes random
pairwise interactions between all agents, they empirically studied the critical
learning fidelity threshold for language convergence in the various topologies.
Although several different interaction topologies were used, the topologies were
not emergent and were specified beforehand by the creator of the experiments.



In addition, the agents did not learn a language from interactions with other
agents, but rather neighbors of high fitness agents were transformed into copies
of the high fitness agent with some fixed probability. Lieberman et al. put their
work on a firmer theoretical basis by studying the probability of fixation (i.e.
the probability that a fitter language, if it appears by mutation, will be adopted
by the entire population) on a graph. They showed that some graphs can be
selection amplifiers, in that the probability of fixation can be made as high as
possible, and also that some graphs are selection suppressors.
Here we ask the question, can the agents generate the topology on the fly,

while still ensuring that the emergent topology leads to rapid convergence?

3 Agent Interaction Topologies and Convergence

Fig. 1. The interaction graph for quickest convergence. One agent teaches the language
to all the other agents. The circles represent agents, and the directed arrows represent
the influence of one agent on the language of the other agent.

The agent interaction topology is a weighted directed influence graph which
describes the influence of an agent on the language of another agent. Such a
graph captures constraints such as spatial locality, agents’ knowledge of each
others’ existence, interaction choice preferences, etc.
A simple strategy for rapid convergence would be to designate a special agent

from which each of the other agents learn their language, as in figure 1. This
corresponds essentially to a pre-imposed or designed language, which may or
may not be of the highest objective quality. Such a centralized system is brittle
in practice because a) the teacher agent has to be responsible for adapting the
language to keep up with changing tasks, environments and needs of all the
agents, b) communicative load on the teacher increases at least linearly with
population size, reducing scalability, and c) the centralized teacher is a single
failure point. Multi-agent systems are generally distributed and open, which
means that there is no central control point, and agents may enter and leave
the population at any time. This means that although desirable for its speed,



uniformity, and certainty, the interaction topology shown in figure 1 is both
undesirable and unrealistic for a general multi-agent system.
It would be much better if agents could develop their interaction topologies

on the fly, by selecting interaction partners autonomously. We would still like,
however, to have some guarantee of convergence, and of rapid convergence. In
this regard, we next discuss the Noisy Preferential Attachment algorithm which
we can use initially to generate scale-free topologies, and also to guarantee con-
vergence. The final emergent topology, as we will see, looks a lot like fig. 1, but
the crucial distinction is that it is emergent. Thus, e.g., if the central agent left
the population, another would emerge to take its place.

4 Noisy Preferential Attachment

We first derive a variant of the replicator-mutator equation (RME), the RME
without Death (RME-WD). Then we show that the preferential attachment
model of small-world network generation is a special case of the RME-WD. We
then use this equivalence to give a version of the preferential attachment algo-
rithm, called Noisy Preferential Attachment, which we will later use to generate
the agent interaction topology.
The Replicator-Mutator Equation (RME) describes the rate of change of the

proportion of types (genomes, languages) in a population undergoing replication
and mutation.
Suppose there are N types in a population of n individuals. Let fi be the fit-

ness of an individual of type i. Since fitness includes both frequency-independent
and frequency-dependent components, it is written as,

fi = wi +
N∑

j=1

aijxj , (1)

where xj is the proportion of individuals of type j in the population, and wi is a
measure of intrinsic fitness of the language which might be related to learnability,
expressiveness, etc.. The matrix A = [aij ] is known as the payoff matrix, and
can be thought of as the payoff or reward achieved by an individual of type i in
an interaction with an individual of type j. In the case of languages, A can be
thought of as a measure of intelligibility, i.e. the degree to which a speaker of
language i understands a speaker of language j.
The total number of individuals added to the population in a time step is∑N

j=1 fjxjn. Further, replication is imperfect. With a small probability, replicat-
ing an individual of type i results in an individual of type j. This is quantified
by a matrix Q = [qij ], where qij is the probability that replication of an indi-
vidual of type i results in an individual of type j. In the case of languages, this
corresponds to learning fidelity. In a limited interaction between individuals, the
learner may not learn exactly the teacher’s language.
Suppose also that the size of the population is held constant at n, by re-

moving an equal number of individuals uniformly randomly, as are added to the



population. This is because, in the case of language learning, when an agent
learns a new language, it necessarily replaces the old language of that agent.
Then the number of individuals of type i that are removed in one time step is
xi

∑N
j=1 fjxjn.
Putting all these terms together, we get the rate of change of the proportion

of individuals of type i in the population, as

ẋi =
N∑

j=1

fjxjqij − xiφ, (2)

where φ =
∑N

j=1 fjxj . This is the Replicator-Mutator Equation (RME).

4.1 Replication-Mutation without Death

If there is no death, the number of individuals of type i at the next time step is,

x
′

i(n+
N∑

j=1

fjxjn) = xin+
N∑

j=1

fjxjqijn.

Here n +
∑N

j=1 fjxjn is the total size of the population at the next time step,

and
∑N

j=1 fjxjqijn is the number of new individuals of type i. Rearranging, and

letting φ =
∑N

j=1 fjxj , we get

x
′

i(1 + φ) = xi +
N∑

j=1

fjxjqij

x
′

i(1 + φ)− xi(1 + φ) =
N∑

j=1

fjxjqij − xiφ

Thus the rate of change of the proportion of type i is,

ẋi =

∑N
j=1 fjxjqij − xiφ

1 + φ
(3)

This is the Replicator-Mutator Equation without Death. Note that, since
fj ≥ 0 ∀ j, the denominator on the right-hand side is always positive. Therefore
the critical points of the RME-WD are the same as those of the RME.
The general form of the RME is very difficult to study because of the large

number of parameters (all the entries of the A and the Q matrices). Often a
special symmetrical case is studied, where the A matrix is set to have diagonal
values equal to 1, and off-diagonal values a << 1, and the Q matrix is similarly
set to have diagonal values p (close to 1), and off-diagonal values (1−p)/(N−1).
A complete analysis of the critical points is possible in this fully symmetric case
[12].



In particular, when p is less than a critical threshold, the system has only one
attractor, where all types are present in equal proportion in the population. For
large values ofN and small values of a, this threshold is approximately 0.5. Above
this value, the attractor turns into a repeller, and the only stable attractors that
emerge correspond to the situation where a single type dominates the population.
Note that in the absence of death, and presence of mutation, there will always
be all types present in the population, but the proportion of one of the types
goes towards one. Since the system is fully symmetric, it could be any one of
the N types that eventually dominates the population, and which attractor the
system falls into depends on the initial conditions, and statistical fluctuations.
We now shed some light on the transient behavior of the RME-WD, under

certain special conditions, by showing its equivalence with the preferential at-
tachment algorithm of small-world network generation. This means that, under
the right initial conditions, if we create a network (as we will later describe) using
the RME-WD, the network will be a scale-free network (in the short term).

4.2 Preferential Attachment and the Underlying Probabilistic
Model

The Preferential Attachment algorithm is the most commonly cited model of
small-world network generation [13]. Small-world networks are graphs which have
three properties: a small diameter, a high clustering coefficient, and a power-law
degree distribution. The clustering coefficient is defined as the average fraction
of neighbors of a node that are also neighbors of each other. Barabasi and Albert
showed that a small-world network can be generated by preferential attachment,
as follows.
We start the network with a small number of nodes and links, say two of each,

randomly connected. At each step, we add a node to the network and add a link
from the new node to one of the pre-existing nodes with probability proportional
to the number of in-links that node already has. Thus, the probability of node i
acquiring a new link is,

P (i) = αxγ
i , (4)

where xi is the proportion of in-links that go to node i, γ is a constant, and α
is a normalizing term. γ is generally set to 1, in which case α is also 1.
This process results in a small-world network. There are a couple of things

worth noting here. First, since new nodes don’t have any in-links, the probability
of acquiring any in-links is zero for these nodes. To get around this problem, every
node is assumed to have one pseudo-link, i.e. the number of in-links for each node
for the purposes of preferential attachment, begins at 1. Second, since new nodes
are added at every time step, the number of links remains approximately equal to
the number of nodes in the network. In later work, Albert and Barabasi modified
the preferential attachment algorithm to allow rewiring of links with some small
probability, and also to allow adding links without adding nodes with some small
probability [14], but the essential algorithm remains the same as that described
above.



The underlying probabilistic model is an instance of a Polya’s urn model, as
described below (and also in [15]).
Imagine a set of N urns which are all empty except for one, which has one

ball in it. We now add balls one by one. A ball is put into urn i with probability
proportional to the number of balls already in that urn (plus one “pseudo-ball”).
This process is clearly equivalent to the preferential attachment algorithm

with the caveat that we have fixed the number of urns to be N . An urn represents
a node and a ball represents an in-link. In the short-term, i.e. while the number
of balls is of the same order as the number of urns, this probabilistic model
represents the small-world network generation process.
We now add a further step to it to make it equivalent to the RME-WD. We

introduce a transfer matrix, Q, which is the same as the mutation matrix in the
RME. Suppose a ball is added to urn i at time step t. Then a ball is taken out
of urn i and moved to any of the urns with probability qij . This is similar to
later versions of the preferential attachment model which include rewiring.
This probabilistic model captures the RME-WD dynamics if we consider urns

to correspond to types and balls to individuals in the population. Since it is the
balls that correspond to the individuals undergoing replication and mutation, we
have to set the payoff matrix, A, equal to the null matrix in this case to get the
linear dependence of P (i) on xi. Note that in this case, the RME-WD loses its
frequency-dependent aspect. If we set A = I, the identity matrix, P (i) varies as
the square of the proportion of individuals of type i. If the off-diagonal elements
of A are set to be non-zero, then P (i) acquires additional second-degree terms.
We call this extended (but still finite) version of preferential attachment,

Noisy Preferential Attachment (NPA) [16], because of the introduction of the
mutation matrix into the probabilistic model. A caveat is in order here too:
there is no notion of pseudo-links (or pseudo-balls) in this model. New nodes
(types) are introduced into the graph (population) by the mutation process.
This means that the number of nodes increases much more slowly that it does
in the preferential attachment case. Therefore to generate a large network, the
initial state needs to include a fairly large number of nodes with non-zero number
of in-links. Alternatively, the mutation rate needs to have a high value.

5 Using NPA to Generate Agent Interaction Topologies

We use the NPA algorithm to generate the agent interaction topology on the fly
in two stages as follows. Initially the agents have no knowledge of (the quality
of) each other’s languages. Therefore the first stage is an exploration phase,
which sets up the second convergence phase. In the exploration phase, an agent
Alice chooses another agent, Bob, as a teacher with probability proportional
to Bob’s fitness. The fitness of an agent is equal to the number of times that
agent has been chosen as a teacher. The fitness can also include a term that is
independent of the frequency of selection as teacher, but for now, we ignore this
term since our current simulations are ungrounded. With probability (1 − p),
Alice switches to a uniformly randomly chosen teacher. This is similar to the



notion of exploration-exploitation in reinforcement learning. The intuition is
that if a lot of agents are choosing a particular agent as teacher, then choose
that agent as a teacher because a lot of agents consider its language to be good.
However, the proportions might be misleading near the beginning of the process
because the actual counts will be low. Therefore it makes more sense to explore
rather than exploit at the beginning of the distributed language learning process,
i.e. it makes sense to start out with a high value of the mutation rate, (1 − p),
and switch to a low value when the process has been going on for a while.

Fig. 2. The degree distribution for p = 0.3
and γ = 1, after 1000 links have been
added. The number of nodes in the graph
is 1000 as well. The distribution is clearly a
power law.

Fig. 3. The degree distribution after 20,000
links have been added to the graph. One
node is clearly dominant.

Figure 2 shows a simulation in which we have a population of 1000 agents,
i.e. a graph with 1000 nodes. Initially, one link is randomly added to start the
process off. The initial value of p is 0.3, and γ, which is the exponent of the
proportion in the preferential selection equation, is set to 1. We add one link
at each time step, and figure 2 shows the in-degree distribution after 1000 links
have been added. The graph is plotted on a log-linear scale, and the distribution
is clearly a power-law. Therefore, at this stage, the graph is a scale free network.
At this point we start the second stage, by changing the value of p to 0.95,

and the value of γ to 2. The intuition is that once the space of languages has
been sufficiently explored, we can switch to the “convergence mode”, where we
trust the statistics of interactions that have been established in the first stage
to guide us to a good overall language.
As we continue adding links, the node with highest degree becomes the dom-

inant node. Figure 3 shows the degree distribution after 20,000 links (total) have
been added. We can see that a single node has acquired a far larger proportion
than the rest, and because of the frequency-dependent effect, the proportion of
links acquired by this nodes will continue to increase towards 1 as we continue
adding links to the graph. This means that the population will converge to the



language of this agent. If this agent later gets removed from the population, the
next most “fit” agent will become the dominant agent. It may possibly have a
different language, though.

6 A Language Learning Experiment

We now do a simulation where we have a population of agents trying to converge
onto a common language by learning from each other. The agent interaction
topology is generated as described above. The agents use simple recurrent neural
networks to generate, parse, and learn sentences. Each simple recurrent network
has 5 inputs, 3 hidden layer nodes, and 5 outputs. There are 5 symbols in the
“languages”, {a,b,c,d,e}, and we use a 1-of-n encoding, i.e. the symbol a is
encoded as the vector [1, 0, 0, 0, 0] at the input of the neural network. A sentence
is generated from a simple recurrent network by setting its internal state to 0.5
and giving it a random initial input vector. The output of the neural net is then
fed back to its input and this process is repeated until we have generated as
many symbols as we want. The weights of the neural networks are initialized
randomly in the range [−0.5, 0.5].
The population size was set to 100, and the experiment was run for 1000

time steps. At each time step, an agent is selected in sequential order, and it
chooses a teacher according to the NPA algorithm. It receives a sample of 100
sentences of length 10 from the teacher and trains on this sample to convergence
or for 100 epochs, whichever comes first. Every 50th time step, we collect 5
randomly generated sentences from each agent to form a testing set and the
one-step symbol prediction error is calculated for each agent on this testing set.
These are summed up to indicate the error (the inverse of convergence) of the
entire population. This value is plotted in figure 4.
The parameters for the NPA algorithm were set in a manner similar to the

previous section. Since there are 100 agents, i.e. 100 nodes in the graph of the
agent interaction topology, we set p = 0.3 and γ = 1 for the first 100 steps,
and then changed these values to p = 0.95 and γ = 2 for the remainder of the
simulation. As we see in figure 4, the error only starts dropping after time step
100. However, after that the error drops quite rapidly and reaches almost zero by
time step 1000. As a comparison, we also plot the error with uniformly random
teacher selection. We see that convergence is attained much faster with the NPA
algorithm.

7 Discussion and Future Work

The two stages of the distributed convergence mechanism described in this work
combine the ideas of convergence to a common social convention and conver-
gence to a common language, through the mechanism of frequency-dependent
(or preferential) selection.
The goal of the first, or exploratory, stage is to evaluate the languages that are

present in the population and collectively decide on a single language, embodied



Fig. 4. The one step symbol prediction error summed over all the agents on the testing
set. The testing set is generated by sampling 5 sentences from each of the agents at
that particular time step. The low prediction error at the end (∼ 1%) indicates almost
perfect convergence of the language.

by a single teacher, as the language to converge upon. The second stage then
focuses on all the agents learning this one language, again in a distributed way, by
simply changing two global parameters of the system: the probability of switching
to a random teacher rather than the preferentially selected one, and the exponent
which determines how strongly the preferential selection mechanism works. The
underlying theoretical model guarantees that the appropriate parameter values
will result in both a power law initial distribution of links, and the dominance
of one teacher in the second stage.
Another important point, which was not mentioned in the language learning

experiment, is that learning is non-trivial. With all learning architectures and
algorithms, including the simple recurrent networks trained with the delta rule
and backpropagation that we have used, some languages are easier to learn
than others. In the work of Lee et al., e.g., this is captured by the learning
fidelity parameter [8]. However, the point is that in practice, this parameter
is non-uniform across the language space. “Simple” languages can be learned
with greater fidelity than more complex ones. For example, it is much easier to
converge upon point attractors, i.e. languages consisting of a single symbol, with
simple recurrent networks, than to converge upon other kinds of attractors: e.g.
languages consisting of alternating symbols or other more complex languages. In
the language learning experiment shown, it is much harder to attain convergence
when the selected teacher has a complex language, and convergence depends on



having appropriate parameters settings for the neural networks (such as number
of hidden layer nodes, learning rate, momentum, etc.).
There are many details that remain to be fleshed out in the model. The

algorithm given is not truly a distributed algorithm since it hasn’t really been
specified from the point of view of a single agent. We need to explicate how the
exploration phase works at the beginning when the agents have no information
about each other. We can imagine that each agent maintains a list of its own
estimate of all the other agents’ fitness values. They can all be initialized to
zero, and then a few of these get filled in by a “recommendation” mechanism
corresponding to the preferential selection. In other words, an agent chooses a
teacher randomly (or chooses a neighbor), and then gets referred to a better
teacher by this one based on the teacher’s knowledge about the population. This
is where a scale-free (or small-world if possible) nature of the agent interaction
topology helps. The small diameter of such a network means that it is easy for
an agent to find a good teacher using such a referral mechanism.
In future work, we intend to explore a more grounded language learning

case. As a first step, we need to investigate the effects of making the frequency-
independent part of fitness non-zero. A second concern is the quality of language
that is converged upon. As pointed out above, there is an inherent bias in the
population towards learning simple languages, as learning fidelity is higher in
this case. There has to be a corresponding pressure towards language complexi-
fication, perhaps from a task based reward, otherwise the learned language will
almost surely be the simplest possible.

8 Conclusions

We have outlined a system capable of converging onto a common language in
a distributed manner. It relies on the framework of language evolution, with a
change of focus: instead of treating the languages themselves as the individuals
undergoing replication, selection and mutation, we treat the links in the agent
interaction topology as the evolutionary units.
We further showed that under certain special conditions, we can recover the

preferential attachment algorithm of small-world network generation from the
replicator-mutator system of evolution. This allowed us to give a two stage model
of distributed language learning, based on our Noisy Preferential Attachment
algorithm. In the first stage, the agents explore the languages present in the
population and generate a scale-free network of interaction. In the second stage,
the parameters are changed to allow rapid convergence by letting a dominant
“teacher” node emerge through the same evolutionary dynamics.
We demonstrated through a simple language learning experiment using sim-

ple recurrent networks, that such a system can converge to a common language
autonomously and rapidly.
In the near future we intend to explore the parameter space of the system

more thoroughly, both numerically and theoretically, through more grounded
simulations.



9 Acknowledgements

We thank Kiran Lakkaraju for help with the programming of the language learn-
ing experiment, and for very helpful feedback. We thank the UIUC Language
Evolution Group for very helpful and stimulating discussions. This work was
supported in part by NSF grant IIS-0340996.

References

1. Steels, L.: The evolution of communication systems by adaptive agents. In Alonso,
E., D.K., Kazakov, D., eds.: Adaptive Agents and Multi-Agent Systems: Adapta-
tion and Multi-Agent Learning. LNAI 2636, Springer Verlag, Berlin (2003) 125–140

2. Smith, K., Kirby, S., Brighton, H.: Iterated learning: A framework for the emer-
gence of language. Artificial Life 9(4) (2003) 371–386

3. Batali, J.: Computational Simulations of the Emergence of Grammar. In: Ap-
proaches to the Evolution of Language: Social and Cognitive Bases. Cambridge
University Press, Cambridge (1998)

4. Nowak, M.A., Komarova, N.L.: Towards an evolutionary theory of language.
Trends in Cognitive Sciences 5(11) (2001) 288–295

5. Komarova, N.L.: Replicator-mutator equation, universality property and popula-
tion dynamics of learning. Journal of Theoretical Biology 230 (2004) 227–239

6. Nowak, M.A., Plotkin, J.B., Jansen, V.A.A.: The evolution of syntactic commmu-
nication. Nature 404 (2000) 495–498

7. Komarova, N., Niyogi, P., Nowak, M.: Evolutionary dynamics of grammar acqui-
sition. Journal of Theoretical Biology 209(1) (2002) 43–59

8. Lee, Y., Collier, T.C., Taylor, C.E., Stabler, E.E.: The role of population structure
in language evolution. In: Proceedings of the 10th International Symposium on
Artificial Life and Robotics. (2005)

9. Dall’Asta, L., Baronchelli, A., Barrat, A., Loreto, V.: Agreement dynamics on
small-world networks. Europhysics Letters (2006)

10. Steels, L.: A self-organizing spatial vocabulary. Artificial Life 2(3) (1996) 319–332
11. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Na-
ture 433 (2005) 312–316

12. Mitchener, W.G.: Bifurcation analysis of the fully symmetric language dynamical
equation. Journal of Mathematical Biology 46(3) (2003) 265–285

13. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286
(1999) 509–512

14. Albert, R., Barabási, A.L.: Topology of evolving networks: Local events and uni-
versality. Physical Review Letters 85(24) (2000) 5234–5237

15. Chung, F., Handjani, S., Jungreis, D.: Generalizations of Polya’s urn problem.
Annals of Combinatorics 7 (2003) 141–153

16. Swarup, S., Gasser, L.: Unifying network and evolutionary dynamics. In Prepara-
tion (2006)


