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Abstract

We present a novel connectionist model for
acquiring the semantics of a simple language
through the behavioral experiences of a real
robot. We focus on the “compositionality” of
semantics, a fundamental characteristic of hu-
man language, which is the ability to understand
the meaning of a sentence as a combination of
the meanings of words. We also pay much at-
tention to the “embodiment” of a robot, which
means that the robot should acquire semantics
which matches its body, or sensory-motor system.
The essential claim is that an embodied com-
positional semantic representation can be self-
organized from generalized correspondences be-
tween sentences and behavioral patterns. This
claim is examined and confirmed through sim-
ple experiments in which a robot generates cor-
responding behaviors from unlearned sentences
by analogy with the correspondences between
learned sentences and behaviors.

1. Introduction

Implementing language acquisition systems is one of the
most difficult problems, since not only the complexity of
the syntactical structure, but also the diversity in the
domain of meaning make this problem complicated and
intractable. In particular, how linguistic meaning can be
represented in the system is crucial. This problem has
been investigated for many years.
In this paper, we introduce a connectionist model that

acquires the semantics of a simple finite language with
respect to correspondences between sentences and the
behavioral patterns of a real robot. An essential ques-
tion is how compositional semantics can be acquired
in the proposed connectionist model without providing
any representations of the meaning of a word or behav-
ior routines a priori. By “compositionality”, we refer
to the fundamental human ability to understand a sen-
tence from (1) the meanings of its constituents, and (2)

the way in which they are put together. It is possible
for a language acquisition system that acquires compo-
sitional semantics to derive the meaning of an unknown
sentence from the meanings of known sentences. Con-
sider the unknown sentence: “John likes birds.” It could
be understood by learning these three sentences: “John
likes cats.”; “Mary likes birds.”; and “Mary likes cats.”
That is to say, generalization of meaning can be achieved
through compositional semantics.
From the point of view of compositionality, the sym-

bolic representation of word meaning is advantageous
for processing the linguistic meaning of sentences. In
general, AI-based models employ semantic symbols to
represent word meanings and have much affinity with
compositionality in terms of the meanings of sentences
(e.g., (Thompson and Mooney, 1998)). Thus, this ap-
proach assumes that the meanings of words (i.e., lexi-
con) is independent of the usages of words in sentences
(i.e., syntax).
According to this observation, various learning models

have been proposed to acquire the embodied semantics
of language. For example, some models learn semantics
in the form of correspondences between sentences and
non-linguistic objects, i.e., visual images (Roy, 2002), se-
quences of video images (Siskind, 2001), or the sensory-
motor patterns of a robot (Iwahashi, 2003, Steels, 2000).
In these models, the meanings of words are labeled by
the words themselves (a.k.a., semantic symbols). Con-
sequently, a significant part of semantic learning can be
reduced to the learning of the syntactic structure of the
sentence. This means that the acquisition of meanings
of sentences can be translated into two relatively sep-
arate steps, the acquisition of word meanings and the
acquisition of syntax.
Although this separated learning approach seems to

be plausible from the requirements of compositionality, it
causes inevitable difficulties in representing the grounded
meaning of a sentence. A priori separation of lexicon and
syntax requires a pre-defined manner of combining word
meanings to compose the meaning of a sentence. As a
result, these approaches require relatively heavy man-



ual pre-programming to realize compositional semantic
representations. Not all of these models aim for self-
organization of grounded compositional semantic repre-
sentations. We nevertheless point out possible problems
with their approaches within the framework of acquiring
grounded compositional semantics.
In Iwahashi’s model, the class of a word is assumed to

be given prior to learning its meaning because different
acquisition algorithms are required for nouns and verbs
(c.f., (Siskind, 2001)). Roy’s model does not require a
priori knowledge of word classes, but requires the strong
assumption, that the meaning of a word can be assigned
to some pre-defined attributes of non-linguistic objects.
This assumption is not realistic in more complex cases,
such as when the meaning of a word needs to be ex-
tracted from non-linguistic spatio-temporal patterns, as
in case of learning verbs.
Recently, several connectionist models for acquiring

embodied language have been proposed (Billard, 2002,
Sugita and Tani, 2002). These models don’t require sep-
arate treatment of words and syntax. However, they
can demonstrate only few compositional characteristics.
Also, it cannot be said that embodied semantics is self-
organized fully from scratch, since the models assume
behavior primitives a priori.
In this paper, we discuss an essential mechanism for

self-organizing embodied compositional semantic repre-
sentations. Our model implements compositional se-
mantics by utilizing the generalization capability of a
recurrent neural network (RNN), where the meaning of
each word cannot exist independently, but emerges from
the relations with others (c.f., reverse compositionality,
(Fodor, 1999)). In this situation, a sort of generaliza-
tion can be expected, such that the meanings of novel
sentences can be inferred by analogy with learned ones.
The experiments were conducted using a real mobile

robot with an arm and with various sensors, including a
vision system. A finite set of two-word sentences consist-
ing of a verb followed by a noun was considered. We as-
sume that a sentence is represented as a sequence of pre-
defined words, however, employ neither semantic sym-
bols nor composition rules a priori. Our analysis will
clarify what sorts of internal neural structures should
be self-organized for achieving compositional semantics
grounded to a robot’s behavioral experiences. Although
our experimental design is limited, the current study will
suggest an essential mechanism for acquiring grounded
compositional semantics, with the minimal combinato-
rial structure of this finite language (Evans, 1981).

2. Task Design

The aim of our experimental task is to understand an
essential mechanism for self-organizing compositional se-
mantics grounded to the behavior of a robot. In the
training phase, our neural network model learns the re-

lationships between sentences and the corresponding be-
havioral sensory-motor sequences of a robot in a super-
vised manner. It is then tested to generate behavioral se-
quences from a given sentence. We regard compositional
semantics as being acquired if appropriate behavioral se-
quences can be generated from unlearned sentences by
analogy with learned data.
Our mobile robot has three actuators, with two wheels

and a joint on the arm; a colored vision sensor; and
two torque sensors, on the wheel and the arm (Figure
1a). The robot operates in an environment where three
colored objects (red, blue, and green) are placed on the
floor (Figure 1b). The positions of these objects can be
varied so long as the robot sees the red object (R) on the
left side of its field of view, the blue object in the middle
(B), and the green object (G) on the right at the start
of every trial of behavioral sequences.

Red
Blue 

Green 

Starting  Position

(a) (c) (d) (e)

POINT-G PUSH-G HIT-G

(b)

Figure 1: The mobile robot (a) starts from a fixed position in

the environment and (b) ends each behavior by pointing at

(c), pushing (d), or hitting (e) either the red, blue, or green

object.

The robot learns nine categories of behavioral pat-
terns, consisting of pointing at, pushing, and hitting each
of the three objects, in a supervised manner. These cat-
egories are denoted as POINT-R, POINT-B, POINT-
G, PUSH-R, PUSH-B, PUSH-G, HIT-R, HIT-B, and
HIT-G (Figure 1c-e). It should be noted that the robot
learns these behaviors as sensory-motor time sequences,
in which there are no obvious relationships among be-
havioral categories. For example, one can not generate
a sensory-motor sequence belonging to POINT-R as a
combination of POINT-B and PUSH-R.
The robot also learns sentences which consist of one

of three verbs (point, push, hit) followed by one of
six nouns (red, left, blue, center, green, right).
The meanings of these 18 possible sentences are given
in terms of fixed correspondences with the 9 behavioral
categories (Figure 2). For example, “point red” and
“point left” correspond to POINT-R, “point blue”
and “point center” to POINT-B, and so on.
In these correspondences, “left,” “center,” and

“right” have exactly the same meaning as “red,”
“blue,” and “green” respectively. These synonyms are
introduced to observe how the behavioral similarity af-
fects the acquired linguistic semantic structure.



"point blue"

"point left"

"point red"

"point center"

"point green"

"point right"

POINT-R

POINT-G

POINT-B

"push red"

"push left"

"push blue"

"push center"

"push green"

"push right"

PUSH-R

PUSH-G

PUSH-B
"hit blue"

"hit right"

"hit center"

"hit green"

"hit red"

"hit left"
HIT-R

HIT-B

HIT-G

Figure 2: The correspondences between sentences and behav-

ioral categories. For each behavioral category, there are two

corresponding sentences.

3. Proposed Model

Our model employs two RNNs with parametric
bias nodes (RNNPBs) (Tani, 2003, Tani and Ito, 2003,
Ito and Tani, 2003) in order to implement a linguis-
tic module and a behavioral module (Figure 3).
The RNNPB, like the conventional Jordan-type RNN
(Jordan and Rumelhart, 1992), is a connectionist model
for learning time sequences. The linguistic module
learns the above sentences represented as time sequences
of words (Elman, 1990), while the behavioral module
learns the behavioral sensory-motor time sequences of
the robot. To acquire the correspondences between the
sentences and behavioral sequences, these two modules
are connected to each other by using the parametric bias
binding method. Before discussing this binding method
in detail, we introduce the overall architecture of RN-
NPB and both modules.

Linguistic Module

Interaction via parametric binding method

Behavioral Module

word input
nodes 

parametric bias
 nodes

context nodes

word prediction 
output nodes

sensory-motor
 input nodes

parametric bias
 nodes

context nodes

sensory-motor
prediction output

nodes

Figure 3: Our model is composed of two RNNs with paramet-

ric bias nodes (RNNPBs), one for a linguistic module and the

other for a behavioral module. Both modules interact with

each other during the learning process via the parametric bias

method introduced in the text.

3.1 RNNPB

The RNNPB has the same neural architecture as the
Jordan-type RNN except for the PB nodes in the input
layer (c.f., each module of Figure 3). Unlike the other
input nodes, these PB nodes take a specific constant
vector throughout each time sequence, and are employed
to implement a mapping between fixed-length vectors
and time sequences.
Like the conventional Jordan-type RNN, the RNNPB

learns time sequences in a supervised manner. The dif-

ference is that in the RNNPB, the vectors that encode
the time sequences are self-organized in PB nodes dur-
ing the learning process. The common structural prop-
erties of all the training time sequences are acquired as
connection weight values by using the back-propagation
through time (BPTT) algorithm, as used also in
the conventional RNN (Jordan and Rumelhart, 1992,
Rumelhart et al., 1986). Meanwhile, the specific proper-
ties of each individual time sequence are simultaneously
encoded as PB vectors (c.f., (Miikkulainen, 1993)). As
a result, the RNNPB self-organizes a mapping between
the PB vectors and the time sequences.
The learning algorithm for the PB vectors is a variant

of the BPTT algorithm. For each time sequence, the
back-propagated errors with respect to the PB nodes are
accumulated for all time steps to update the PB vectors.
Formally, the update rule for the PB vector pxi encoding
the i-th time sequence xi is given as follows:

δ2pxi =
1
li

li−1∑

t=0

errorpxi
(t) (1)

δpxi = ε · δ2pxi + η · δpold
xi

(2)

pxi = pold
xi

+ δpxi . (3)

In equation (1), the update of PB vector δ2pxi is ob-
tained from the average back-propagated error with re-
spect to a PB node errorpxi

(t) through all time steps
from t = 0 to li − 1, where li is the length of xi. In
equation (2), this update is low-pass filtered to inhibit
frequent rapid changes in the PB vectors.
Here, we introduce an abstracted operational notation

for the RNNPB to facilitate a later explanation of our
proposed method of binding language and behavior. Af-
ter successfully learning the time sequences x1, · · · , xN ,
the RNNPB can generate a time sequence xi from its
corresponding parametric bias pxi . By applying an op-
erator RNNPB, the generation of xi is described as
follows:

RNNPB(pxi) → xi, i = 1, · · · , N. (4)

We note here that the actual generation process of a
time sequence is implemented by iteratively utilizing the
RNNPB with input vectors for each time step. Both
the environmental sensory information and the internal
prediction of the RNNPB are employed as input vectors
depending on the required functionality of the module.
Furthermore, the RNNPB can be used not only for

sequence generation processes but also for recognition
processes. For a given sequence xi, the corresponding
PB vector pxi can be obtained by using the update rules
for the PB vectors (equations (1) to (3)), without updat-
ing the connection weight values. This inverse operation
for generation is regarded as recognition, and is hence
denoted as follows:

RNNPB−1(xi) → pxi , i = 1, · · · , N. (5)



The other important characteristic nature of the RN-
NPB is that the relational structure among the training
time sequences can be acquired in the PB space through
the learning process. This generalization capability of
RNNPB can be employed to generate and recognize un-
seen time sequences without any additional learning. For
instance, by learning several cyclic time sequences of dif-
ferent frequency, novel time sequences of intermediate
frequency can be generated (Ito and Tani, 2003).

3.2 Linguistic Module

The linguistic module learns the sentences shown in sec-
tion 2to acquire the underlying syntactic structure. The
sentences are represented as a time sequence of words,
which starts with a fixed starting symbol. Each word
is locally represented, such that, each input node of the
module corresponds to a specific word and only one in-
put node takes 1.0 while the others take 0.0. The mod-
ule has 10 input nodes for each of 9 words (point, push,
hit, red, left, blue, center, green, and right) and
a starting symbol. The module also has 6 parametric
bias nodes, 4 context nodes, 50 hidden nodes, and 10
prediction output nodes. This representation is almost
the same as in Elman’s previous work (Elman, 1990).
However, the acquired dynamics shows a different char-
acteristic nature.
Elman’s model predicts a probabilistic distribution of

the next words. Therefore, the prediction output can
be a probabilistic superposition of word vectors. In con-
trast, our linguistic module can deterministically predict
the next word by utilizing a given PB vector. Recall that
a PB vector encodes a specific sentence by means of equa-
tion (4). Thus, RNNPB acquires properties of specific
sentences in addition to common syntactic properties of
sentences. We’ll see the role of this characteristic nature
in treating the meaning of a sentence in a later section.

3.3 Behavioral Module

The behavioral module learns the time sequences of
sensory-motor vectors involving the robot’s behaviors
presented in section 2.After successfully learning them,
the module generates motor commands and a prediction
of the sensory image at the next time step from the cur-
rent sensory-motor vector (Tani, 1996).
The robot can generate behavior by iteratively utiliz-

ing the module with changing sensory inputs to generate
motor commands every one-third of a second. A behav-
ioral sequence is thus created by sampling three sensory-
motor vectors per second during a trial of the robot’s be-
havior. Typical behavioral sequences are about 5 to 25
seconds long, and therefore have about 15 to 75 sensory-
motor vectors.
A sensory-motor vector is a real-numbered 26-

dimensional vector consisting of 3 motor values (for an-

gular velocities of 2 wheels and an angle of the arm joint),
2 values from torque sensors (of the wheels and the arm),
and 21 values encoding the visual image. The visual field
is divided vertically into 7 regions, and each region is
represented by (1) the fraction of the region covered by
the object, (2) dominant hue of the object in the region
and (3) the bottom border of the object in the region,
which is proportional to the distance of the object from
the camera1. We note here that the visual information
is not the most important for the acquisition of seman-
tics. It occupies 21 of 26 dimensions in the sensory-motor
vector only due to the characteristic nature of visual in-
formation. All the sensory-motor information is comple-
mentary and interdependent.
The module has 26 input nodes for the sensory-motor

vector, 6 parametric nodes, 4 context nodes, 70 hidden
nodes, 6 prediction output nodes which correspond to 3
motor values, 2 required torque values, and a hue value
for the center region of the visual field. In the actual
behavior generation process, the predicted motor values
are used as the actual motor values at the next time
step. The rest of the values of the sensory vector are
not predicted to reduce the learning time. The module
can enable the robot to generate behavior appropriately
without predicting the entire sensory-motor vector.
It should be emphasized that the behavioral sequences

are not separable. Hence they can not be decomposed
into plausible primitives, unlike the sentences which can
be broken down into words. This implies that no di-
rect correspondences between some parts of behavioral
sequences and certain words can be established. As dis-
cussed in later sections, the correspondences are acquired
in a non-trivial way.

3.4 Parametric Bias Binding Method

In the proposed model, corresponding sentences and be-
havioral sequences are constrained to have the same PB
vectors in both modules. Under this condition, corre-
sponding behavioral sequences can be generated natu-
rally from sentences.
When a sentence si and its corresponding behavioral

sequence bi have the same PB vector, we can obtain bi

from si as follows:

RNNPBB(RNNPB−1
L (si)) → bi (6)

where RNNPBL and RNNPBB are abstracted opera-
tors for the linguistic module and the behavioral module,
respectively.
The PB vector psi is obtained by recognizing the sen-

tence si. Because of the constraint that corresponding
sentences and behavioral sequences must have the same

1For the region in which there is no colored area, the hue takes
a pre-defined constant value 1.0, and the bottom border position
takes 0.0, which designates very far.



PB vectors, pbi is equal to psi . Therefore, we can obtain
the corresponding behavioral sequence bi by utilizing the
behavioral module with pbi . In the same way we can also
obtain the si from bi. Thus, sentences and behavioral
sequences are connected bi-directionally as observed in
the mirror system (Rizzolatti et al., 1996).
The constraint is implemented by introducing an in-

teraction term into part of the update rule for the PB
vectors (equation (3)).

psi = pold
si

+ δpsi + γL · (pold
bi

− pold
si
) (7)

pbi = pold
bi

+ δpbi + γB · (pold
si

− pold
bi
) (8)

where γL and γB are positive coefficients that deter-
mine the strength of the binding. Equations (7) and
(8) are the constrained update rules for the linguistic
module and the behavior module, respectively. Under
these rules, the PB vectors of a corresponding sentence
si and behavioral sequence bi attract each other.
Actually, the corresponding PB vectors psi and pbi

need not be completely equalized to acquire a corre-
spondence. The epsilon errors of the PB vectors can
be neglected because of the continuity of PB spaces.

3.5 Generalization of Correspondences

The compositional semantics of a simple language self-
organized in our model is now explained. Originally,
“compositionality” referred to the characteristic nature
of semantics in which the meaning of a sentence can
be represented as a combination of the meanings of the
words. However, for compositional semantics, a substan-
tial requirement is the meaning of an unlearned sentence
can be derived from the meanings of known sentences.
Our model implements compositional semantics with-

out introducing any explicit representations of the mean-
ings of words. We instead regard the model as acquir-
ing compositional semantics when it can generate appro-
priate behavioral sequences from all sentences without
learning all correspondences.
To achieve this, an unlearned sentence and its corre-

sponding behavioral sequences must have the same PB
vector. Nevertheless, the PB binding method only equal-
izes the PB vectors for given corresponding sentences
and behavioral sequences (e.g., equation (7) and (8)).
Implicit binding, or in other words, inter-module gen-

eralization of correspondences, is achieved by dynamic
coordination between the PB binding method and the
intra-module generalization of each module. The local
effect of the PB binding method spreads over the whole
PB space, because each individual PB vector depends
on the others in order to self-organize PB structures re-
flecting the relationships among training data. Consider
the situation in which the linguistic PB vector of “point
red” is perturbed via the PB binding method. To keep
the relationship among sentences, the perturbation of

“point red” is propagated to “point *” and “* red”,
and then spreads over the whole linguistic PB space. A
similar process occurs in the behavioral module.
Thus, the PB structures of both modules closely in-

teract via the PB binding methods. Finally, both PB
structures converge into a common PB structure, in
which the structures of both sentences and behavioral
sequences are unified. Under the condition that both
modules share a common PB structure, all correspond-
ing sentences and behavioral sequences then share the
same PB vectors automatically.

4. Experiments

To observe self-organization of the compositional seman-
tics of language based on the behavioral experiences of a
robot, we designed three experiments. Here, we briefly
explain each experiment.
In experiment I, only the linguistic module was em-

ployed to investigate the acquisition of the pure syntac-
tic structure of language. The module acquired the com-
plete syntax by learning 14 of the 18 possible sentences.
In experiment II, only the behavioral module was em-

ployed to investigate the acquisition of the pure em-
bodied structure of the behaviors. The module learned
sensory-motor sequences of all nine behavioral categories
in a supervised manner.
To generate behaviors robustly, the behavioral module

needs to acquire not the behavioral trajectories them-
selves but the functionality to generate motor com-
mands coupled with the environment. Thus, 10 different
sensory-motor sequences were given for each behavioral
category, and a total of 90 training sequences were gen-
erated through human guidance. To differentiate these
sequences, the positions of the objects in the environ-
ment were slightly varied for each generated sequence.
The variation was at most 20 percent of the distance be-
tween the starting position of the robot and the original
position of each object in every direction.
Finally, in experiment III, both modules were em-

ployed to investigate the acquisition of the compositional
semantics. As in the previous experiment, the linguis-
tic module learned 14 of the 18 sentences and the be-
havioral module learned the behavioral sequences of the
nine categories. For each sentence, five different pairs
of sentences and the corresponding behavioral sequences
were learned. Thus, the linguistic module learned 70
sentences, and the behavioral module learned 70 behav-
ioral sequences with binding and 20 without binding. In
addition, the behavioral module learned the same 90 be-
havioral sequences without binding.

5. Results and Analysis

The results of the last experiment showed that the com-
positional semantics of a simple language could be ac-



quired by generalizing the correspondences between sen-
tences and behavioral sequences in the proposed model.
By employing the acquired semantics, unlearned sen-
tences could be recognized and understood in order to
generate appropriate behaviors.
This generalization was achieved by sharing a common

PB structure between modules. In the following analysis,
we show that this common structure possesses (1) the
combinatorial properties of the pure linguistic structure
and (2) a metric based on the similarities of behavioral
sequences from the pure behavioral structure.

5.1 Linguistic Module: Syntactic Structure

In this section we analyze the results of experiment I,
in which only the linguistic module learned. The fi-
nal averaged output error of each node was 0.0060 after
50000-step learning. Analysis of the linguistic module
reveals two important properties: (1) acquisition of syn-
tax through the process of generalizing sentences, and
(2) the structure of PB space, which reflects the combi-
natorial structure of the sentences.
In this experiment, 14 of the 18 two-word sentences

were employed as training sentences. The four remain-
ing sentences, “point green”, “point right”, “push
red”, and “push left” were used to evaluate the intra-
module generalization.
The linguistic module acquired the underlying syn-

tax from the given sentences. This was confirmed by
the fact that the module could correctly generate only
grammatical sentences. In other words, the minimized
regeneration error of grammatical sentences (verb-noun)
is much smaller than of ungrammatical 2-word sequences
(verb-verb, noun-verb, noun-noun). For a given 2-word
sequence s, we define the minimized regeneration error
as the total RMS error between s and the regenerated
sequence ŝ, where

ŝ ← RNNPBL(RNNPB−1
L (s)). (9)

Here, it should be noted that the most likely PB vector
encoding s can be obtained by the recognition process.
Therefore, ŝ is the most likely estimation of s in the
generable sequences of the module.
Next, we show the acquired PB space representing the

combinatorial structure of the sentences. Figure 4a is a
plot of the PB vectors obtained by recognizing all the
sentences including the unlearned ones. The PB space
is 6-dimensional, so only two selected parametric nodes
are plotted here2. We can find three congruent sub-
structures for each verb (Figure 4b), and six congruent

2Unlike in figure 6 and figure 7, we did not employ the conven-
tional principal component analysis (PCA) method to determine
the axes. The plot projected on the surface obtained by PCA
is not suitable for seeing congruent sub-structures because each
sub-structure is plotted on a line.

sub-structures for each noun (Figure 4c)3.
The congruency of the sub-structures for verbs and

nouns represents the combinatorial structure of the sen-
tences. This means that the words included in a sentence
determine the PB vector of the sentence. For example,
the PB vector of “push green”must be on the cross-over
point between sub-structures for push and green. In ad-
dition, the PB vectors of the unlearned sequences take
part in these sub-structures, and this supports intra-
module generalization.

5.2 Behavioral Module: Behavioral Similarity

In this section, we analyze the results of experiment II,
in which only the behavioral module learned. The final
averaged output error of each output node was 0.012
after 50000-step learning.
After successful learning, the robot can generate the

specified behavior regardless of the arrangement of the
objects so long as the red, blue, and green objects are
placed from the left to the right (Figure 5). The behav-
ioral module generalizes behavioral sequences as func-
tions which generate motor commands depending on the
current sensory images, and therefore the robot can gen-
erate appropriate behavioral trajectories even in a noisy
environment.

(a) (b) (c)

Figure 5: These three trajectories (a, b, and c) show that the

robot could regenerate PUSH-G behavior regardless of the

position of the objects. The robot could regenerate behav-

ioral sequences appropriately so long as the red, blue, and

green objects were placed in order from the left to the right,

and the robot could see the target object at the starting po-

sition. This means that the behavioral module learned the

given behavioral patterns by acquiring appropriate sensory-

motor functions. The thick black lines represent trajectories

of the center of the robot, and the thin black lines represent

trajectories of the tip of the arm.

Although no combinatorial structure among the be-
havioral categories could be seen in the acquired struc-
ture of the behavioral module, we did find a metric re-
flecting the similarity of behavioral sequences (Figure 6).
In this figure, the 6-dimensional PB vectors acquired at

3You can find similar diagrams in “Cours de linguistique
générale (de Saussure, 1966).”
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the learning phase was projected onto a surface which
maximizes the deviation of the plots using the conven-
tional principle component analysis (PCA) method.
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Figure 6: A plot of the behavioral sequences in the PB space

acquired without binding. The large plots show the averaged

PB vectors for each behavioral category. The 6-dimensional

PB space was projected onto a surface that maximizes the

deviation of the plots by using the PCA method. The accu-

mulated contribution ratio of the two axes is 70%.

As nine clusters were observed, corresponding to the
nine behavioral categories, we can conclude a metric
based on the behavioral categories is internally repre-
sented in the PB space. This was confirmed by an addi-
tional experiment, in which it was shown that the robot

could robustly regenerate the behavioral trajectory of
each behavioral category using a PB vector value from
the corresponding cluster.
We could not find a combinatorial arrangement of the

behavioral clusters differing from the linguistic PB space
shown in section 5.1. In the plot of the averaged PB vec-
tor over each behavioral category, this non-combinatorial
arrangement is clearly observed (see large plots in figure
6). For example, it is not possible to estimate the PB
vector of PUSH-G from the relationship among the PB
vectors of PUSH-B, HIT-G and HIT-B. This confirms
that the PB structure reflecting the behavioral sensory-
motor sequences has no combinatorial property.

5.3 Unified Structure

In this section, we analyze the results of experiment III,
in which we combined the linguistic and behavioral mod-
ules by using the PB binding method to learn the sen-
tences and behavioral sequences simultaneously. The fi-
nal averaged output error of each node was 0.0091 for
the linguistic module, and 0.025 for the behavioral mod-
ule after 50000-step learning. The analysis reveals that
the PB binding method could fill an essential role in
self-organizing the compositional semantics of language
through the behavioral experiences of the robot.
As mentioned in section 4,the training data for this

experiment did not include all the correspondences.
Four sentences (“point green”, “point right”, “push
red”, and “push left”) were not included in the train-
ing data for the linguistic module. As a result, although
the behavioral module was trained with the behavioral
sequences of all behavioral categories, those in two of



the categories, whose corresponding sentences were not
in the linguistic training set (POINT-G and PUSH-R),
could not be bound (c.f., Figure 2).
The most important result was that these dangling

behavioral sequences could be bound with appropriate
sentences. That is to say, the resulting semantics could
recognize all four unlearned sentences and properly gen-
erate the corresponding behaviors. This means that both
modules acquired a common PB structure by generaliz-
ing the given correspondences.
Comparing the PB spaces of both modules shows

that they indeed shared a common structure as a re-
sult of binding. The linguistic PB vectors are com-
puted by recognizing all the possible 18 sentences in-
cluding 4 unseen ones (Figure 7a), and the behavioral
PB vectors are computed at the learning phase for all
the corresponding 90 behavioral sequences in the train-
ing data (Figure 7b). The acquired correspondences be-
tween sentences and behavioral sequences can be exam-
ined according to equation (6). In particular, the coin-
cidence of the four unlearned correspondences (“point
green”↔POINT-G, “point right”↔POINT-G, “push
red”↔PUSH-R, and “push left”↔PUSH-R) demon-
strates acquisition of the underlying semantics, or the
generalized correspondences.
The acquired common structure has two striking char-

acteristics: (1) the combinatorial structure originated
from the linguistic module, and (2) the metric based on
the similarity of behavioral sequences originated from
the behavioral module. The interaction between mod-
ules enabled the linguistic PB space (Figure 7a) to si-
multaneously self-organize not only the combinatorial
structure but also the embodied structure. We can see
this embodied structure introduced into the linguistic
PB space as the similarity of the PB vectors of sentences
that correspond to the same behavioral category. For
example, the two sentences corresponding to POINT-R
(“point red” and “point left”) are encoded in sim-
ilar PB vectors. Recall here that such a metric nature
was not observed in experiment I (Figure 4a). All nouns
were plotted symmetrically in the PB space by means of
the syntactical constraints.
At the same time, the combinatorial structure was in-

troduced into the behavioral module (Figure 7b). In
contrast to the behavioral PB space acquired in experi-
ment II (Figure 6), we can find geometric regularity in
the relationships among behavioral categories.
The PB vectors of the unlearned sentences and the cor-

responding behavioral sequences successfully coincided
without binding because of the common structure shared
by both modules. As explained in section 3.5, the struc-
tural unification of both PB spaces is realized by the
local interaction of PB vectors. When a corresponding
sentence and behavioral pattern pair is bound accord-
ing to equations (7) and (8), the original PB structural

regularity of both modules recedes. For example, the
displacement of the linguistic PB vector of “point red”
breaks the congruency reflecting the syntactic relation-
ships among sentences (c.f., Figure 4). In the subsequent
learning process of the linguistic module, all linguistic
PB vectors are updated to recover regularity among sen-
tences according to equations (1) to (3). Thus a local
perturbation introduced by the PB binding spreads over
the whole PB space. We especially note that the learn-
ing process affects the PB vectors for the unlearned sen-
tences owing to the intra-module generalization. Similar
processes are also observed in the behavioral module. As
a result of the iterative interaction between the modules,
they share a common PB structure.
The above observation thus confirms that the embod-

ied compositional semantics was self-organized through
the unification of both modules, which was implemented
by the local PB binding method. We also made experi-
ments with different test sentences, and confirmed that
similar results could be obtained.

6. Discussion and Summary

Our simple experiments showed that the minimal
grounded compositional semantics of our language can
be acquired by generalizing the correspondences between
sentences and the behavioral sensory-motor sequences of
a robot. Our experiments could not examine strong sys-
tematicity (Hadley, 1994), but could address the combi-
natorial characteristic nature of sentences. That is to
say, the robot could understand relatively simple sen-
tences in a systematic way, and could understand novel
sentences. Our 2-word language is very similar to the
language L0 in (Evans, 1981), and the argument about
the compositional semantics of L0 holds true for our lan-
guage as well. Therefore, our results can elucidate some
important issues about the compositional semantic rep-
resentation.
In our experiments, compositionality was imple-

mented in a non-trivial way. The embodied meaning of a
word was implicitly realized in terms of the relationships
among the meanings of sentences based on behavioral
experiences. That is to say, the robot could understand
a sentence by means of a generated behavior as if the
meaning of the sentence were composed of the mean-
ings of the words included in it. Our model does not
require any pre-programming of syntactic information,
such as symbolic representation of word meaning, a pre-
defined combinatorial structure in the semantic domain,
or behavior routines. Instead, the essential structures
accounting for both compositionality and generalization
are fully self-organized in the iterative dynamics of the
RNN, through the structural interactions between lan-
guage and behavior using the PB binding method.
We claim that the acquisition of word meaning and

syntax can not be separated from the standpoint of the
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Figure 7: PB plots of the bound linguistic module (a) and the bound behavioral module (b). Both plots are projections of

the PB spaces onto the same surface determined by the PCA method. Here, the accumulated contribution rate is about 73%.

Unlearned sentences and their corresponding behavioral categories are underlined.

symbol grounding problem (Harnad, 1990). The mean-
ings of words depend on each other to compose the mean-
ings of sentences (Winograd, 1972). Consider the mean-
ing of the word “red.” The meaning of “red” must be
something which combines with the meaning of “point”,
“push” or “hit” to form the grounded meanings of sen-
tences. Therefore, a priori definition of the meaning of
“red” substantially affects the organization of the other
parts of the system, and often results in further pre-
programming. This means that it is inevitably difficult
to explicitly extract the meaning of a word from the
meaning of a sentence.
Our model avoids this difficulty by implementing the

grounded meaning of a word implicitly, in terms of the
relationships among the meanings of sentences based on
behavioral experiences. Thus, the robot can understand
“red” through its behavioral interactions in the designed
tasks in a bottom-up way (Tani, 1996). A similar argu-
ment holds true for verbs. For example, the robot under-
stands “point” through pointing at red, blue, and green
objects. Moreover, it should be noted that the meanings
of nouns and verbs also depend on each other. One can
not understand that a verb takes a noun as its object
prior to the acquisition of semantics.
Next, we focus on generalization in the behavioral

module and its effects on the common semantic struc-
ture. We assume that the meaning of a sentence is rep-
resented as a corresponding category of behavioral pat-
terns. Although clarifying to what extent this assump-
tion is appropriate is an important future goal, this as-
sumption plays an essential role in the self-organization
of a common semantic structure. For example, behav-
ioral generalization (or categorization) enables the lin-
guistic module to learn the semantic similarity of “point
red” and “point left”, which can not be learned from

syntactic properties.
In a separated learning approach, the meaning of a

sentence is represented as a combination of the mean-
ings of words, which are labeled by the words them-
selves. This assumption allows the acquisition of sen-
tence meanings to be translated into two relatively sepa-
rate steps, the acquisition of word meanings and the ac-
quisition of syntax (Kirby and Hurford, 2001). However,
it is difficult to find the correspondence of a word mean-
ing in the spatio-temporal behavioral patterns. This dif-
ficulty could be avoided by introducing an adequate set
of behavioral routines. However it is often a non-trivial
task and tends to result in a significant amount of pre-
programming.
In contrast, our model acquires not just a mere map-

ping between sentences and behavioral patterns. The
PB spaces of both modules (a.k.a., domains of the ac-
quired mapping) acquire the internal structures suitable
for realizing a structural mapping through mutual inter-
action between both modules. As mentioned in section
5.2, the behavioral module learned multiple behavioral
patterns in a generalized manner, and categorized them
with respect to the relationships between sensory images
and motor commands. Therefore, the semantic domain
is self-organized as some sort of a functional space, in
which each function outputs motor commands from var-
ious input sensory information to generate behavioral
patterns in a specific category. This behavioral gener-
alization is important not only to the self-organization
of the common semantic space, but also to realizing ro-
bust generation of behavioral patterns regardless of the
perturbations in the environment.
To the summary, the current study has shown the

importance of generalization of the correspondences be-
tween sentences and behavioral patterns in the acqui-



sition of an embodied language. In future studies, we
plan to apply our model to larger language sets. In the
current experiment, the training set consists of a large
fraction of the legal input space, when compared with
related works. Such a large training set is needed be-
cause our model has no a priori knowledge of syntax and
composition rules. However, we think that our model
requires relatively fewer fraction of sentences to learn a
larger language set, for a given degree of syntactic com-
plexity.
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