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Abstract

The paper proposes a number of models to examine through what mech-

anisms a population of autonomous agents could arrive at a repertoire of

perceptually grounded categories that is sufficiently shared to allow successful

communication. The models are inspired by the main approaches to human

categorisation being discussed in the literature: nativism, empiricism, and

culturalism. Colour is taken as a case study. Although the paper takes no

stance on which position is to be accepted as final truth with respect to hu-

man categorisation and naming, it points to theoretical constraints that make

each position more or less likely and contains clear suggestions on what the

best engineering solution would be. Specifically, it argues that the collective

choice of a shared repertoire must integrate multiple constraints, including

constraints coming from communication.
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1 Introduction

This paper is about how a perceptually grounded categorical repertoire can become

sufficiently shared among the members of a population to allow successful com-

munication. For example, how colour categories like ‘red’ or ‘purple’ may become

sufficiently shared so that one agent from the population can use the word “red” to

get another agent to pick out a red object from a set of coloured objects in a scene.

Our own goal is entirely practical. We want to find out how to design artifi-

cial embodied agents (robots) such that they are able to do this task. Although

the artificial agents might end up with a quite different categorial repertoire com-

pared to human beings, it is intriguing and challenging to investigate under what

circumstances they would arrive at human-like solutions, as this would enable com-

munication with humans. Because the agents will be considered to be autonomous

and distributed, we cannot assume telepathy nor central control. Because the real

world environments in which they will find themselves will be assumed to be open-

ended and unknown at design-time (perhaps the agents are to be sent to a distant

planet), we cannot program into the agents a specific repertoire of categories be-

cause that would make them unable to adapt to new or unknown circumstances.

Moreover it is known to be very difficult, if not impossible, to ground categories

in sensory-motor patterns by hand (Harnad, 1990), so some form of learning or

evolution will be unavoidable.

It seems a good idea to take as much inspiration as possible from categorisation

and naming by humans because that is the only and most impressive natural system

achieving shared perceptually grounded categorisation and communication based on

a rich open-ended repertoire of categories. Moreover if we can generate categorical

repertoires that are similar to those of humans it will make communication between

humans and artificial agents more feasible. The question how a population might

coordinate their perceptually grounded categories and negotiate a shared set of

linguistic conventions to express them is relevant to the computational modeling of

the origins of language and meaning, which is receiving increased attention lately

(Cangelosi and Parisi, 2001; Briscoe, 2002) and has important applications in man-

machine interaction.

With respect to human beings, it is generally acknowledged that human physical
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embodiment plays a significant role. But it is also clear that this does not yet

constrain sufficiently the set of possible categories an agent might utilise to cope

with the world. Three approaches have been suggested to aid the coordination of

categories over and above the constraints given by embodiment:

• Approach 1. Nativism. All humans could be born with the same perceptu-

ally grounded categories, as part of their ’mentalese’. So when children learn a

language, their categorical repertoire is already shared with that of caregivers

and they only have to learn the names of these categories. No influence of

language on category formation is deemed to be necessary. Assuming innate

perceptual categories implies that the neural mechanisms performing cate-

gorisation must be genetically determined and the relevant genes must have

evolved through evolution by natural selection. This position is historically as-

sociated with rationalism (Fodor, 1983) and often found explicitly or implicitly

in evolutionary psychology (Pinker and Bloom, 1990; Durham, 1991; Shepard,

1994). Adopting this position for the design of artificial agents means that we

must simulate genetic evolution (Holland, 1975; Goldberg, 1989; Koza, 1992;

Fogel, 1999). Agents could be given a genome that determines (through some

developmental process) how they categorise the world. We could then use

success in communication as the selection pressure acting in artificial evolu-

tion, and after some period of time, agents should have zoomed in on a shared

set of perceptually grounded categories adequate for communication. If the

environment changes or imposes new challenges, genetic evolution could still

help the population to adapt.

• Approach 2. Empiricism. All human beings share the same learning

mechanisms, so given sufficiently similar environmental stimuli and a similar

sensory-motor apparatus they will arrive at the same perceptually grounded

categories reflecting the statistical structure of the real world. Hence the ac-

quisition of language is again a matter of learning labels for already known

shared categories and there is no influence of language on category formation.

This view is common among ’empiricist psychologists’ (Elman et al., 1996)

and researchers in inductive symbolic machine learning (Quinlan, 1993) or

connectionism (Rumelhart and McClelland, 1986). If we adopt this approach,
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the agents will need to have some inductive learning mechanism with which

they can derive the perceptually grounded categories relevant in their envi-

ronment, but it is not necessary to introduce a genetic basis for the categories

and hence the genetic structure of the agents can be much simpler. Each agent

now needs neural networks, or functionally equivalent clustering algorithms,

to perform statistical learning, as well as networks that learn the associa-

tion between names and categories. To guarantee continued adaptation to an

open environment, agents would need to regularly update their repertoire by

performing induction on new incoming stimuli.

• Approach 3. Culturalism. Although human sensory systems, learning

mechanisms, and environments are shared, there might still be sufficiently

important degrees of freedom left so that categories are not yet sufficiently

shared within a population to support communication. Culturalism there-

fore argues that language communication (or other forms of social interaction

where perceptual categories play a role) is required to further coordinate per-

ceptual categorisation by providing feedback on how others conceptualise the

world. So language now plays an additional causal role in conceptual devel-

opment (e.g. Gumperz and Levinson, 1996; Bowerman and Levinson, 2001;

Gentner and Goldin-Meadow, 2003).

This cultural hypothesis is favoured by those advocating a ‘cultural psychol-

ogy’ (Tomasello, 1999) and those viewing language and its underlying concep-

tual framework as a complex adaptive system that is constantly coordinated

by its users (Steels, 1997). If this approach is adopted for the artificial agents,

it requires that they are not only given mechanisms to invent or adopt cat-

egories and ways to create and adopt associations between names and cate-

gories, but also ways to align these choices with other agents based on feedback

in communication. The colour categories are now influenced by multiple fac-

tors: embodiment constraints, the history of interactions and the adaptation

after each interaction, and the collective consensus arrived at through negoti-

ation.

There seems no clear consensus in the cognitive science literature on which approach

is most appropriate. We find researchers strongly arguing on the basis of children’s
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early word learning that language acquisition and concept acquisition go hand in

hand (Bowerman and Levinson, 2001), take a long time (Bornstein, 1985; Teller,

1998) and require a strong form of cultural learning (Tomasello, 1999), whereas

others have argued that perceptually grounded concepts are either innate (Shepard,

1994) or acquired prior and independently of language (Harnad, 1990) without direct

linguistic or categorical feedback (Bloom, 2000). So, the engineer is not given a clear

choice for what would be the best blueprint for implementing category formation

and naming by embodied communicating agents.

1.1 A Case Study for Colour

Colour has become a prototypical case study to investigate issues of category sharing

in humans because of the relative ease with which it is possible to gather data

(compared to for instance olfactory or gustatory experience) and because colour is

well understood as a physical phenomenon (Wyszecki and Stiles, 1982). Colour is

of course also one of the primary modes, although surely not the only one, in which

artificial robotic agents interact with the world, given the highly advanced state of

digital camera technology.

Knowledge about the neurophysiology, the psychophysics, and the molecular ge-

netics of colour vision has been increasing steadily (for an introduction see Gegen-

furtner and Sharpe, 1999). In recent years is has become clear that colour perception

is perhaps more variable within normal subjects than previously thought (e.g. Bim-

ler et al., 2004). Results from molecular genetics show that there are several allelic

variants of opsin genes, and that between 15 and 20% of Caucasian females has the

genetic potential to be tetrachromatic instead of trichromatic (Winderickx et al.,

1992; Neitz et al., 1993; Sharpe et al., 1999; Mollon et al., 2003).

The impact of the variation of the neural substrate on colour perception, colour

categorisation and colour naming is still being investigated. But it is another reason

from an engineering viewpoint why it is a good idea to take a closer look at how

humans arrive at shared categories. Fabrication processes of complex artifacts like

robots or cameras are such that there will always be individual differences, partic-

ularly if some form of calibration is involved. So if Nature has found a solution to

enable shared categorisation in communication, even if the perceptual apparatus is
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not exactly the same, then that is very relevant for communicating robots as well.

Psychologists and neurobiologists have been collecting large amounts of data

that could help understand how human beings arrive at shared perceptually grounded

categories for communication. Data supporting a genetic coding of colour categories

are sought by studying the colour categorisation behaviour of new-born children

(Bornstein et al., 1976; Gerhardstein et al., 1999). Data supporting the presence

of learning are sought in colour tests with pre-language children (Bornstein, 1975;

Bornstein et al., 1976; Davies and Franklin, 2002) and in experiments where indi-

viduals from one culture learn the colour categories of another one (Rosch-Heider

and Olivier, 1972; Roberson et al., 2000).

Anthropologists have also tried to collect empirical data for whether all human

beings in the world, whatever their language or culture, use exactly the same colour

categories (universalism) or whether there are significant differences (relativism). If

colour categorisation is universal then this is of course a very strong indication that

either it must be genetically determined due to constraints on physiology (just as

each of us has five fingers) or innate categorisation, or that there is enough statistical

structure in the real world so that neural systems performing clustering can easily

pick it out, as empiricists have been suggesting. In that case, it should be straight-

forward to use these universal categories as the basis of robotic implementations as

well.

The anthropological research has been conducted using colour naming tests and

memory tests (Berlin and Kay, 1969; Rosch-Heider and Olivier, 1972; MacLaury,

1997; Davidoff et al., 1999; Kay et al., 2003), as first introduced by Lenneberg and

Roberts (1956):

1. The naming experiments require informants to point to the best example for

one of the ‘basic’ colour words in their language. It has consistently been

found that subjects are not only capable of doing this, but that there is also a

large consensus in a language community about what the focal point is for a

particular word, even though there is less of a consensus about the boundaries

of its colour region (Berlin and Kay, 1969).

2. The memory experiments require informants to pick out a colour sample seen

earlier. It has been found that samples which are closer to focal points are
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better remembered than those closer to the boundaries (Rosch-Heider, 1971,

1972).

Berlin and Kay (1969) based on data of naming experiments and memory exper-

iments have argued strongly that the focal points of colour categories are shared by

all languages and cultures of the world. Recent analysis by Kay and Regier (2003)

of data gathered during the World Color Survey (Kay et al., 2003), confirm that

there are cross-linguistic tendencies in colour naming in different languages. Named

colour categories of languages across the world appear to cluster at points that tend

to be described by English colour names. But researchers like (Davidoff et al., 1999;

Roberson et al., 2000; Davidoff, 2001), have presented evidence through the same

sort of memory and naming tests that the focal points of English and Berinmo

(a Papua New Guinea tribe) are substantially different and that Rosch-Heider’s

data has been misinterpreted. So despite the abundance of data, no consensus

has emerged in the universalism versus relativism debate, on the contrary, colour

categorisation seems one of the most controversial areas of cognitive science (e.g.

Saunders and van Brakel, 1997; Lucy, 1997; Sampson, 1997).

It is therefore not surprising that no consensus has been reached on how the per-

ceptually grounded categories underlying language communication become shared.

The nativist view on colour has been strongly defended, among others, by (Berlin

and Kay, 1969; Kay et al., 1991; Shepard, 1992; Pinker, 1994; Kay and Maffi, 1999)

based on the identification of universal trends in colour categorisation. Language

plays no role in this. As Pinker puts it: “The way we see colors determines how

we learn words for them, not vice versa.” (Pinker, 1994, p. 63). Other researchers

have strongly defended an empiricist position, by trying to find correlations between

specific environments and the colour categories of certain communities (Van Wijk,

1959), or by investigating how clustering algorithms can pick out the statistical dis-

tributions in natural colour samples (Yendrikhovskij, 2001). The culturalist view

on colour categorisation and colour naming has its own defendants, see e.g. (Lucy

and Shweder, 1979; Gellatly, 1995; Davies and Corbett, 1997; Davies, 1998; Dedrick,

1998; Jameson and Alvarado, 2003), among others.
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1.2 Objectives

The present paper does not take a stance on whether a nativist, empiricist or

culturalist approach is the most appropriate one for interpreting the human data.

It focuses on the pragmatic goal of finding the best way to design autonomous

embodied agents and leaves it up to future debate what this implies for human

categorisation and naming.

Our position is that multiple sources of constraints act on perceptually grounded

colour categories, and (at least in the case of artificial agents) all of them play a

role:

1. Constraints from embodiment: Although there are more variations in the hu-

man visual sensory apparatus than usually believed (see references given ear-

lier), there are of course still a large number of similarities in terms of what

part of the spectrum human retinal receptors are sensitive to, what percep-

tual colour appearance model is used, what low level signal processing takes

place (for example to calibrate perception to context), etc. Moreover there

are also constraints from the kinds of neural processes that are used for cat-

egorisation itself, and they show up in human categorisation behaviour, for

example through the importance of focal points. Nobody doubts that these

constraints help to shape the possible repertoire of perceptually grounded

colour categories and it has recently become possible to incorporate many of

these constraints in artificial vision systems. We will do so in all the experi-

ments reported in this paper.

2. Constraints coming from the world: Although there is significant variation in

the environments in which human beings find themselves (compare growing

up on the North Pole or in the rainforest), there are obviously considerable

similarities. Biological organisms must be adapted to the environment to reach

viable performance and this is also true for categorisation. It implies that the

statistical structure of the environment has to be a second force shaping the

possible categorical repertoire. We can achieve this for artificial agents by

giving them stimuli that are taken from real world scenes. Of course, if they

have to be adapted to another environment (like Mars) they would have to
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be given stimuli from that environment.

3. Constraints coming from culture: We want to examine the hypothesis that

embodiment and statistical regularity of the environment is not enough to

achieve sufficient sharing for communication and that cultural constraints also

play a role. Cultural constraints are collective decisions made by a popula-

tion. For example, one community may decide to drive on the left side of the

road whereas another one may decide to drive on the right side. Speakers of

English have agreed to call a particular hue “blue” whereas they could just

as well have used a different word like “plor”. Cultural choice is also avail-

able with respect to the perceptually grounded categories that are used in

conventionalised communication. Instead of making a categorical distinction

between blue and green, a population may decide to combine these into a

single category, as indeed many cultures have done. This implies that cul-

tural constraints should be a third force, shaping the perceptually grounded

categorical repertoire used for communication.

The first source of constraints is preferred by nativists, and in some extreme

versions of nativism, it is argued that these constraints are enough to explain the

(universally) shared human colour categories underlying language. This can only

be when not only physiological constraints (such as those due to the retinal recep-

tors) are genetically determined but also the colour categories themselves, in other

words that the neural microcircuits performing colour categorisation are directly

laid down under genetic control. The second source of constraints is preferred by

empiricists. They accept of course that there are constraints from embodiment, but

these constraints still leave many degrees of freedom so that the categories still need

to be shaped for the most part by the environment. Moreover, they do not believe

that additional cultural constraints are necessary. The third source of constraints

is considered to be crucial by culturalists, even though they do not deny that em-

bodiment and structure in the environment may also play a role. Their position

has been the most controversial, perhaps because it is less obvious by what kind of

process cultural constraints could play a role. There is a chicken and egg problem:

to name a colour category it seems that this category must already exist and be

shared, so how can naming influence the shaping of the category?
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In order to tease apart the contributions from each source of constraints we

have constructed a series of theoretical models and compared their behaviour. Be-

sides the utility for designing artificial autonomous agents, we believe that this

effort is also valuable for those exploring human (colour) categorisation and nam-

ing. Theoretical models make a particular view explicit and this makes it easier to

structure the debate for or against a certain position. Theoretical models bring out

the hidden assumptions of an approach, particularly with respect to the cognitive

mechanisms that are required and the information they need. Moreover they help

to assess the plausibility of certain assumptions, for example with respect to the

time that is required to acquire categories or propagate word-meaning pairs in a

population. Finally, theoretical models may suggest new experiments for empirical

data collection.

Theoretical investigations of the sort undertaken in this paper are very common

in many sciences but still surprisingly controversial for psychologists. For exam-

ple, there is now a large body of game theoretic models which have revolutionised

economics. These models are theoretical in the sense that they examine the conse-

quences of certain assumptions about the structure of interactions between agents

or the strategies they follow, for example they may show the presence or absence of

a Nash equilibrium (Gibbons, 1992). Usually it is not possible to collect the neces-

sary empirical data to make the model predictions empirically grounded, but still

a lot can be learned about the possibility of certain outcomes or their plausibility.

For example, they might help to infer the effects of certain consumer behaviours

on specific business models, without evidence whether consumers actually exhibit

these behaviours. Similar theoretical approaches are now widespread in biology.

For example, it has been shown that certain observed phenomena, like cycles in

predator-prey populations, are due to the mathematical properties of the underly-

ing dynamical system and not to the specific biological instantiation (May, 1986).

The approach in this paper is in the same line and uses the same methodological

tools. The verbal interactions between the agents are modeled as multi-agent deci-

sion problems, called discrimination games (to categorise the world) and language

games (to communicate with others using these categories), and our main goal is

to understand what properties follow from the dynamical system implied by the
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structure of the interactions and the strategies of the agents.

1.3 Overview

Because nobody doubts that embodiment constrains perceptually grounded cate-

gories, we have first of all attempted to integrate as well as possible the constraints

coming from the physics of light interacting with objects in the real world and the

constraints coming from the perceptual apparatus itself, as captured in widely ac-

cepted colour appearance models, such as the CIE L∗a∗b∗ space. We will also use

the same neural networks for categorisation (radial basis function networks) in each

of our models. These networks capture the prototypical nature of colour categori-

sation, as demonstrated by the naming and memory experiments, and are widely

believed to be realistic models of the behaviour of biological neural networks. All

our models incorporate these same embodiment constraints.

1. To explore position 1 (nativism) we introduce a model of genetic evolution

capable of evolving “genes” for focal colours and show how these genes can

become shared in a population. Notice that this represents the extreme na-

tivist position arguing that not only embodiment but also the perceptually

grounded categories themselves are innate.

2. To explore position 2 (empiricism) we introduce agents using an inductive

learning algorithm in the form of a neural network capable of acquiring colour

categories, and examine whether colour categories become shared among in-

dividual learners when the physiological and environmental constraints are

identical.

3. To explore position 3 (culturalism) we strongly couple category formation to

the situated use of colour categories in verbal communication and investigate

if this enables a population to reach a shared categorical repertoire.

We not only examine for each of these models whether a shared repertoire of

categories emerges but also whether a lexicon expressing these categories can arise

in the population, and whether categorical sharing is sufficient for successful com-

munication. This allows us to confront the ‘chicken-and-egg’ problem alluded to
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earlier: How can a self-organising lexicon influence an emergent adaptive categori-

cal repertoire and vice-versa?

The semiotic dynamics generated in the interaction between perception, cat-

egorisation, and naming is too complex (in a mathematical sense) to be solved

analytically, so we examine its properties through computer simulations, starting

from real world physical colour data captured by a multi-spectral camera. The use

of computer simulations for examining the behaviour of complex systems is common

in all the sciences of complexity, including non-linear physics (Nicolis and Prigogine,

1989) or artificial life (Langton, 1995). It is characteristic for the “methodology of

the artificial” (Steels, 2001b) and has been pioneered for colour cognition research

by Lammens (1994), who proposed the first concrete computational models explor-

ing colour categorisation and naming. In order to make the simulations feasible,

cultural constraints will be exercised exclusively through language, even though

language is clearly not the only factor that embodies such constraints. Note that

the use of computer simulations does not imply any stance on whether the brain

is a computer (we believe it is not), just as the use of computer simulations to

make predictive models of the weather does not imply that the weather is seen as

a computer.

In the first batch of experiments (section 3 and 4), the presented colour stim-

uli have no realistic statistical distribution, precisely because we want to examine

whether a population can coordinate its colour categorisation and colour naming

even if there is no chromatic distribution in the data. This therefore forces the

question whether coordination is possible, purely based on a structural coupling

between categorisation and naming processes. The main conclusion is that this is

indeed possible and hence that it is at least plausible that language plays a role

to coordinate the coordination of perceptually grounded categories. Our main con-

tribution here is to solve the chicken-and-egg problem by introducing a two-way

causality between naming and category formation.

Next, in section 5, we consider what happens when there is a statistical dis-

tribution in the samples. This will help us examine whether colour stimuli taken

from real world scenes are sufficiently constraining so that no coupling between

categorisation and naming is required to explain how a population can coordinate
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its repertoire of perceptually grounded categories (either through genetic evolution

or statistical learning). The main conclusion here is that even if the statistical

structure of the world constrains the categories that arise in the agents, it is not

so obvious that the statistical structure of the environment alone can explain the

sharing of perceptually grounded categories. This confirms that three interacting

forces are at work: embodiment, an environment with statistical structure, and

cultural negotiation.

Some conclusions and suggestions for further research end the paper.

2 Components for categorisation and naming

This section introduces the basic components needed for making computational

models of colour categorisation and colour naming: agents, environments, and tasks.

2.1 Agents

We define an abstract object called an agent. A set of agents is called a population.

We use small populations in this paper (typically 10 agents) because we know from

other work that the mechanisms being used in our models scale up to populations

of thousands of agents (Steels et al., 2002). All agents have the same architecture

for perception, categorisation, and naming but each has unique associated informa-

tion structures, representing its repertoire of categories and its lexicon. The agent’s

architecture is intended to model what we know today about human colour percep-

tion, categorisation and naming. Agents cannot use information structures of other

agents, so they have no telepathic access to the categories or lexicons used by other

agents. Neither do agents have a global view of what words are used by others.

They have only local information coming from the interactions in which they were

involved themselves. There is no central authority specifying how the agents should

conceptualise reality or speak. Agents only interact by exchanging words and by

non-verbal gestural feedback (pointing). The agent population is an example of

a distributed multi-agent system (Ferber, 1998), commonly used in artificial life

simulations.

Next we define verbal interactions between agents. An interaction has a commu-
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nicative goal, namely the speaker draws attention of the hearer to an object in the

environment. After each interaction, agents adapt their internal states to become

more successful in the future. So the framework of evolutionary game theory, which

has been used to model genetic and cultural evolution in biology (Maynard Smith,

1982), applies and we therefore call the interactions language games. The notion of

a language game resonates with the philosophical work of Wittgenstein (1953) who

emphasised the situated contextual nature of word meaning. Indeed, the agents in

our simulations are grounded, in the sense that their symbols are coupled to the

environment through a sensory apparatus (Harnad, 1990), embodied, because the

apparatus and subsequent processing reflects human physiology (Kaiser and Boyn-

ton, 1996), situated, because the games are embedded in the context of communica-

tive acts in a shared real world setting (Suchman, 1987), and cultural, because the

agents are part of a population with recurrent interactions between the members

(Sperber, 1996).

Genetic evolution is modelled by introducing change in the population. At

regular times, some of the agents are replaced by offspring, i.e. mutated versions of

themselves, depending on their success in colour categorisation and colour naming.

This is in the spirit of research in genetic algorithms and evolutionary computing

(Holland, 1975; Goldberg, 1989; Koza, 1992; Fogel, 1999).

Individualistic learning is modelled by a process by which the categorical reper-

toires and lexicons of the agents change in interaction with the environment but

without interactions among the agents. This is in the spirit of connectionist learning

(Elman et al., 1996). Cultural learning is modelled by using a similar connectionist

learning algorithm but now with cultural constraints, exercised through language,

playing an additional role (Steels, 2001a).

2.2 The environment

The environment consists of 1269 matte finished Munsell colour chips (Munsell,

1976), familiar from anthropological experiments. We use the spectral energy dis-

tribution E(λ) reflected by physical chips as measured by a spectrometer from 380

to 800 nm in 1 nm steps (Parkkinen et al., 1989). So the simulations do not use

monochrome colour samples nor random values in RGB or another colour space,
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but start from realistic colour data. In each game, the agent(s) are presented with

a number of samples randomly drawn from the total set. This set constitutes the

context of the game. One of the samples is chosen as the topic. Choice of topic and

context reflect the ecological conditions of the environment.

The environmental complexity is experimentally controlled by changing the total

number of colour samples and the similarity between the samples. The ecological

complexity is controlled by varying the properties of the context: the average num-

ber of samples in a context and the (shortest) distance from the topic to the other

samples in the context. For example, fine shades of orange may constitute the dif-

ference between edible and non-edible mushrooms. Mushroom eaters will therefore

need to acquire the ability to distinguish these fine shades of orange. If the distinc-

tion is much clearer (for example because all edible mushrooms are orange and all

non-edible ones are white), the agents’ colour distinctions can be less fine-grained,

even though the same diversity of orange shades might still occur in the environ-

ment. In general, when there are more samples and they are closer together, finer

categorical distinctions are needed and the lexicon can be expected to contain more

colour words. This dependency between environmental and ecological complexity

on the one hand and cognitive complexity on the other is a property of the proposed

models but is not further discussed in this paper (see Belpaeme, 2001).

2.3 Agent architecture

2.3.1 Perception

All agents are assumed to have exactly the same perceptual process. Perception

starts from a spectral energy distribution S(λ) and is converted into tristimulus

values in CIE L∗a∗b∗, which is considered to be a reasonable model of human

lightness perception (L∗), and the opponent channels red-green (a∗) and yellow-blue

(b∗). This colour coding handles certain aspects of the colour constancy problem

as well (Fairchild, 1998, p. 219).

The spectral energy distributions are converted to XYZ coordinates using the

following equations.
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X = k

∫
S (λ) x̄ (λ) dλ

Y = k

∫
S (λ) ȳ (λ) dλ

Z = k

∫
S (λ) z̄ (λ) dλ (1)

x̄(λ), ȳ(λ) and z̄(λ) are the 1931 2◦ CIE colour matching functions, describing

how an average observer reacts to chromatic stimuli1. The CIE L∗a∗b∗ colour

coding is computed directly from these CIE XYZ values using standard formulae

(Wyszecki and Stiles, 1982, p. 166).

Obviously the realism of this model can be improved. For example, Lammens

(1994) has started from the neural response functions proposed by (De Valois and

De Valois, 1975; De Valois et al., 1966) and showed how tristimulus values in another

colour space can be derived. This space, though carefully constructed and founded

on neurophysiological data, is not as suited for colour categorisation as is the CIE

L∗a∗b∗ space (Lammens, 1994, p. 142). So for categorising colour perception, CIE

L∗a∗b∗ remains a good choice2.

2.3.2 Categorisation

Categorisation is based on the generally accepted notion that colours have proto-

types and a region surrounding each prototype (Rosch, 1978) with fuzzy boundaries

(Kay and McDaniel, 1978). Categorisation can therefore be modelled with adaptive

networks, a modification of radial basis function networks (Medgassy, 1961), which

are widely assumed to have a high biological plausibility (Hassoun, 1995). Input to

the network is a tristimulus x in CIE L∗a∗b∗ space.

An adaptive network consists of locally reactive units. These units have a peak

response at a central value m and an exponential decay around this central value.

The regional extent around m is determined by a normalised Gaussian function, of

which the width3 is defined by parameter σ, thus giving rise to the magnet effect

typically found in categorical perception (Harnad, 1990). The behaviour of each

unit j is defined as follows:
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zj (x) = e
− 1

2

N∑
i=1

( xi−mji
σ

)2

(2)

Rather than using a single decision unit, as in the work of Lammens (1994), an

adaptive network is used for each colour category4. Each network contains weighted

locally reactive units, so that colour regions do not have to be symmetrical - as is the

case with only a single decision unit. Each unit in the network reacts to an incoming

stimulus x, as in eq. (2). The reaction of an adaptive network for category k with

J locally reactive units has the following form, familiar from perceptron-like feed

forward networks (Minsky and Papert, 1969), where wj is a weight factor with a

range between 0 and 1.

yk (x) =
J∑

j=1

wjzj (x) (3)

Each colour category has its own adaptive network and all networks consider the

input in parallel. The ‘best matching’ colour category b for a given tristimulus value

x is determined by a winner-take-all process based on the output of each categorical

network.

∀c ∈ C : yb(x) ≤ yc(x) (4)

The various components of the adaptive networks are summarised in figure 1.

Physiological evidence for locally reactive units in the domain of vision have been

found in the macaque monkey visual cortex (Komatsu et al., 1992) and these neurons

have been modeled by Lehky and Sejnowksi (1999).

2.3.3 Naming

Naming is modelled with an associative memory network L. One word form can

be associated with several categories (because the agent must be able to maintain

multiple hypotheses about what the meaning is of a word) and one category with

several word forms (because the agent must be able to maintain multiple hypotheses

about which word to use for a specific meaning). Given a set C of n categories and

a set F of m word forms, this network consists of n × m relations, each having
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Figure 1: Categorisation is performed by an adaptive network consisting of locally
reactive units fully connected to a summing output unit. Each such network corre-
sponds to one colour category.

a strength s ∈ [0.0, 1.0], so that L = C × F × [0.0, 1.0]. Words are randomly

selected from a finite alphabet of syllables. The strength of the association between

a category and a word can be varied, as explained later. When a word form f is

needed for a category c, there is a winner-take-all competition and the word form

with the highest strength wins. Conversely, to find the category given a word form

f , there is again a competition. The category c with the highest strength is taken

as the winner.

2.4 Tasks

We will explore two types of interactions: The first one requires an individual agent

to discriminate a sample (called the topic) from a set of other samples. This means

that the agent must not only categorise all the samples in the context but must also

find a categorisation of the topic which is unique for the topic and does not apply

to any other sample in the context. We call this a discrimination game (Steels,

1996a). The second interaction is between two agents in a shared context playing

the role of speaker and hearer. The speaker chooses the topic, categorises it, using
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a discrimination game, and names the categorisation. The hearer must identify

the topic based on the category name. We call this a guessing game because the

hearer has to guess the object intended by the speaker through verbal means. We

have been using the guessing game in a wide variety of experiments investigating

the origins of language (Steels and Kaplan, 1999; Steels et al., 2002), including

experiments on autonomous mobile robots (Steels, 2001a; Steels and Kaplan, 2002;

Vogt, 2003).

2.4.1 The Discrimination Game

The discrimination game has been chosen so as to introduce the ecological dimension

in the models. As already mentioned, suppose that there are various types of

mushroom which all have similar form and shape but are only distinguishable based

on their colour, and only one type of mushroom is edible. Given a specific situation

with a number of mushrooms on the table, the agent must play a discrimination

game where the topic is the edible mushroom and the other objects in the context are

the non-edible ones. So ecology is concretised through what objects form a context,

and which ones are topics that need to be distinguished. Similar examples could

be given for distinguishing predators or prey based on colour marks, distinguishing

members of the group from outsiders using the colour of clothes, etc. In later

simulations, contexts are chosen randomly and any sample in the context can be

the topic, so there is no strong distinction between environmental constraints (what

stimuli are present in the environment) and ecology (which stimuli are functionally

significant to the agent).

The discrimination game is defined more precisely as follows. An agent has a,

possibly empty, set of categories C. A random context O = {o1, ..., oN} is created

and presented to the agent. It contains N colour stimuli oi of which one is the topic

ot. These colour stimuli take the form of spectral distributions of energy against

wavelength. The topic has to be discriminated from the rest of the context. The

game proceeds as follows.

1. Context O = {o1, ..., oN} and the topic ot ∈ O are presented to the agent.

2. The agent perceives each object oi and produces a sensory representation for

each object: Soi = {soi
1 , ..., soi

N}. The sensory representation is the CIE L∗a∗b∗
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value computed from the spectral distribution as discussed earlier.

3. For all N sensory representations, the ‘best’ category cSo ∈ C is found, ac-

cording to

cSo = arg max
C

(yc (So)) (5)

yc is the output of the adaptive network belonging to category c, and So is

the sensory input for an object o.

4. The topic ot can be discriminated from the context when there exists a cate-

gory whose network has the highest output for the topic but not for any other

sample in the context.

count
({

cSo1
, ..., cSoN

}
, cSot

)
= 1 (6)

2.4.2 The Guessing Game

The guessing game has been chosen because it is the most basic language game one

can imagine. It is a game of reference where the speaker wants to get something

from the listener and identifies it through language, as opposed to gestures. Lan-

guage presupposes a categorisation of reality because words name categories and

not individual objects. The ecological relevance of guessing games is obvious. For

example, two people sit around the table on which there are various fruits of the

same form and shape but with different colours. The speaker wants a particular

type of fruit (the topic). She says for example “could you give me the red one”,

whereby the hearer has to apply the category which is the meaning of “red” to the

objects in the context and identify the desired fruit. The meaning of “red” is the

category which discriminates the topic from the other objects in this context. So

the guessing game implies a discrimination game.

The guessing game is more precisely defined as an interaction between two

agents, one acting as the speaker and the other as the hearer. The agents have

an associative memory relating colour categories with colour names. Each associa-

tion has an associated strength. The game consists of the following steps.
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1. A context O = {o1, . . . , oN} is presented to both the speaker and the hearer.

Only the speaker is aware of the topic ot ∈ O.

2. The speaker tries to discriminate the topic from the context by playing a dis-

crimination game. If a discriminating category cs is found the game continues,

otherwise the game fails.

3. The speaker looks up the word forms associated with cs. If no word forms are

found, the speaker creates a new random word form f by combining syllables

from a pre-given repertoire and stores an association between f and cs. On

the other hand, if there are word forms associated with cs, the one with the

highest strength s is selected. The speaker conveys word form f to the hearer.

4. The hearer looks up f in its lexicon. If f is unknown to the hearer, the

game fails and the speaker reveals the topic ot to the hearer by pointing to

it. The hearer then tries discriminating the topic ot from the context. If a

discriminating category is found, the word form f is associated with it; if no

discriminating category is found, a new category is created to represent the

topic and f is associated with it.

5. If the hearer does have the word form f in its lexicon, it looks up the associated

category ch and identifies the topic by selecting the stimulus in the context

with the highest activation for this category ch. The hearer then points to

this sample.

6. The speaker observes to which sample the hearer is pointing and if this is the

one that it choose as topic, the game is successful. If not, the speaker identifies

the topic and the hearer adapts its categorical network and its lexicon as in

(4) to become better in future games.

When agents only engage in discrimination games, the formation of colour cate-

gories is influenced by physiological, environmental and ecological constraints only.

When agents perform a discrimination game and a guessing game a cultural dimen-

sion is brought in (through language). Guessing games are therefore an effective way

to study the potential causal relation between language and category acquisition.

Another reason for using the guessing game is that the colour chip naming exper-

iments widely utilised in anthropological research (Lenneberg and Roberts, 1956;
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Lantz and Stefflre, 1964; Berlin and Kay, 1969; Rosch-Heider, 1972; Kay et al., 1991,

1997; MacLaury, 1997) are equivalent to guessing games. So, if needed, the results

of our simulations can be compared with anthropological data obtained with human

subjects. One difference is that the context in most anthropological studies usually

consists of all the Munsell chips and the topic is the best representative or proto-

type of a colour name. We believe that it would be desirable that anthropological

experiments are made more realistic by asking subjects to name topics within eco-

logically valid contexts (see also Jameson and Alvarado, 2003). Presenting all the

Munsell chips at once is obviously an unusual problem setting for human subjects,

no wonder that some report difficulties doing it.

We now discuss a series of computer simulations exploring different ways in

which colour categories and colour names can be acquired. The first series (section

3) assumes that there is no causal role of language in concept formation, so agents

only play discrimination games. The next section (section 4) uses guessing games

to explore the interaction between conceptualisation and language. As mentioned

earlier, no statistical structure is present in the data, in order to find out whether

coordination of categories takes place even in the absence of such a structure. In

section 5, we then examine colour samples drawn from real world data where a clear

chromatic structure is present.

3 Learning without Language

We have seen earlier that there could be two approaches for the problem how con-

cepts are acquired: either they are learned or they are innately present, the latter

implying that they have evolved through genetic evolution. Both possibilities are

now explored in sections 3.2. and 3.3. respectively. The discrimination context is

the same for both experiments and consists of 4 stimuli chosen from a total of 1269

Munsell chips. In the learning case, the agents adapt their categorical networks dur-

ing their lifetime in the spirit of connectionist learning systems (Churchland and

Sejnowski, 1992). In the genetic evolution case, the agents have a fixed network

and change only takes place when there is a new generation whose “colour genes”

have undergone some mutation, in the spirit of genetic algorithms (Holland, 1975).

But first we need some measures to follow the progress and adequacy of concept
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formation (for more details on these measures see (Belpaeme, 2002)).

3.1 Measures

To play a discrimination game i the agent A is given a context that consists of a set

of (randomly chosen) colour samples. One sample from this context (also randomly

chosen) is the topic. The agent then exercises its categorisation network. There are

two possible outcomes:

1. The colour sample is uniquely categorised. Agent A is therefore capable of

discriminating the topic from the other colour samples. The discriminative

success for game i is dsA
i = 1.

2. No unique category was found for the topic. The discrimination game has

failed. dsA
i = 0.

The discriminative success of the agent for a specific environment ideally reaches

100 percent. In this case we say that the agent has acquired an adequate repertoire

of colour categories for that environment. The cumulative discriminative success at

game j for a series of n games is defined as:

DSA
j =

∑
dsA

i

n
(7)

The average success of a population of m agents at game j is defined as

DSj =

∑
DSA

j

m
(8)

The category variance cv between the categorical repertoires of the different

agents is measured by computing the cumulated distance between the categories of

the agents of a population A = {A1, . . . , An}, as in

cv(A) =
1

1
2n(n − 1)

n∑
i=2

i−1∑
j=1

D (Ai, Aj) (9)

D(Ai, Aj) is a distance measure between the category sets of two agents5.
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3.2 Individualistic Learning

We now present a model of individualistic learning. The update rule used by an

agent after playing a game is as follows:

When successful The weights wi of each locally reactive unit i of the discrimi-

nating category network are increased according to the following rule

wi = wi + β zi (Sot) (10)

Where zi (Sot) is the output of unit i for the topic Sot , and β is the learning

rate6.

When not successful The discrimination game scenario can fail in two ways.

First, the agent has no categories yet (C = ∅); in this case the agent creates

a new category centred on the topic. Second, no discriminating category can

be found because the category found for the topic is also applicable to the

other objects. When the discriminative success of the agent is lower than a

predefined threshold (set at 95%), a new category is created. Otherwise, the

best matching category network is adapted by adding a new locally reactive

unit to its network.

Adding a new category is done by creating a category with only one locally

reactive unit centred on the sensory representation of the topic (m = Sot).

Adapting a category is similarly done by just adding a new locally reactive

unit sensitive to the topic.

After playing a discrimination game, the weights of all the locally reactive units

of all categories of the agent are decreased with a small factor. The weight decay,

a learning rule standard in the literature (Rumelhart and McClelland, 1986; Krogh

and Hertz, 1995), is defined as

wj = α wj (11)

where α ≤ 1 is a non-negative value. This takes care of a slow “forgetting”

of unused categories and thus of the reshaping of categories to remain adapted to

changes to the environment or the ecology.
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Figure 2: Average discriminative success DS and average number of categories
(dotted line) of 10 agents playing discrimination games.

The following graphs show the outcome of simulations exploring this model.

Agents play successive discrimination games with random sets of samples from

the environment and randomly chosen topics within each set. In a first illustrative

experiment (figure 2) a population of 10 agents plays a series op 1000 discrimination

games. The context of a game contains four colour stimuli chosen randomly from

the complete set of over 1269 Munsell chips, of which one has to be discriminated

from the other three. The chips are at a minimum Euclidean distance of 50 from

each other in L∗a∗b∗-space. Agents take random turns playing a game. Two agents

are randomly selected from the population to play one discrimination game. The

x-axis maps to consecutive games. The left y-axis of figure 2 shows the average

success rate in the discrimination game with the learning rules used here. We

see clearly that discriminative success increases to almost 100 %, proving that the

agents are capable of developing a repertoire of colour categories adequate for the

given environment7. The right y-axis plots the size of the categorical repertoire. It

stabilises when the agents have become successful in discrimination. It is undeniable

that a repertoire forms which is adequate for the given environment and ecology.

When the environment or the ecology is more complex, agents take longer and the
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number of categories increases, but the same trend is seen.

A mapping of the extent and focal points of the different colour categories for

two agents onto the Munsell array is shown in figure 3.
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Figure 3: The maximum (white circle) and the extent (colour coding) of the cate-
gories of two agents after playing 1000 discrimination games. The chart consists of
saturated Munsell chips, following (Berlin and Kay, 1969). Observe how categories
are distributed across the Munsell chart, and how both agents end up with different
categories.

Figure 4 shows that agents endowed with adaptive networks are capable of coping

with changes to the environment. The agents start now with a context of four stimuli

randomly chosen from a total of seven stimuli. The stimuli are equal to the Munsell

chips8 corresponding to red, yellow, green, blue, purple, black and white. The

categorical repertoires stabilise and after 50 games four more stimuli are added as

potential choices9. We see at first a dip in discrimination success. Then the agents

quickly adapt to the more complex situation by expanding their colour repertoires.

Note that the population does not change during the course of the simulation and

agents do not interact with each other. The observed behaviour is entirely based

on individualistic learning.

Clearly the proposed mechanisms solve the acquisition problem, but what about

the sharing problem? Figure 5 compares the repertoire of the different agents for

the same run as in figure 2, using the category variance metric cv defined earlier.

Although the agents are all capable of discrimination, they use different repertoires.

And although the repertoires tend to become more similar as the simulation pro-
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Figure 4: Average discriminative success DS and average number of categories
(dotted line) for a population of 10 agents which learn colour categories. In the
first 50 games the context is chosen from a simple stimuli set, after 50 games the
set of stimuli is extended to increase complexity. The graph shows how the agents
cope to reach again a discriminative success of 100 %.

gresses, the similarity is not absolute (if all categories would be similar, the category

variance would be zero). This demonstrates that the constraints which are at work,

namely the physiological constraints (perception and cognitive architecture) and

the environmental and ecological constraints, are not enough to drive the agents to

the same solution space. Different solutions are possible for the same task in the

same environment. More sophisticated physiological models will probably not alter

that fact. Indeed, it confirms why it has not been proven possible to explain basic

colour categories based on physiological constraints alone (e.g. Gellatly, 1995; Jame-

son and D’Andrade, 1997; Saunders and van Brakel, 1997). If different populations

exposed to different environmental stimuli and ecological challenges are compared,

the repertoires of the agents in the population would be even more different.

Table 1 shows the inter-population category variance cv′, a metric used to show

how well categories compare across populations. It is the average of the category

variance computed between all agents of two different populations P and P ′. n and

m are the number of agents in the respectively population P and P ′, assumed to

be equal for all populations being compared.

cv′(P, P ′) =
1

nm

n∑
i=1

m∑
j=1

D
(
Ai, A

′
j

)
(12)
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Figure 5: The category variance of a population of 10 agents playing discrimination
games (for the same simulation as reported in figure 2). The graph shows how the
categories of all agents start to resemble each other due to ecological pressure, but
do not become equal.

Table 1 shows that the category sets of agents within and across populations are

quite dissimilar (an intuitive grasp can be obtained by comparing the values in this

table with other category variance tables in the following sections). If the categories

of agents are similar between two populations, cv′ would decrease. Populations

where all individuals have identical categories have cv′ = 0.

cv′ A1 A2 A3 A4 A5

A1 9.29
A2 10.14 9.38
A3 10.62 10.51 9.62
A4 10.84 11.25 10.94 9.22
A5 10.89 11.14 10.31 11.21 9.83

Table 1: Inter-population category variance cv′ of 5 populations of which the cate-
gories have been learned under identical experimental settings, except for the initial
random seed.

We conclude that

1. Individualistic learning leads to the development of an adequate repertoire of

colour categories.
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2. There is a certain percentage of sharing of colour categories within a popu-

lation, which can be attributed to shared physiological, environmental and

ecological constraints, but there is no 100 % coherence.

3. The colour categories are not shared across populations.

3.3 Genetic evolution

This section turns to the properties of genetic evolution. We examine a variation of

the previous model which includes different generations of agents. Each agent has a

set of “colour genes” which directly encode its categorical networks, so we shortcut

the problem of modelling gene expression. The networks do not change during the

lifetime of the agent. Agents play exactly the same discrimination game as before.

They have a cumulative score, reflecting their success in the game, as defined earlier.

This score will be used as the fitness of the agent. The m fittest agents (where m

is equal to 50% in the present simulation) are retained in the next generation and

the others are discarded. A single mutated copy is made of each remaining agent so

that the size of the population always remains constant. Mutations, which happen

with a probability inversely proportional to discriminatory success, can take four

forms with equal probability:

1. A new category network is added with a single locally reactive unit whose

centre is at a random point in the L∗a∗b∗ space.

2. A randomly chosen category network is expanded by adding a new locally

reactive unit whose centre m is at a random deviation from the centroid c of

the category. The centroid c of the category is computed as in (eq. 13). The

centre of the added locally reactive unit is randomly chosen from a normal

distribution with mean c and standard deviation σ.

c =
∑

wimc,i∑
wi

(13)

3. A randomly chosen existing category network is restricted by removing one,

randomly chosen locally reactive unit. If no unit is left the category network

itself is removed.
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4. An existing, randomly chosen category network is removed.

Only one mutation is allowed for each copy. Note that the mutation operator

does not use any intelligence about what might be good changes to the categorical

repertoire, as indeed it should be.

Figure 6 shows the behaviour of this model using the same environmental stimuli

as in the learning case discussed earlier (a context consists of 4 stimuli chosen from

a total of 1269 Munsell chips.) The x-axis plots the different generations of agents.

The y-axis displays the success rate after n generations. This success rate is based

on the outcome of 50 discrimination games. We see that after several generations

a population of agents is reached which have adequate categorical repertoires for

the given environment. When this environment is made more complex (in a similar

way as in figure 4), genetic evolution generates more colour categories and after

a number of generations there is again an adequate repertoire (figure 7). Figure

8 shows the focus and extent of the categories of two agents plotted on the two

dimensional Munsell colour chart.
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Figure 6: Average discriminative success DS and average number of categories
(dotted line) for a population of 10 agents of which the colour categories are evolving
in a genetic fashion.

These results show that our model of genetic evolution is also capable of evolv-

ing agents that have adequate repertoires of colour categories. There is of course

a profound difference between the learning and genetic scenarios. In the learning

scenario, agents start their life with no colour categories, develop an adequate reper-
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Figure 7: Average discriminative success DS and average number of genetically
evolved categories (dotted line) for a population of 10 agents. In the first 50 games
the context is chosen from a simple stimuli set, after 50 games the set of stimuli is
extended to increase complexity.

toire within their lifetime, and adapt to environmental changes (for example caused

by the availability of new dyes) also within their lifetime. In the genetic scenario,

successive generations of agents are needed before a generation arises that has an

adequate repertoire. So genetic evolution is much slower than learning, which is of

course a well known fact. This is borne out by the simulation results shown in figure

7 which uses the same data as the learning case in figure 4. Rather than adapting

after two dozen more games, the agents need about 20 generations (which would

amount to at least 400 years of evolution if such a mechanism was to be applied

to an equally small population of ten humans, counting a modest 20 years per gen-

eration). On the other hand, once genetic evolution has established a repertoire,

agents do not have to learn anything but get born with a ready-to-use categorical

repertoire.

Figure 9 displays the category variance between the categorical repertoires of

the agents in the case of genetic evolution. We see clearly that genetic evolution

not only solves the acquisition problem but also the sharing problem. The popu-

lation evolves towards the same categorical repertoire for all the agents. This is

in strong contrast with the learning scenario where the final repertoires were never

identical. The cause of this sharing lies in the nature of genetic evolution. The
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Figure 8: The maximum (white circle) and the extent (colour coding) of the cate-
gories of two agents with genetically evolved categories. Because of the dynamics
of the evolutionary process, most categories of both agents are identical.
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Figure 9: The category variance of a population of 20 agents after evolving for over
50 generations (under the same conditions are figure 6). It can be seen that there
is hardly any variation between the categories of the agents.

colour genes coding the categorical networks of more successful agents propagate in

the population and so after some time these ’genes’ completely dominate. Which

colour categories come out depends on environmental, ecological and physiological

constraints, but there are multiple solutions. Genetic evolution randomly selects

one solution which then spreads to the rest of the population. This is clearly seen

by doing another simulation with exactly the same parameters (for the environ-
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ment, genetic mutation rates, etc.) but starting from another random seed. Due

to the randomness inherent in the genetic search process, both repertoires are very

different. This is shown in table 2: The variation within a population is almost

nonexistent (≤ 0.40) but across populations the variation is considerable. With

different ecological and environmental constraints the variation would be even more

dramatic.

cv′ A1 A2 A3 A4 A5

A1 0.40
A2 4.91 0.40
A3 3.98 5.75 0.05
A4 3.67 4.54 4.64 0.20
A5 5.60 6.26 6.10 5.55 0.27

Table 2: Inter-population category variance of 5 populations of which the categories
have been evolved using the discriminative success as fitness measure.

We conclude that

1. Genetic evolution leads to the development of an adequate repertoire of colour

categories.

2. The colour categories are completely shared among the individuals within a

population.

3. The colour categories are not shared across populations.

4 Learning with language

The previous section compared individualistic learning with genetic evolution. Both

were capable to explain how categories may be acquired by individuals, but only

genetic evolution could also explain how colour concepts could become shared. In

the next series of experiments, we study the impact of language (and thus of culture)

on the formation of colour categories, by letting the agents play guessing games,

and discrimination games as part of a guessing game. Again we are interested to

model both cases: learning (section 4.2) and genetic evolution (section 4.3). First

we need some additional measures to follow the progress in the experiment.
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4.1 Measures

There are three possible outcomes of a guessing game:

1. The topic pointed at by the hearer is equal to the topic chosen by the speaker.

The game i is a success for both agents A: communicative success csA
i = 1.

2. The topic pointed at by the hearer is not equal to the topic chosen by the

speaker. The game i is a failure for both agents A: csA
i = 0.

3. The game got stuck somewhere halfway, either because the speaker or the

hearer did not have a discriminating category, or the speaker did not have a

word for the category or the hearer did not know the word. In this case the

game is also a failure for both agents A: csA
i = 0.

The cumulative communicative success CSA
j of an agent A at game j for the

last series of n games is defined as

CSA
j =

∑
csA

i

n
(14)

.

The cumulative success CSj for a population of m agents A for the last series

of n games at game j is defined as

CSj =

∑
CSA

j

m
(15)

.

4.2 Lexicon acquisition

No one has ever proposed that humans acquire the vocabularies of their language

by genetic evolution, simply because lexical evolution is too rapid, most humans are

bilingual, and children clearly go through a long phase in which they acquire new

words (de Boysson-Bardies, 1999; Bloom, 2000). Nevertheless a number of mathe-

matical and computational models have appeared that show that genetic evolution

can in principle do the job (Nowak and Krakauer, 1999; Cangelosi, 2001). These

models code the lexicon as part of an agent’s genome, use communicative accuracy
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as selection pressure, and propose gene spreading as the mechanism by which the

group reaches coherence. Here we stick to the more realistic view that lexicons are

learned and that coherence arises through self-organisation in the population. Two

kinds of computational models have been proposed in such a case: observational

learning models that do not use negative evidence (Hurford, 1989; Oliphant, 1996)

and active learning models that use both positive and negative evidence (Steels,

1996b). It is the latter approach that is used further in this paper.

The word learning algorithm for the hearer and the speaker works as follows:

1. Assume that a speaker has associated the word forms {f1, ..., fm} with the

discriminating category ck and assume that fj is the word form with the highest

strength skj between fj and ck.

• If the communication was successful, the speaker increases the strength skj

by δinc = 0.1 and decreases the strength of connections with other categories

by δinh (this mechanism is called lateral inhibition).

• If the communication was unsuccessful, the speaker decreases the strength skj

by δdec.

2. Assume that the hearer has associated categories {c1, ..., cm} with the word

fk and assume that cj is the category that had the highest strength for fk.

• If the communication was successful, the hearer increases the strength sjk by

δinc and decreases the strength of competing words associated with the same

category by δinh.

• If the communication was unsuccessful, the hearer decreases the strength sjk

by δdec.

The algorithm has therefore three parameters. In later simulations we use δinc =

δinh = δdec = 0.1. Lateral inhibition is based on positive evidence (a successful

game) and is necessary to damp synonyms. When δdec > 0 negative evidence plays

a role, and this has been found to be necessary to damp homonymy.

When a speaker does not have a word yet for a category that needs to be

expressed, it creates a new word form (by generating a random combination of

syllables from a pre-specified repertoire) and adds an association between this word
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and the category in its associative memory with initial strength s = 0.5. This

ensures that new words enter into the population and explains how a group of

agents may develop a grounded lexicon from scratch. When a hearer does not have

the word used by the speaker in its associative memory, it stores the new word with

a category that is capable of discriminating the topic pointed at by the speaker with

initial strength s = 0.5.

The positive feedback loop between use and success causes self-organisation, in

the sense of non-linear dynamical systems theory (Nicolis and Prigogine, 1989),

(Stengers and Prigogine, 1986). An example of self-organisation is path formation

in an ant society. Ants deposit pheromone when returning to the nest with food.

This attracts other ants which also deposit pheromone, and so there is a a positive

feedback loop which causes all ants to assemble on the same path (Camazine et al.,

2001). In a similar way, the more speakers adopt a word and the meaning underlying

it, the more successful communication with that word will be and hence the more

speakers will adopt it. The positive feedback loop between the use of a word and

its success in shared communication, causes words to spread in the population like

viruses and eventually dominate. This is illustrated in figure 10, taken from a large-

scale experiment in lexicon formation discussed in (Steels and Kaplan, 1998). The

agents converge towards the same lexicon because once a word starts to become

successful in the population its success grows until it takes over in a winner-take-all

effect due to the non-linear nature of the positive feedback loop.

Lexical incoherence may remain in the population if different categories are

compatible with a large set of contexts (for example a particular word may for a long

time be associated with bright and yellow if in most situations the brightest object

is also the one that is uniquely yellow). This relates to Quine’s well known puzzle

(1960). A linguist observing a native can never be sure if gavagai means rabbit, or

hopping, or a temporal slice of a four dimensional space-time rabbit. Incoherence

will be disentangled when situations arise where the two meanings are incompatible,

for example a bright object which is blue. This type of disentanglement is also

observed with the mechanisms described here, see figure 11 taken from (Steels and

Kaplan, 1999), which discusses this “semiotic dynamics” in more detail.
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Figure 10: This graph plots the usage rate of all possible words for the same meaning
in a consecutive series of language games. Initially many words are competing until
one dominates due to a winner-take-all effect.
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Figure 11: This graph plots (on the y-axis) the usage percentage of different mean-
ings associated with the same word. Different meanings may co-exist until a situa-
tion arises that disentangles them.

4.3 Cultural Learning

Given these processes we can now begin to study the interaction of word learning

and category acquisition. The first experiment uses learning both for categories and

for words. When a category has been successful in the language game, i.e. it led to a

successful communication, it is re-enforced by increasing the weights of its network

according to eq. 10. This increases the probability that the category stays in the

repertoire of the agent and that it is the category of choice when a similar situation
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arises in the future. So there is a two-way structural coupling (Maturana and

Varela, 1998) between category formation and language: Language communication

stimulates the formation of categories because it calls for a discrimination game that

might lead to the learning of new categories. Category formation in turn stimulates

language because if the discrimination game generates a new category, this leads

to the creation of a new word. The discrimination game itself provides feedback

whether a particular category is successful and so it embodies environmental and

ecological constraints. The language game provides feedback whether the category

worked in the communication, and so it exercises a cultural constraint.

Figure 12 shows that these components lead to a satisfactory outcome. The

agents reach discriminative success and communicative success10. The graph plots

on the x-axis the number of games and on the y-axis average discriminative success

(top) and communicative success (bottom). The latter goes up to 90 percent. This

experiment shows therefore that cultural learning is capable of establishing a shared

repertoire of words in a population. It also shows that the categories underlying the

words are culturally coordinated, even though there is no telepathic access of an

agent to the categories used by another agent and even though the colour categories

are not innately given “at birth”.
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Figure 12: Average discriminative success DS (top) and average communicative
success CS (bottom) for a population of 10 agents of which the colour categories
are learned under influence of linguistic communication.

Figure 13 looks at the similarity between the categorical repertoires of the agents.
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We see that now the agents do have similar repertoires - in contrast with the ex-

periment in individualistic learning (section 3.2). This is due to the structural

coupling between the category formation process and language. Success (or fail-

ure) in language communication feeds back into whether new categories are created

or maintained in an agent’s repertoire. So this experiment shows that the Sapir-

Whorf thesis, advocating a causal influence of language on category acquisition

(Sapir, 1921; Whorf, 1956), is entirely feasible from a theoretical point of view.

Even more so, it shows that only due to such a causal influence will the agents de-

velop a sufficiently shared categorical repertoire to allow successful communication.

This does NOT imply the colour categories are not influenced by embodiment and

statistical structure of the environment also. Hence these results do not imply that

colour categories are arbitrary. The point is simply that language communication

is a very effective way for a population of agents to go the final stretch in arriving

at a shared categorical repertoire.
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Figure 13: The category variance for the simulation described in figure 12. To show
the influence of language, the category variance for exactly the same circumstances
but now without language is plotted as well. The ratio between the two clearly
demonstrates how the similarity of the colour categories is drastically increased by
using language.

Note that first learning colour categories and only then learning words as ad-

vocated by those arguing against such a causal influence would not work because

language learning is crucial for the convergence of colour categories. When agents

learn categories independently of language (as they do in the experiments discussed
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in section 3.2) their categories diverge too much to support communication later.

So both must be learned at the same time in a co-evolutionary dynamics. This

shows that the Sapir-Whorf thesis is not only feasible but the best way to reach

categorical coherence, and this based on coupling category formation to language.

Even with the same environmental, physiological and ecological constraints, two

populations without contact with each other would develop different colour cate-

gories and consequently colour names with different meanings. Multiple solutions

are possible but only one solution gets culturally frozen and enforced through lan-

guage in each population. This is further illustrated in table 3 which shows that the

inter-population coherence between agents in one population is high, but between

populations it is far lower.

cv′ A1 A2 A3 A4 A5

A1 0.30
A2 4.29 0.45
A3 3.83 4.52 0.36
A4 5.09 5.60 5.31 0.51
A5 5.26 5.80 5.37 6.08 0.55

Table 3: Inter-population category variance of 5 populations of which the categories
are learned under linguistic pressure.

To conclude this section, we examine what happens when populations with this

kind of semiotic dynamics change. This is done by introducing a flux in the pop-

ulation. At regular time intervals an agent is removed from the population and

another agent is inserted. The new agent has no prior knowledge of the colour

categories nor of the words used in the population. Figure 14 shows that at renewal

rates that are not too high, communicative success is essentially maintained. New

agents obviously fail initially but pick up quickly the words and meanings that are

commonly used. This means that the lexicon and the colour repertoire gets trans-

mitted between generations purely through cultural learning. These results are in

line with other experiments with much larger agent populations and much larger

vocabularies (Steels et al., 2002). They are among the first concrete computer sim-

ulations showing how the memetic evolution of language and meaning are possible

(Dawkins, 1976; Blackmore, 1999).
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Figure 14: Illustration of memetic evolution in a population of 5 agents. In each
game the context consists of 4 stimuli chosen from the complete Munsell set. A
flux is introduction by replacing an agent after n games (where n=1000, 200 and
20 respectively). Too high a flux destabilises the communicative success.

We conclude that

1. Cultural learning leads to the development of an adequate repertoire of colour

categories and an adequate repertoire of colour terms.

2. The colour categories are shared among the members of a population.

3. The colour categories are not shared across populations.

4.4 Genetic evolution

The next experiment tests the potential influence of language on the genetic evo-

lution of colour concepts. It uses the same genetic model as used in section 3.3,

and the learning algorithm for the acquisition of colour words explained in section

4.2. Rather than using discriminatory success to determine fitness, communicative

success is used, so that the colour repertoire of the agents, genetically encoded in

their genes, is not only influenced by physiological, environmental and ecological

constraints but also by cultural constraints as embodied in language, despite the

fact that the lexicon itself is not genetically transmitted but learned by each gen-

eration. The agents that remain in the population keep their lexicons so that they

can be acquired by the new agents resulting from mutation.
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Figure 15 shows the outcome of the experiment. It displays communicative

success for successive generations of agents (bottom graph) and the discriminative

success (top graph). As discrimination is a prerequisite for further communication,

communicative success can only be reached when there is also discriminative success.

We see that the same sort of results are obtained as in the previous models. The

agents manage to evolve a shared repertoire of colour concepts - although now they

do it in a genetic way - and evolve a language for expressing these concepts - in a

cultural way.
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Figure 15: Average discriminative success DS (top graph) and average communica-
tive success CS (bottom graph) for a population of 20 agents of which the colour
categories are evolved. The fitness of the agents is based on success in the guessing
game.

As in the previous genetic evolution experiment, the colour repertoires of differ-

ent populations (and of course also the vocabularies that emerge) diverge, even if

the same physiological, environmental and ecological constraints are used. As ex-

plained earlier, the randomness inherent in genetic evolution causes the exploration

of different parts of the search space. When cultural factors play a role in fitness,

as is the case here, this divergence is even more pronounced.

We conclude that

1. Genetic evolution leads to the development of an adequate colour repertoire of

colour categories, even if the selectionist force includes learned cultural habits.
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2. The colour categories are completely shared among the members of the pop-

ulation.

3. The colour categories are not shared across populations.

5 The Role of Chromatic Distributions

We can already draw a number of conclusions from the experiments so far. The

first two results constitute a necessary baseline that prove that our models satisfy

at least minimal working conditions:

1. The self-organisation of a shared lexicon in a population was shown to occur

through adaptive language games. The learning process must include a posi-

tive feedback loop between the choice of which words to use and their success

in use (section 4.3).

2. The formation of a repertoire of colour categories was shown to occur through

consecutive discrimination games, both for individual learning (section 3.2)

and for genetic evolution (section 3.3).

The next results are about the possible causal influence of language on category

acquisition:

1. Language may have a causal influence on category acquisition, both in the

case of cultural learning, if there is a structural coupling between success in

the language game and adoption of categories by the agents (section 4.3), and

in the case of genetic evolution (section 4.2), including if the fitness function

integrates communicative success (section 4.4).

2. When there is this causal influence, the colour categories of agents within the

same population become coordinated in the case of cultural learning because

of the strong structural coupling between concept acquisition and lexicon for-

mation (section 4.3). Colour categories also become shared within the same

population in the genetic evolution model, because of the proliferation of ‘suc-

cessful’ colour categorisation genes (section 3.3).
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3. On the other hand sharing across populations did not occur neither for genetic

evolution nor for cultural learning. Genetic evolution necessarily incorporates

randomness in the search process which causes divergence as soon as two pop-

ulations develop independently, even when exactly the same constraints are

active. Different ecological and cultural circumstances, which are inevitable

in split populations, will only increase this divergence (section 4.4). Learning

adapts even faster to ecological and cultural circumstances and so as soon as

these circumstances diverge, colour categories diverge as well (sections 3.2,

4.3).

So both a cultural learning hypothesis (with causal influence of language on

category acquisition) and a genetic evolution hypothesis (with integration of com-

municative success into fitness) could explain how agents in a population can reach

a shared repertoire of categories and a shared lexicon for communicating about the

world using these categories. The difference between the two models appears to be

in terms of the time needed to adapt to the environment or reach coherence. Ge-

netic evolution is orders of magnitude slower than cultural learning and so it could

only work when almost no change takes place in the environment nor the ecology

of the agents. The larger the population and the more it is spread out, the longer it

takes for genes to become universally shared. Moreover genetic evolution requires

that a lot more information is stored in the genome, and that the developmental

process will be more complex, as it requires fine-grained genetic control of neural

micro-circuits (including genetic coding of the weights in networks). We leave it up

to geneticists and neurobiologists to judge the plausibility of such an assumption in

the case of humans (Worden, 1995). But there can be no doubt that for designing

autonomous robots the cultural learning solution is preferable.

However we have not examined yet what happens when the sensory data pre-

sented to the agents has a statistical structure. That might also lead to the creation

of a repertoire of shared categories - even in the absence of language interaction.

So we will now introduce samples taken from real world scenes as stimuli. This

will allow a fair examination of the empiricist argument that colour categories are

coordinated precisely because the real world environment has enough statistical

structure so that any kind of clustering algorithm (and ipso facto a neural network
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that embodies a statistical clustering algorithm) would allow the population to ar-

rive at shared categories. It would also give support to the nativist position because

environmental constancy and regularity is required for genetic evolution to zoom in

on these statistical regularities (e.g. Shepard, 1992).

5.1 Categories from Real World Samples

Chromatic data of natural surfaces and the frequency with which these stimuli oc-

cur in natural scenes are available (see e.g. Hendley and Hecht 1949; Burton and

Moorhead 1987; Howard and Burnidge 1994), but it is obviously difficult to get

data reflecting the ecological importance of colour stimuli for a particular culture

and thus the data can never show what aspects of real world scenes people actually

pay attention to. Nevertheless, Yendrikhovskij (2001) has investigated how colour

categories can be extracted from the statistics of natural images. He uses a clus-

tering algorithm to extract colour categories from a sample of natural colours, and

concludes not only that categories can be reliably extracted, but also that the ex-

tracted colour categories resemble the basic colours identified by universalists, and

that this is due to the chromatic distribution of the perceived environment. Also,

increasing the k parameter (where k is the number of desired clusters) leads to a

growing set of categories which more or less corresponds to the evolutionary order

as proposed by Berlin and Kay (o.c.). This is a very important and relevant result

for the present discussion and so we decided to replicate it.

The neural networks used in previous sections for modeling categorisation are

sensitive to the statistical distribution of colours in the environment. Indeed, Radial

Basis Function networks (on which the categorical networks are based) stem from

linear models research in statistics and have been generally used to induce a function

from sample input-output pairs (Medgassy, 1961). It therefore makes sense to use

real world colour samples as source of data in discrimination games and see what

categories come out. We have collected two batches of data: one from natural

environments and another one from urban environments. The natural data set

contains 25,000 pixels drawn randomly from photographs of animals, plants and

landscapes, while the urban data contains 25,000 pixels drawn from photographs

of buildings, streets, traffic, shops and other urban scenes. Both data sets have a
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specific distribution, with an abundance of lowly saturated colours and much fewer

highly saturated colours (as already observed by Hendley and Hecht, 1949). To allow

comparison, a third data set containing 25,000 uniformly random sampled Munsell

chips is also used. All constraints on embodiment used in earlier experiments,

including the use of the CIE L∗a∗b∗ colour appearance model have been maintained.
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Figure 16: Results of discrimination game experiments for natural (left) and urban
data (right). The centroids of all colour categories of 10 agents are plotted. Agents
arrive at focal points which are more constrained than for random data but not
sufficiently to explain sharing.

Results of discrimination games with these data are shown in figure 16. The

left side shows the focal points of 10 agents for natural environments, and the right

side the same for urban environments. Agents were left to play discrimination

games until they each reached on average eleven categories11. Results from another

experiment where agents were given samples from a randomly distributed data set

are shown in figure 17. For reference, the location of human basic colour categories

are shown as well in all diagrams (Sturges and Whitfield, 1995).

We see that the statistical structure in the data clearly helps the agents to reach

a higher degree of categorical sharing than would otherwise be the case. There

is for example a clustering around the origin a∗ = b∗ = 0 for both natural and

urban environments, whereas we do not see these clusters in randomly distributed

samples. This comparison is made more precise in figure 18. Notice however that

there is still significant categorical variance between the agents exposed to the same

type of environment.

These results clearly show that even if there is a statistical structure, there

is increased sharing but the sharing is surely not complete, neither among the
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Figure 17: Results of experiments in statistical learning of colour categories for
random data. Note how categories are spread out over the colour space.
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Figure 18: Category variance for three runs of 10 agents playing discrimination
games. The agents have in each run been offered different kinds of colour stimuli:
Munsell stimuli, having a uniform statistical distribution, and natural and urban
colour stimuli, having a non-uniform distribution. The statistical structure of the
natural and urban stimuli aids the agents in achieving more coherent categories.

members of the population nor among different populations. There are several

reasons why this is the case. Although the natural and urban data now have natural

chromatic distributions, there is random sampling going on within these data sets so

agents within the population do not get exactly the same data series. The opposite
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would be a very unrealistic assumption anyway, both for human beings and for

autonomous agents. Second, the influence of the two environments (urban versus

natural) works also against sharing, simply because the statistical structure of the

two environments is different. Anthropological observations show however that

individuals growing up in different environments but speaking the same language

have the same colour categories, and vice versa, individuals growing up in similar

environments but speaking different languages often have diverging colour categories

– cfr. Papua New Guinean cultures (Kay et al., 2003).

It could be argued that the sensitivity observed here is due to the specific clus-

tering method used, namely discrimination games and adaptive RBF networks. But

this is not the case. We applied the clustering algorithm used by Yendrikhovskij

(2001) and used his method of sampling, and similar results were obtained. Fig-

ure 19 shows the category variance12 for categories extracted from random, natural

and urban stimuli. Categories extracted from natural and urban stimuli have ap-

proximatly half the variance of categories extracted from stimuli with a uniform

distribution. From this we can conclude that learning without the influence of lan-

guage in a structured environment indeed increases the sharing of categories across

agents, but the sharing is never absolute.
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Figure 19: Category variance for categories extracted from three different types
of chromatic stimuli: random, natural and urban stimuli. The agents now used a
clustering algorithm instead of discrimination games and each agent extracted 11
categories.

Yendrikhovskij (2001) used the CIE L∗u∗v∗ colour appearance model instead

of the CIE L∗a∗b∗ model used in this paper, and so we compared the outcome for

both colour appearance models (figure 20) and even between these we see significant
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variation. The fact that clustering is sensitive to the colour appearance model shows

that –even small– variations in colour perception, as surely occurring in humans

(Gegenfurtner and Sharpe, 1999; Neitz et al., 2002), drives a purely empiricist

acquisition of colour categories to diverging results.
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Figure 20: Clusters extracted from natural chromatic data. Five clusters are ex-
tracted in the CIE L∗a∗b∗ space (diamonds) and five are extracted in the CIE
L∗u∗v∗, but then mapped onto and displayed in the L∗a∗b∗ space (squares). The
clusters differ to a large extent, demonstrating how the colour space influences the
clustering.

Perhaps even more importantly, the categories that agents end up with (still us-

ing Yendrikhovskij’s clustering algorithm and the same data sets) vary significantly

both with respect to natural versus urban environments and with respect to the

basic human colour categories proposed in the literature (Sturges and Whitfield,

1995). This is shown in table 4 below. It shows the correlation13 between (a) cate-

gories extracted by the clustering algorithm14 and (b) human colour categories (as

measured by Sturges and Whitfield, 1995). Perhaps surprisingly, statistical extrac-

tion of categories from natural colour data with a clear statistical structure does

not deliver categories that resemble human colour categories more than do cate-

gories extracted from random data. Even more, the correlation between categories

extracted from natural, urban or random colour data is approximately equal. This

demonstrates that the non-uniform chromatic distributions –i.e. the urban and nat-

ural data– do not lead to categories that are similar. They correlate as much with
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each other as with categories extracted from random data.

human natural urban random
human 1 0.615 0.580 0.562
natural 1 .593 0.622
urban 1 0.462
random 1

Table 4: Correlation between human colour categories and 11 clusters extracted
from the natural data set, the urban data set, and a random data set.

Clearly the chromatic distribution of colours in the environment can influence

which colour categories are adopted by a population and how similar they are, but

it is far from obvious that it alone can explain the sharing of perceptually grounded

categories in a population and even less so the universal sharing of colour categories

across populations. What all this means for human colour categorisation remains a

matter of debate. We do not claim that inductive learning on real world environ-

ments could not potentially yield the basic human colour categories, perhaps with

much more constraints on embodiment, with much greater exposure to a variety of

environments, etc., but it does not seem so straightforward as often assumed.

We do claim however that the experiments allow a clear conclusion for the design

of artificial agents: It would be risky to rely only on embodiment constraints and

statistical clustering for forming the repertoire of perceptually grounded categories

for use in communication. Inevitable variation in hardware, camera calibration,

sampled data, colour appearance model, and arbitrary choices during clustering,

would lead to important categorical variation between the agents or between agents

exposed to different environments. It is also unlikely that (artificial) genetic evo-

lution without integrating communication in the fitness function would work to

sufficiently coordinate perceptually grounded categories. Given that we have a very

straightforward and effective mechanism to coordinate categories through language

(as shown in section 4), it would be irrational not to use it.

6 Conclusions

This paper examined the question how a perceptually grounded categorical reper-

toire can become sufficiently shared among the members of a population to allow

successful communication, using colour categorisation as a case study. The paper
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did not introduce new empirical data but examined through formal models the con-

sequences of adopting certain approaches which were all inspired from the study

of human categorisation and naming. We explored in particular three positions:

(1) All human beings are born with the same perceptually grounded categories

(Nativism). So when children learn a language, their categorical repertoire is al-

ready shared with that of caregivers and they only have to learn the names of these

categories. (2) All human beings share the same learning mechanisms, so given

sufficiently similar environmental stimuli they will arrive at the same perceptually

grounded categories which reflects the statistical structure of the real world (Em-

piricism). Hence the acquisition of language is again a matter of learning labels

for already known shared categories and there is no strong influence of language

on category formation. (3) Although learning mechanisms and environments are

shared, there are still important degrees of freedom left. Language communication

(or other forms of social interaction where perceptual categories play a role) helps

to coordinate perceptual categorisation by providing feedback on how others con-

ceptualise the world (Culturalism). So language now plays an important causal role

in conceptual development.

As stated several times, our motivation for these investigations is to find the

best way for designing agents that are able to develop a repertoire of perceptually

grounded categories that is sufficiently shared to allow communication. But we

believe that these results are relevant to a much broader audience of cognitive

scientists who have been puzzling over the same question.

The first contribution of the paper is to introduce concrete models so that a

comparison of the different positions is possible. The models have been defined

in enough detail and precision to allow computer simulation. Most of the time

debates on categorisation and naming have assumed particular mechanisms (for

example for acquiring categories or for associating names with categories) without

specifying exactly how these mechanisms were supposed to work. This has made it

difficult to formulate clear arguments for or against certain positions.

The second contribution of the paper is to establish some important properties

for each model: First, we have shown that the coupling of category formation with

language leads to the coordination of perceptually grounded categories (both in
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the case of genetic evolution and in cultural evolution with learning of language),

even if there is no statistical structure in the data. Second, we have confirmed

that although clustering algorithms (and neural networks that embody them) are

sensitive to the statistical structure of real world data, it is not so obvious that this

alone can explain how perceptually grounded categories can become shared.

The models presented here could be made more complex and more realistic, in-

tegrating more constraints based on what is known about human physiology, neuro-

logical processing, brain development, genetics, language, real world environments,

ecology, etc. but this complexity would be more of a hinder than a help because it

would obscure the contribution of the dynamics. On the other hand, integrating all

these additional constraints will be necessary to explain the kinds of cross-cultural

trends that have been observed in colour naming (Kay et al., 1991; Kay and Regier,

2003) or why certain cultures have adopted particular categorical repertoires and

not others.
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Notes

1k is a normalising constant, the colour spaces use relative colorimetry with

k = 0.00946300, which is based on the standard CIE illuminant called “D65”: if

the D65 illuminant is used as stimulus, the Y -value will be exactly 100.0. For other

stimuli, this results in XYZ values between 0 and approximately 100.

2An alternative to the CIE L∗a∗b∗ space is the CIE L∗u∗v∗ space (Wyszecki

and Stiles, 1982; Fairchild, 1998), which is also intended to be an equidistant colour

model, meaning that colours can be compared using a simple distance function

(something which is not possible in other colour spaces such as CIE XYZ or RGB,

the last one being a the technical colour representation used in colour display devices

such as television and computer monitors).

3The results are not very sensitive to different values of σ within a certain range.

In the simulations reported here, σ is fixed to 10. The adaptive networks do not

share locally reactive units, however this does not mean that they cannot have units

sensitive to the same region in the colour space.

4Alternatives could be considered for the representation of the colour categories.

One possibility would be to implement categories as single points in colour space. In

addition with a distance metric, this representation would exhibit most properties

associated with perceptual categories. However, categories would have a spherical

membership function in the colour space, this is an assumption we would not like to

make. Another alternative, which avoids this, uses k-nearest neighbour classification

(Mitchell, 1997). Here a category is made up of several examples of colour stimuli,

and classification of a stimulus happens through measuring the distance between

the stimulus and the exemplars belonging to each category.

5For the category variance measure (eq. 9 and 12) a distance metric D between

two category sets is needed. For this we first define a distance metric d between

two point sets A = {a1, . . .} and B = {b1, . . .},
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d (A, B) =

∑
a∈A

min
b∈B

‖a − b‖ +
∑

b∈B

min
a∈A

‖a − b‖
|A| . |B| (16)

This distance metric d has the following properties. (1) The distance between

two identical sets is zero, d(A, A) = 0. (2) The distance is symmetrical, d(A, B) =

d(B, A). (3) The distance is non-negative, d(A, B) ≥ 0. (4) The sets need not have

the same number of elements.

Recall that a category consists of locally reactive units with a central value m

and a weight w. The distance between two categories c and c′ can be computed as

the weighted distance between the central values of the locally reactive units. We

define the distance between two categories as

dcategory(c, c′) = d({m1, . . . ,mn} , {m′
1, . . . ,m′

m}) (17)

with ‖m − m′‖ = w.w′.
√∑

(m − m′)2

where n and m are the number of locally reactive units in respectively category

c and c′.

An agent has a set of categories, the distance D between two category sets of

agent A and agent A′ is defined as

D (A, A′) =

∑
c∈A

min
c′∈A′

dcategory(c, c′) +
∑

c′∈A′
min
c∈A

dcategory(c, c′)

|A| . |A′| (18)

where |A| and |A′| are the number of categories of agent A and A′ respectively.

Note that the distance measure is sensitive to the number of categories: more

categories result in a lower D (A, A′) value. The category variance is therefore

necessarily a relative measure —to be interpreted by comparing it to other category

variances— rather than an absolute measure.

6The learning rate β is a positive value and is by default β = 1. It determines

how fast weights of the locally reactive units increase in reaction to the successful

use of the category. β is not critical to the results attained, but should be set such
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that it balances the decay rate α of weights in eq. 11. α takes care of a slow

forgetting of categories, and is set by default to α = 0.1.

7The baseline discriminative success –i.e. the chance success that agents would

achieve by randomly creating categories– depends is proportional with the number

of categories of an agent and inversely proportional with the size of the context.

The baseline discriminative success can be estimated numerically; in this particular

example it is 0.26 at game 1000.

8The Munsell codes of the stimuli are 5 R 5/14, 5 Y 8.5/10, 5 G 7/10, 5 B 5/8,

5 P 5/8, 5 R 9/15, R 5/2.

9The four added stimuli are 5 YR 7/10, 5 GY 8/10, 5 BG 7/8 and 5 PB 5/10.

10The baseline average communicative success is always lower than the average

discriminative success. When agents do discriminate the stimuli in the context per-

fectly and when they are able to interpret the communicated words, the baseline

communicative success will never be lower than 1/size of context, i.e. the hearer’s

success of randomly guessing the topic. Communicative success in most circum-

stances never reaches 100%: some topics are located just between two categories,

and subsequently two agents might classify the topic with categories having differ-

ent colour terms, which makes the guessing game fail. Just like argueing over the

colour of ones shirt, the agents do not always agree on what category a stimulus

belongs to.

11Berlin and Kay (1969) say that there are eleven basic colour categories, but

other than that there is not specific reason why we let the agents play discrimination

games until they have on average 11 categories.

12The category variance for categories extracted with a clustering algorithm is

computed in the same way as the category variance for adaptive networks; see eq.

9, in which D is now defined as eq. 16. Note that the category variance reported in

figure 19 can not be compared to category variance values elsewhere, as the distance

measure is different in this case.

13The correlation measure used is the Kendall’s Tau-b correlation. We chose this
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measure as it is a non-parametric test and does require the data to have a normal

distribution. The test returns values between -1 and 1. A value of 1 indicating

that the correlation is perfect, and a value of -1 that the correlation perfect but

inverse. Values in-between -1 and 1 indicate a correlation to a lesser degree, with 0

signifying that is no correlation between the data.

14The cluster algorithm used here is the k-nearest neighbour algorithm (Mitchell,

1997), as also used by Yendrikhovskij:2001. It extract k clusters from a set of values

using an iterative optimisation method. First, k = 11 clusters were extracted from

each data set (the nature data set, the urban data set and a data set containing

random colours). Then, the extracted centroids of these clusters were taken to com-

pute the correlation with human colour categories. For this, the centroids needed

to be matched with the human colour categories: this was done by an exhaustive

search to find the optimal match. Next, correlations were computed in the L∗, a∗,

b∗, C∗
ab and Hab dimensions (with C∗

ab and Hab being the chroma and hue of the

CIE L∗a∗b∗ space, see Wyszecki and Stiles, 1982). Each correlation reported in

table 4 is the mean of these five correlations.
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