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Abstract
The paper addresses the question how a group

of physically embodied robotic agents may origi-
nate meaning and language through adaptive language
games. The main principles underlying the approach
are sketched as well as the steps needed to implement
these principles on physical agents. Some experimen-
tal results based on this implementation are presented.

1 Introduction

In the past five years, a large number of robotic agents, i.e.
physical systems capable of sensori-motor control, have been
built in order to investigate a bottom-up approach to artificial
intelligence (see the overview in [8]). Important results have
been achieved, particularly by using behavior-oriented archi-
tectures [14] and learning methods based on neural networks
[6] or genetic algorithms [3]. Nevertheless, it is still largely
an open question how these robots may reach sufficient com-
plexity in order to qualify as cognitive agents. Most of the
experiments have focused on ‘low level’ tasks like obstacle
avoidance or navigation, and these have been difficult enough
to preclude any work on cognitive tasks.

One approach for pushing ahead, taken for example in the
COG project[1], is to increase the complexity of the robots
themselves by adding many more sensory channels and many
more degrees of freedom. Another approach, which we are
exploring, is based on the hypothesis that communication, if
not full-fledged language, is a necessary stepping stone to-
wards cognitive intelligence. This implies that we cannot re-
strict ourselves to individual robots but must perform experi-
ments how groups of robots may build up communication sys-
tems of increased complexity. In the spirit of the bottom-up
approach, these communication systems must be developed
by the robots themselves and not designed and programmed
in by an external observer. They must also be grounded in the
sensori-motor experiences of the robot as opposed to being
disembodied, with the input given by a human experimenter
and the output again interpreted by the human observer.

Some initial experiments have been reported in the Alife
literature on how communication itself may arise to aid co-
operation between agents [5],[15]. In this paper, we assume
that there is already communication and focus instead on the
grounding problem, as in [18]: How the evolving language
is anchored into the sensory and motor data streams gener-
ated through normal behavior. We also address the problem
of the origin of meaning: How the distinctions that the robots
lexicalise may arise in the first place.

The work reported here builds further on earlier software
experiments that show how agents may develop a shared vo-
cabulary through a series of adaptive naming games [9] and
how agents may generate distinctions to discriminate between
objects in their environment [10],[12]. These papers can be
consulted for formal descriptions of the mechanisms. This
paper focuses in particular on how the software experiments
have been carried to real robots.

The rest of the paper is in three parts. The first part explains
the adaptive language games including the mechanisms that
cause the build up of distinctions and of lexicons to express
these distinctions. The second part discusses how adaptive
language games have been mapped onto physical robots. The
third part gives some results of concrete experiments. Con-
clusions and ideas for future research end the paper.

2 Adaptive Language Games

At the heart of our approach is the notion of a language game
[17]. A language game involves two agents, a speaker and
a hearer, as well as a context which consists of agents, ob-
jects and situations. Different kinds of language games can
be played depending on the goals that the participating agents
want to achieve. The game being pursued in the experiments
reported here is for the speaker to identify an object in a cer-
tain context using linguistic means. We call this game the
naming game. Initially extra-linguistic means, such as point-
ing, can be used to bootstrap the language. Other language
games would allow the speaker to get the hearer to perform a
certain action, to ask the hearer for more information, etc.



2.1 The basic scenario

To play a naming game both participants follow a specific
scenario, which consists of the following six steps:

1. Making Contact: Two agents must make contact with
each other. One assumes the role of speaker, the other
of hearer. The agents are physically close together so that
there is automatically a shared context.

2. Topic identification: Each agent perceives the surround-
ing environment through its sensors and identifies a set
of objects which constitute the context. The speaking
agent chooses one object in this context as the topic of
the conversation. He then draws attention to this topic us-
ing extra-linguistic means, for example by pointing. The
hearer thus also identifies the topic.

3. Perception: Each agent then categorises the sensory ex-
perience of the different objects in terms of features, and
identifies a distinctive feature set which distinguishes the
topic from the other objects in the context. It will often
be the case that more than one distinctive feature set is
appropriate.

4. Encoding: The speaker chooses one distinctive feature set
(for example the smallest one) and encodes this into an ex-
pression. Encoding means that the smallest set of words,
which expresses all the features in the distinctive feature
set, is searched for in the lexicon.

5. Decoding: The hearer decodes the expression which
means that he looks up all the words in his lexicon and
reassembles a feature set covering all the words. Words
are ambiguous in the lexicon (the same word may have
different meanings), so that there is typically more than
one possible feature set resulting from the decoding pro-
cess.

6. Feedback: The hearer compares the decoded feature sets
with the distinctive feature sets that he was expecting. If
one of the distinctive feature sets is equal to the decoded
feature set, the language games ends in success and the
hearer gives a positive feedback. Otherwise the game ends
in failure and the hearer signals failure.

This scenario assumes that (1) both agents have a percep-
tual apparatus for categorising sensory experiences and iden-
tifying distinctive feature sets and (2) a lexicon that associates
features or feature sets with words and vice-versa. However
we are precisely interested in the problem how (1) and (2)
may originate. Initially the agents have no repertoire of per-
ceptual distinctions and no lexicon. They build these up as
a side activity of each language game using the methods de-
scribed in the following two subsections.

2.2 Originating distinctions

Each agent has a series of sensory-motor channels which are
the direct output of sensors, the result of automatic low-level

sensory processes, or the dynamically evolving contents of
internal states such as left and right motor command streams.
These sensory-motor channels are given by the hardware or
low-level routines. For each channel there is a discrimina-
tion tree which divides the output of a channel into distinct
regions. It is assumed that the discrimination trees are bi-
nary. Each end-node of a tree constitutes a feature. The fea-
ture is denoted by a stringagent-channel-region-subregion-
subsubregion-..., as in a1-s0-0-1, which refers to a feature as-
sociated with channel s0 in agent a1. Initially there are no
discrimination trees.

As part of the perception phase, the agent engages in a dis-
crimination game. He categorises the sensori-motor states for
each object based on his discrimination trees. The result is a
set of features for each channel that contains active data, and
this for each object. The different sets are then used to find
the possible distinctive feature sets that distinguish the feature
set of the topic from the feature sets of the other objects. If
this fails, i.e. if no distinctive feature set can be built using
the existing discrimination trees, a new distinction is created
by a further subdivision of one of the end-nodes of a discrim-
ination tree which was active in the categorisation process.
The choice which of these nodes is expanded is arbitrary. The
agent keeps track of which features are used and the success
in discrimination. A forgetting process eliminates those end-
nodes which turn out not to be useful.

Thus our approach is selectionist (as in [2]): There is
a generator of diversity and a separate selectionist process
which maintains or eliminates features from the feature pop-
ulation. Earlier software experiments [10] have shown that
this method stabilises on a successful repertoire of discrimi-
nations. Moreover new objects, new sensori-motor channels,
or new agents may at any time enter, causing the discrimina-
tion trees to be expanded and adapted as the need arises. Note
that each agent builds up his own discrimination trees. There
are similarities due to the fact that the agents operate in the
same environment but this does not guarantee complete co-
herence. More coherence is reached when the lexicalisation
of a feature is an additional selectionist criterion for its further
survival, as discussed in more detail in [12].

2.3 Originating a lexicon

A lexicon consists of a set of word-meaning pairs, where the
meaning consists of a feature set. Each agent has his own lexi-
con and an agent cannot directly inspect the lexicon of another
one. Each agent maintains how often a word-meaning pair has
been used and how successful it has been in its use. While
encoding, a speaker will prefer word-meaning pairs that have
been used more often and were more succesful in use.

A discrimination game results in a series of possible dis-
tinctive feature sets of which one is chosen by the speaker.
This feature set is encoded by the speaker and then decoded
by the hearer. Several things can go wrong in this process and
each failure results in appropriate actions:
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1. The speaker does not have a word for a certain feature
set. In this case, the speaker is allowed to construct a
new word (formed by a random combination drawn from
a given prior alphabet) and associate that in his lexicon
with the feature set. This happens with a low probability
because a word may already exist in thepopulation for
this feature set.

2. The hearer may lack a word used by the speaker.In
this case, the hearer can infer possible feature sets that
might be meant by that word, based on the distinctive
feature sets that he is expecting. In the simplest situa-
tion, there is only one feature necessary to distinguish the
topic from the objects, so that the meaning is unequivo-
cally known. It could also be that some words are known
but not others. The meaning of the missing words must
then be reconstructed from the remaining unknowns. Be-
cause there may be more than one distinctive feature set, it
is inevitable that ambiguity creeps into the lexicon of the
hearer. These ambiguities are weeded out by future use
and success in use which determine what word-meaning
pairs will become most common.

3. Some of the feature sets decoded by the hearer do not
match with the expected distinctive feature sets. This
means that there are some word-meaning pairs which are
not shared by some of the agents. For the successful
word-meaning pairs, both success and use is incremented,
whereas for the others only the use is incremented, so that
their future use diminishes.

4. The feature set decoded by the hearer does not match with
any of the expected distinctive feature sets. In that case,
the hearer extends the lexicon, using the same procedure
as for situation 2 above.

Note that the approach is again selectionist. Agents create
or infer word-meaning pairs. Which pairs ‘survive’ depends
on use and success in use, and this is determined by how many
agents have adopted the same word-meaning pairs. Typically
we see a phase transition when one word starts to dominate for
the expression of a particular meaning. This phase transition
is due to the positive feedback loop inherent in the system:
The more a word is used, the more success it will have in use
and the more it will be used even more. Software simulations
reported in [9] have shown that a group of agents indeed con-
verges towards a common lexicon after a sufficient number
of adaptive naming games. Moreover new agents may enter
at any time, and due to the adaptive nature of the discrimina-
tion games, new features may enter the repertoire of possible
meanings.

Given these results we now turn to the challenge of imple-
menting these algorithms on physically embodied robots.

3 Physical implementation

As is well known by now, software simulations do not at all
guarantee that the methods will also work in real world set-

tings. Indeed, the problems encountered during the physi-
cal implementation of the language games have been enor-
mous. Robots are basically parallel distributed computer sys-
tems which operate in real-time and whose communication
links are very unreliable. We must therefore achieve overall
reliability despite unreliable components and processes. Sec-
ond we must have sufficiently robust and autonomous robots
(also autonomous in terms of energy) to permit hundreds, and
even thousands, of consecutive language games. Next, we
must find equivalents of all the different steps in the scenario:
Robots must be able to recogniseeach other, approach each
other, and establish the necessary contact to start a language
game. They must be able to point or in other ways draw at-
tention to the topic. Their perceptual capabilities must be the
basis of the discrimination games and finally they must realise
the language games themselves. In addition, it remained to be
seen whether the proposed discrimination mechanisms were
adequate for handling the inherently noisy real world data
coming from actual sensors and whether the lexicon would
stabilise despite possible (and actual) failures at all steps of a
game.

3.1 The robots and the ecosystem

The robots used in the experiments are Lego-vehicles built
for our laboratory’s experiments in self-sufficient robots (see
figure 1) [7]. Each robot (size: 30 x 20 x 15 cm) has three
infra-red sensors (mounted on the left-front, middle-front and
right-front side), four infrared emitters (mounted on front,
left, right, and back side), two visible light sensors (mounted
on left- and right-front side), two modulated light sensors
(mounted on left- and right-front side), various touch sensors
mounted on all sides, and a battery sensor. There is a left and
right motor. The overall processing capacity resides in a Mo-
torala MC86332 micro controller with 128 kB ROM and 256
kB RAM located on a Vesta board. Its CPU is 16.78 MHz
at 5V. The Vesta board is extended with a second board ded-
icated to low level sensory-motor processing and buffering
[16].

The robots are programmed using a behavior-oriented ar-
chitecture [7]. The sensors, actuators and internal states con-
stitute continuous data streams and the behavior is based on
continous dynamical systems implementing direct couplings
between sensors and actuators. An example of such a cou-
pling realises photo-taxis by minimising the difference be-
tween the left and right visible photosensors, as in Braiten-
berg vehicles. The couplings are modulated by motivational
states. Thus the photo-taxis is modulated by a decreasing bat-
tery level, so that the robot drives towards the charging station
when its energy resources are getting low.

The robots are equiped with a radio-link that is designed
for communication among themselves at a reasonable speed,
and for central monitoring of internal states. It is a module
that extends the sensory-motor board. It has a build in power
supply, a transmission and reception module, and an antenna.
The module can transmit and receive messages up to 40 Kbit/s
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Figure 1: The robots used in the experiment are Lego vehi-
cles. which are autonomous with respect to sensing, actuat-
ing, computation, and energy.

[16]. This radio-link is used for some of the extra-linguistic
exchanges, as well as the linguisticcommunication itself. The
radio-link is unreliable in the sense that it is not guaranteed
that a message arrives, but when it arrives the message con-
tains no errors.

The robots are located in an ecosystem which contains a
charging station on which a visible light source is located.
Robots can recharge their batteries by sliding into the charg-
ing station. There are also ‘competitors’ in the environment
in the form of boxes in which a (modulated) light source is
mounted. This light source takes energy from the global en-
ergy flowing into the ecosystem. Robots can dim a light by
pushing against its box and thus assure that there is enough
energy in the charging station. After being dimmed, the light
source regenerates, thus requiring the robots to alternate be-
tween recharging and work. The biological motivation for
this setup is explained in [4].

We now turn to the physical implementation of the different
steps in the language game scenario. The objects that can
be the topic of a conversation are: obstacles, the robot itself,
other robots, the charging station, and the competitors.

3.2 Making Contact

The robot can be in three modes: Regular exploration, be-
ing the speaker, and being the hearer. Any robot which is in
the first mode may at any time randomly decide to become a
speaker, when he ‘sees’ another robot in the environment. The
robots used in these experiments do not have vision. They can
however recogniseeach other because each robot emits in-
frared as part of its obstacle avoidance behavior. This infrared
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Figure 2: This figure and subsequent figures are taken from
experiments with robots executing the language game sce-
nario. The y-axis represents values of sensors, the x-axis time.
The figure above shows the (square) pulsed infrared emission,
and the detection by the three infrared sensors of the reflected
light. The amount of reflection depends on how close sur-
rounding obstacles are. Another robot is perceived when an
out of phase infrared source appears, which happens here to-
wards the end of the data set.

light is modulated so that the infrared of one robot does not
confuse the infrared of another one. A robot detects another
one when there is an infrared source which is not his own (see
figure 2).

A robot which has adopted a speaker mode and which de-
tects a possible hearer in the environment emits a request for
entering into communication. On receiving this request, the
other robot may switch from an exploration mode to a hearer
mode. The hearer confirms that he wants to play a hearer role
and halts while continuing to emit infrared. On receiving the
confirmation, the speaker switches off its infrared and uses
infrared-taxis to approach the hearer. Infrared-taxis means
that the speaker moves up the infrared gradient as shown in
figure 3. Movement stops when the gradient starts to fall off.
The speaker broadcasts an ”aligned” signal and turns on its
infrared.

On receiving the alignment signal, the hearer also tries to
position himself so that he faces the speaker. He turns off his
own infrared emission and performs the infrared-orientation
behavior while not moving forward. When maximum infrared
is detected, the hearer emits in turn an ”aligned” signal. The
speaker turns off its infrared emission. The two robots are
now in a situation as depicted in figure 4. They are facing
each other and ready for starting a language game.

3.3 Topic Identification

The next problem is how both robots could get a shared per-
ception of the environment. This has been handled as follows:
The speaker and the hearer take turns in scanning the environ-
ment by making a 360 degree turn. During this scan all the
sensory data are recorded giving a panoramic view as shown
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Figure 3: One robot perceives another robot (at the crossing
of left and right infrared sensors) and then moves towards it.
IR falls off again on approach because the emitters are placed
below the receivers and less light is detected.

Figure 4: Two robots have approachedeach other and are now
facing each other. Note the other objects in the environment
surrounding the robots, which will be the subject of the con-
versation.
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Figure 5: The result of a 360 degree scan for a single robot,
in which data from 7 sensory input streams are recorded (no
significant data appear on touch sensing or energy sensing).

in figure 5. There is no direct sensing of the degree of turning.
The robot recognises that he has turned 360 degrees when the
same sensory data are perceived as at the start of turning. The
time dimension is later used as a spatial dimension.

The next important issue is what counts as an object. The
robot has no explicit notion of an object and no sophisti-
cated visual sensing that could detect an object by matching
it against a background for example. We notice that the robot
is facing an object precisely at the point where two sensors
of the same type (for example left and right visible light sen-
sors) cross each other, simply because sensors come in pairs
and are mounted oneach side. Consequently these crossings
are taken to be the positions of the object and the states ofall
sensory streams at those points will play a role in formulating
a distinctive feature set to categorise the object. For exam-
ple, another robot will not only be recognisable because he
emits infrared light, but also because he reflects visible light,
although less than the charging station.

Through this procedure,each robot constructs a series of
objects and associated sensory data values. To this the robot
adds himself as a possible topic of the conversation. The
speaker then selects randomly one object from this list to be
the topic of the conversation and proceeds by drawing the at-
tention of the hearer to this object. This is again quite dif-
ficult to achieve because the robots have no physical device
for pointing. We have opted for a procedure in which the
speaker orients himself towards the topic. By convention, the
speaker talks about himself when he does not engage in any
movement for drawing attention to another object. The hearer
can follow the turning and estimate the direction because each
robot emits 4 infrared rays mounted on the front, left, back,
and right side. Thus by counting the number of passing in-
frared rays, whose focal points are seen when left and right
infrared is crossing, the quadrant in which the topic is located
can be calculated (figure 5). For example, when three pass-
ing rays are measured, the speaker is pointing direction east
which means that the topic is west of the hearer, i.e. to his left
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Figure 6: The speaker points towards the topic. The figure
shows the infrared detection by the hearer. Each crossing of
left and right IR sensors (beyond a certain threshold) indi-
cates that one ray has passed. This happens around point 51,
85, and 131. Note that the data stream is also influenced by
reflection from objects around the speaker and the hearer.

side.
Each of these various steps may (and does) go wrong.

Sometimes one of the robots turns more than 360 degrees
and loses track of its position. The hearer may not be able
to detect well the turning of the speaker towards the topic and
thus miss the topic. However the general success rate is high
enough (about 75 %) to allow subsequent language games. At
the moment we obtain 3 to 3,4 language games per minute.

3.4 Categorisation

As discussed in the previous subsection, the robots have a
panoramic view of their environment and a list of objects with
sensory states for each one. Moreover the topic of the conver-
sation is now known by both robots. The next step is foreach
to derive a distinctive feature set which allows a discrimina-
tion of the topic from the other objects in the context. This
proceeds along the lines outlined in section 2.1. The robots
build up discrimination trees if there are not enough features
to allow discrimination following the procedure describe in
section 2.2.

3.5 Encoding, Decoding and Feedback

The encoding and decoding steps proceed exactly as outlined
earlier in section 2.3. The result of encoding is transmitted
through the radio link. The robots use random combinations
of letters to form new words when needed. Feedback is based
on the same procedure as outlined in section 2.1: When the
distinctive feature set decoded by the hearer matches with an
expected feature set for the topic, the language game succeeds
otherwise it fails. The hearer provides feedback by a signal
through the radiolink.

4 Results

We have conducted different experiments with the present im-
plementation. Each experiment consists of a series of lan-
guage games. The results of one such experiment are now
reported.

First we look at the discrimination games between two
robots r1 and r2. An object is detected at time/position 176
with the values 9 for channel s0, 0 for s1 and 192 for s2.
The discrimination ends in failure but leads to the construc-
tion of a new feature detector which expects a positive value
for channel 0 (i.e. a value between 0 and 255).

Discrimination game by r2
Objects r2:

o1 [176] [s0:9,s1:0,s2:192]
Topic r2: o1
Failure r2. No feature sets.
New feature detectors r2: r2-s0 [0,255]

Here is another discrimination game when the build up of dis-
criminators is already further advanced. Two objects are seen
o1 and o2, with both positive values for s0 and s2. This is not
enough to discriminate so a new feature detector is created by
further subdividing channel 2.

Discrimination game by r2
Objects r2:

o1 [151] [s0:1,s1:0,s2:59]
o2 [217] [s0:7,s1:0,s2:3]

Topic r2: o1
Feature sets r2:

o1 {r2-s0,r2-s2}
o2 {r2-s0,r2-s2}

Failure r2. No distinctive feature sets.
New feature detectors r2: r2-s2-0 [0,127.5]

r2-s2-1 [127.5,255]

Here is a discrimination game involving three objects which
is successful:

Discrimination game by r2
Objects r2:

o1 [45] [s0:8,s1:0,s2:5]
o2 [58] [s0:4,s1:156,s2:2]
o3 [166] [s0:6,s1:0,s2:187]

Topic r2: o2
Feature sets r2:

o1 {r2-s0,r2-s2-0}
o2 {r2-s0,r2-s1,r2-s2-0}
o3 {r2-s0,r2-s2-1}

Distinctive feature sets r2:
{{r2-s1}}

Success r2.

The set of features of r2 at this point is as follows. Each
feature is followed by the range on the channel and the score
(use and success) of the feature.
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r2-s0 [0,255] 125/3
r2-s0-0 [0,127.5] 111/0
r2-s0-1 [127.5,255] 92/0

r2-s1 [0,255] 125/11
r2-s1-0 [0,127.5] 91/0
r2-s1-1 [127.5,255] 72/0

r2-s2 [0,255] 136/14
r2-s2-0 [0,127.5] 72/0
r2-s2-1 [127.5,255] 120/5

When games continue, there is further refinement and the fea-
tures that are most useful increase their use and success, as
can be seen from figure 7.

We now look at the language games. An example of a
complete successful language game (after 43 discrimination
games and language games) is the following:

This is dialogue nr 43
Speaker: r2. Hearer: r1.
Objects r2:

o1: [138] [s0:2,s1:0,sc-2:183]
Topic r2: self
Distinctive feature sets r2:

{{r2-self}}
Objects r1:

o1: [9] [s0:1,s1:0,s2:186]
o2: [185] [s0:2,s1:12,s2:188]

Topic r1: o1
Distinctive feature sets r1:

{{r1-s0,r1-s2-2-2-2-2-2-1},
{r1-s1,r1-s2-2-2-2-2-2-2-1},
{r1-s0-0,r1-s2-2-2-2-2-2-1},
{r1-s1-0,r1-s2-2-2-2-2-2-2-1},
{r1-s2-2-2-2-2-2-1},
{r1-s2-2-2-2-2-2-2-1}}

Encoded expression r2: (a b)
Decoded expression r1:

{{r1-self},{r1-s2-1},{r1-s2-2-0},
{r1-s2-2-2-2},{r1-s2-2-2-2-2-1},
{r1-s0},{r1-s2-2-2-2-2-2-1},
{r1-s2-2-2-2-2-2-1}}

Success

The game ends in success because the feature sets decoded
by r1 match with one of the distinctive feature sets r1 was
expecting. The lexicon of r1, r2 are at this point as follows.
The meaning, the word and the score (use/success) is printed
out:

The lexicon of r1:
r1-self == (a b) 10/1
r1-s2-1 == (a b) 1/1
r1-s2-2-0 == (a b) 3/1
r1-s2-2-2-2 == (a b) 0/0
r1-s2-2-2-2-2-1 == (a b) 0/0
r1-s0 == (a b) 0/0
r1-s2-2-2-2-2-2-1 == (a b) 1/1
r1-self == (a c) 0/0
r1-s1-2-2-0 == (a d) 0/0

The lexicon of r2
r2-self == (a b) 14/3
r2-s2 == (a b) 2/0
r2-s2-1 == (a b) 2/0
r2-s1-0 == (a b) 4/0
r2-s2-2-1 == (a b) 0/0
r2-s1-2-0 == (a b) 2/1
r2-s1-2-2-0 == (a c) 1/0

We see that r2 uses ”(a b)” for itself and r1 has coupled the
same word to features it uses for recognising r2. r2 has cou-
pled features for r1 to ”(a c)” and this is also the name r1 has
adopted for itself. Finally ”(a d)” is being used as name for
the competitors (the boxes in which a modulated infrared is
housed).

Overall there is now a context coherence of 88.5% (the
agents recognise the same context). The agents successfully
recognisedeach other as the topic 31% of the time. Recogni-
tion of other objects was still low after 45 games but increas-
ing.

5 Conclusions

The paper reports on experiments with physically embodied
robotic agents which are relevant for two fundamental ques-
tions in the origins of cognition, namely (1) how can a set of
perceptual categories (a grounded ontology) arise in an agent
without the assistance of others and without having been pro-
grammed in (in other words not innately provided), and (2)
how can a group of distributed agents which each develop
their own ontology through interaction with the environment
nevertheless develop a shared vocabulary by which they can
communicate about their environment.
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The proposed solution centers around coupled adaptive dis-
crimination games and adaptive language games. Agents en-
gage in interactions with the environment or with others and
change their internal structure in order to be more successful
in the next game. Both systems are selectionist: Structure is
created by random processes and eliminated based on selec-
tionist criteria centering around use and success in use.

Although we feel that this experiment represents an impor-
tant milestone, there are obviously many things which can and
should be done next, and some of this work is already going
on in our laboratory. First, we have done other software si-
mumations showing how spatial categories may become lexi-
calised [11]. These experiments are currently being ported to
physical robots. Second, we are doing experiments in which
vision is the primary source of sensory experiences. One of
these experiments is based on two robotic heads that are lo-
cated near the robotic ecosystem and give comments on the
dynamically evolving scene they see before them. The use
of vision allows for a much broader repertoire of objects and
features and enables us to study how syntactic conventions
may arise. The first results of this experiment are reported in
[13]. Third, we are investigating other language games, in-
cluding games where one robot attempts to entice the other
robot to perform certain actions. It is clear to us that an ex-
citing new area of bottom-up AI research is opening up and
that through language and ontological development a possible
road is opening up for evolving cognitive agents in a bottom-
up fashion.
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