
Interoperability through Emergent Semantics.
A Semiotic Dynamics Approach.

Luc Steels1,2 and Peter Hanappe1

1 Sony Computer Science Laboratory, Paris, France
2 Vrije Universiteit Brussel, Brussels, Belgium

steels@arti.vub.ac.be, hanappe@csl.sony.fr

Abstract. We study the exchange of information in collective informa-
tion systems mediated by information agents, focusing specifically on
the problem of semantic interoperability. We advocate the use of mecha-
nisms inspired from natural language, that enable each agent to develop
a repertoire of grounded categories and labels for these categories and
negotiate their use with other agents. The communication system as well
as its semantics is hence emergent and adaptive instead of predefined.
It is the result of a self-organised semiotic dynamics where relations be-
tween data, labels for the data, and the categories associated with the
labels undergo constant evolution.

1 Introduction

Many interactive information systems such as web browsers typically allow a user
to taxonomically structure data and associate tags with this taxonomy. In the
case of web browsers, the data consists of URLs to web pages, the taxonomy is
the hierarchy of bookmark folders, and tags are names that users associate with
folders and subfolders. We call the taxonomy created and maintained by a user
the “owner taxonomy” and its tags the “owner tags”. The taxonomy implies a
particular way of categorising the data so that there is in fact a semiotic relation
between data, tags, and categories, forming a semiotic triad (see figure 1). The
semantics of the tags (i.e. the meaning of the categories) is usually not explicitly
defined. We could either do this by defining the logical dependencies between
categories (formal semantics), or by defining classifiers, i.e. computable functions
capable of deciding whether the category applies to a data item or not (grounded
semantics).

Categorisations and tagging by users is based on cognitive processes which are
not accessible to information systems, and may not even be consciously known
by the users themselves. For example, a user may decide to put all the songs he
likes in one folder and the ones he does not like in another. This categorisation is
completely subjective and can never be automated nor emulated by a machine.
Similarly user tags often use natural language words but this is only suggestive
and not necessarily accurate nor rational. For example, a user may have a folder
tagged ’New York’ but it could contain pictures of New York, pictures taken in
New York, pictures taken while living in New York, etc.

2

Fig. 1. Data, tags, and categories associated with tags form a semiotic relation. The
paper proposes a system whereby agents autonomously establish such relations and
coordinate them with others.

The taxonomies and tags of a user are usually local and private and this is
unproblematic as long as there is no exchange between them. But there is now
a rapidly growing number of collective information systems where users want
to exchange data with each other, and they are therefore necessarily confronted
with the problem that the taxonomy and tags imposed by one user are not
necessarily the same as those of another. Moreover the information systems
may be heterogenous in the sense that the conceptual schemata used by one
information system for storing data and meta-data may be quite different from
those used by another information system.

One type of collective information system are peer-to-peer systems which
allow direct information exchange between peers without the need to go through
a central server. Well-known examples for music file sharing are systems like
Gnutella, Kazaa, or eMule that are used by millions of people today. Similar
sharing networks are growing for movies or game software. Also in the domain
of scientific data or educational materials, there are growing networks of peer-
to-peer shared systems [8]. Another type of collective information systems form
websites which encourage social sharing of data by allowing users to upload
data and introduce tags for these data. Examples include www.flickr.com for
exchanging pictures, www.citeulike.com for exchanging scientific papers, and
del.icio.us for exchanging information about websites. Although these systems
are not peer-to-peer in the strict sense, because they are managed from central
servers, they nevertheless are highly distributed and the taxonomy is not imposed
in a top-down manner. Users can at any time add or delete data, introduce or
change their own tags, and thus impose taxonomies on their data.

The distributed creation of taxonomies and tags and the multiplicity of con-
ceptual schemata generate the well known problem of semantic interoperability.
One solution is to standardise. The different users of a collective information
system could all agree a priori to use the same taxonomies to structure their
data and to use the same conceptual schemata for their data and meta-data.
The tags in the owner taxonomies can then act as a shared communication pro-
tocol between peers. For example, all users of web browsers could agree to use
the taxonomies of Yahoo for organising their data, and adopt the labels used by
Yahoo (possibly with translations into different languages). Unfortunately such
a standardisation approach is unlikely to work for truely open-ended collective
information systems in rapidly changing domains like music file sharing, picture
exchange, medical imaging, scientific papers, etc. New topics and new kinds of

3

data come up all the time, styles shift, and interests of users diverge, so it is very
hard to capture all this once and for all in a static taxonomy. Another issue is
that taxonomies and conceptual schemata may be linked to specific proprietary
software that others may not want to use.

Alternatively, it is possible that each peer has its own local taxonomy, but
that these are translated into a (more) global taxonomy which is used for query-
ing and information exchange and thus acts as an interlingua between peers. The
translation to conceptual schemata of each peer could be aided by mediators [19]
and achieved through automated schema matching based on finding structural
similarities between schemas (see the survey in [9]). A promising recent vari-
ant of automated schema matching is based on ostensive interactions, in which
agents send each other examples of the instances of schema elements so that the
mapping can be made [16]. The difficulty with this approach is that a one-to-one
mapping of taxonomies or conceptual schemata is not always possible. In these
cases data semantics must be taken into account.

The first approach which is trying to do this is currently being explored by
the Semantic Web initiative [4] and by advocates of CYC or Wordnet [7]. The
data is associated with descriptions with a formal semantics, defined in terms of
ontologies [5]. This approach is clearly highly valuable for closed domains, but
there are known limitations when applied to open-ended information systems
[1], [12], [11]. The ontologies do not capture the grounded semantics, they only
constrain inference. Moreover the semantic web requires standardisation based
on universal (or at least domain-wide) ontologies. But it is hard to imagine that
a world-wide consensus is reachable and enforcable in every domain of human
activity for which information systems are currently in use. Even in restricted
domains this is hard because of an increasingly interconnected global world.
Human activity and the information systems built for them are open systems.
They cannot be defined once and for all but must be adaptable to new needs.

In this paper, we also take a semantics approach but pursue grounded as
opposed to formal semantics. We view semantic interoperability as a coordination
problem between the world, information systems, and human users, and propose
to set up a semiotic dynamics that achieves this coordination. Rather than trying
to map owner taxonomies or conceptual schemata directly onto each other, we
propose that each information system has an associated agent. The agents self-
organise an interlingua with labels whose underlying categories are grounded in
the actual data and meta-data. The interlingua is not universal but coordinated
among those agents that need to cooperate. The semiotic dynamics is user-driven
in the sense that users continuously stimulate the formation of new labels and
categories and steer the grounding of the categories by giving examples and
counterexamples.

Our proposal has two components. On the one hand we try to orchestrate
the same sort of semiotic dynamics that we see happening in natural languages
or in social exchange websites like www.flickr.com, namely there is an emergent
system of labels whose use is coordinated among the agents without central
coordination. Second we try to achieve grounded semantics by programming the

4

agents so that they can develop operational classifiers grounding these labels.
The semantics is emergent in the sense that it is derived by the system itself
and it is dynamic because it continuously tracks the recategorisations that users
inevitably carry out as they organise and reorganise their data.

Our proposals are strongly related to other approaches for achieving ’emer-
gent semantics’, notably [2], which also emphasises user orientation, and [10],
which explores grounded semantics. Similar to [3] we focus on orchestrating a
user-driven semiotic dynamics in information agents.

The work reported here relies on a decade of research into the origins and
evolution of communication systems for robot-robot and robot-human commu-
nication [12], [14]. We have applied these ideas to the semantic interoperability
problem and performed a case study in the domain of music file sharing. The
development of classifiers can be done in many different ways but for this case
study we have relied on recent work in the automatic construction of classifiers
inspired by methods from genetic programming [18]. In the present paper, we
use however a simpler example to explain the proposed mechanisms and study
their behavior.

We are well aware of important limitations of the proposals discussed in
this paper, and therefore see it as a first exploration rather than the final solu-
tion to semantic interoperability (if that ever could be found). More specifically,
grounded semantics is only possible in domains where the meaning of a taxon-
omy can be grounded, which is only the case in well-delineated domains. For
example, although it would be straightforward to develop a classifier for the
tag ‘black-and-white’ (which would also work for ‘bw’, ‘noir-et-blanc’, etc.), it is
quite impossible to develop a grounded semantics for ‘New York’ as the range of
images where this tag might be applicable is vast and strongly varied. However
it is only by defining and exploring the kinds of systems discussed in this paper
that progress on the issues can be made.

The first part of the paper defines some of the terminology that we will use
later. Then we describe the behaviors of the information agents, particularly as
they pertain to the negotiation of a shared repertoire of labels and classifiers
that constitute the meaning of the labels. Next we give example interactions
from our implementation in the music domain.

2 Definitions

We assume that the information systems handle sets of data. The data can be
files (text, music, movie, or image files) or any data stored by other means. For
simplification, only one type of data is assumed (for example, only music files).
Furthermore, we assume that every datum has a unique identifier that can be
communicated between peers. The identifiers can be a URL that indicates where
the data (or meta-data) can be found, or it can be an index into a database that

5

is accessible to everyone3. In the exchanges between agents, the identifiers are
sent instead of the data. In the worst case, when no identifiers are available, the
data itself will be transmitted. We will use D to indicate the set of all data.

We will use also tags and labels. Both are character strings. The tags are used
by the owners in their taxonomy. The labels are used by the information agents.
The set of all labels will be denoted by L, and the set of all tags N . Agents have
also access to classifiers which are computable functions over data items. They
are used to give grounded semantics to the labels.

2.1 Classifiers

Definition 1. Classifier
A classifier is a function, c : D → 0, 1, that, given a data element d, returns

1 or 0, depending on whether d belongs to a particular class (category) c or not.
The set of classifiers is denoted by C.

For example, there might be a classifier that is able to detect whether a song
sample contains a female voice or not, or whether a song was performed by The
Beatles.

Classifiers use data and meta-data to decide what data belongs to the cate-
gory and what not. The construction of classifiers is discussed in section 4.

Agents need the ability to discriminate a data set D1 from another set D2.
For example, songs which have a female voice and those which do not. For this
purpose, we introduce two functions, the scope and the discriminative success of
a classifier.

Definition 2. Scope of a classifier
The scope of a classifier c for a set of data D, σ(D, c), is the fraction of

elements in D for which c returns 1:

σ(D, c) =
∑

d∈D c(d)
|D|

Definition 3. Discriminative success of a classifier
The discriminative success of a classifier c measures how well c can discrim-

inate between two data sets D1 and D2:

δ(D1, D2, c) = σ(D1, c)− σ(D2, c)

The categorisation process consists of finding the classifier with the highest
discriminative success, given two data sets D1 and D2.

3 For music files, the MusicBrainz database could be used
(http://www.musicbrainz.org); for movies, the Internet Movie Database
(http://www.imdb.com); for scientific papers, Citeseer (http://citeseer.ist.psu.edu).

6

Definition 4. Categorise
Let D1 and D2 be two sets of data and C a set of classifiers. We can order

the classifiers c ∈ C in descending order based on their discriminative success:
[〈c1, p1〉, ..., 〈cm, pm〉] with ci ∈ C, and pi = δ(D1, D2, ci), and pi, pi+1 → pi ≥
pi+1. Clearly the better ci distinguishes the elements in D1 from the elements in
D2, the greater δ(D1, D2, ci) will be and hence by taking the first element of the
sequence above, we find the most discriminating category: categorise(C,D1, D2) =
first([〈c1, p1〉, ..., 〈cm, pm〉]).

In the case where several classifiers ci, . . . , cn have a maximum discriminative
success, additional heuristics could be used in choosing the best classifier. For
example, one may choose the classifier that has been used most successfully
in previous exchanges with other agents. Classifiers will not only be used to
distinguish between two sets but also to filter an existing data set, based on the
following definition:

Definition 5. Filter

filter(D, c) = {d | d ∈ D and c(d) = 1}

2.2 Dictionaries

The association of labels with classifiers and vice versa is stored in a dictionary.

Definition 6. Dictionary
A dictionary W is a two-way mapping from a set of labels L to a set of

classifiers C. Each association between a classifier and a label has a certain
strength γ ∈ [0.0, 1.0]. More formally: W ⊂ L× C × [0.0, 1.0].

For example, there could be a label ’female-voice’ which is associated with
the classifier able to decide whether a song contains a female voice or not.

Given a classifier c and a dictionary W , we can construct the list of possible
labels for a classifier c as an ordered set based on the strength γ of the relation
between c and a label l:

labels(c,W) = ((l1, γ1), ..., (ln, γn)) with (c, li, γi) ∈W and γi ≥ γi+1

Definition 7. Coding of a classifier
The label coding a classifier c is the first label from this set: code(c,W) =

first(labels(c,W)).

The inverse operation, decode, is defined similarly. Given a label l and a
dictionary W , we construct the list of possible classifiers as an ordered set based
on the strength γ of the relation between l and a classifier c:

cats(l,W) = ((c1, γ1), ..., (cn, γn)) with (ci, l, γi) ∈W and γi ≥ γi+1

7

Definition 8. Decoding of a label
The decoded classifier is the first classifier from the ordered set: decode(l,W) =

first(cats(l,W)).

This process can be easily extended to coding or decoding conjunctions (i.e.
sets) of classifiers. Coding should seek the minimal number of words that cover
the set of classifiers resulting from discrimination and decoding should recon-
struct the minimal set of classifiers that are associated with each of the words.

2.3 Peer information system

Definition 9. Peer information system
A peer information system a at time t as PIa,t = 〈ISa,t, O, IAa,t〉 is defined

as:

– ISa,t = 〈Da,t, Na,t,Ma,t,MD〉 being an information system which consists
of a set of data D, a set of tags N and a mapping M : N → P(D) mapping
tags to subsets of D by an extensional definition, and a set of meta-data
MD.

– O a (human) owner.
– IAa,t = 〈La,t, Ca,t,Wa,t〉 an information agent with a set of labels L, a set

of classifiers C and a dictionary W .

Definition 10. Collective information network A collective information system
IN consists of a set of information systems: IN = {PI1, ...P In}.

When the owner of one information system queries another information sys-
tem, we call the information system of the querying peer the caller (or client)
and the system providing information the callee (or server).

3 Agent behaviors

3.1 Interaction

We assume that the (human) owner of the caller initiates a query by identi-
fying a set Gc ⊆ Dc of data elements that are considered to be good exam-
ples of the kind of elements the owner is requesting from the callee. The owner
can do this by using the tags of the owner taxonomy that remains fully under
his control, or by explicitly identifying in some other way a subset of the ex-
amples in the information system’s data set. We assume furthermore that the
query is formulated within a specific context Kc ⊆ Dc, which consists of other
data elements against which Gc is to be distinguished (counter-examples). The
counter-examples should not overlap with the examples, i.e. Gc ∩Kc = ∅.

For example, the owner could choose a number of tags (like ’jazz’, ’female-
voice’, ’piano’) yielding a set of possible data elements based on the tagging
system. If this is the user’s first interaction, these data elements are viewed

8

Fig. 2. The different entities and relations involved in collective information exchange
and the items that are exchanged between the two. To the left are components of a
caller and to the right those of a callee.

against the set of all other music files in his information system. We expect the
information agent to come up with the best classifier for distinguishing the data
elements against the context and then querying other peers to find the data that
are the most compatible. Agents do not exchange the music files themselves,
neither the classifiers directly (as different peers may use different libraries or
programming languages for their classifiers), but rather labels that are progres-
sively negotiated.

Five types of situations may occur and they are defined in the following
subsections. In section 5, we give specific examples for each of these situations
in the context of a music application.

3.2 Successful interaction

The following script gives an overview of the interaction in case of a successful
query. The left side details the actions on the caller side and the right side the
actions on the callee side. In the middle we show the items that are exchanged
between caller and callee.

9

1. Caller owner chooses Gc ⊂ Dc

with Kc as context
2. Caller IA categorises Gc,Kc

as catc
3. Caller IA codes catc as l

−→ l −→
1. Callee IA decodes l as cats
2. Callee IA filters

R = filter(Ds, cats)
←− R ←−

4. Caller owner selects F ⊆ R
as relevant data

5. Caller inserts F in Dc

and updates Wc

→ success →
3. Callee updates Ws

If the interaction succeeds completely, the feedback F provided by the caller’s
owner is positive, in other words he received mainly good examples. This implies
that the label l naming catc, as used by the caller, was compatible with the
interpretation of this label by the callee as cats and compatible with the desires
of the user. In this case, both caller and callee update their mappings from labels
to categories so that the use of the label l for the categories catc and cats is re-
enforced in the future. This is done by increasing the relation between the used
label and the used classifier with a quantity ∆inc, and diminishing competing
relations. Competitors are relations that either use another label for the same
classifier, in which case they are decreased with ∆n−inh, or that have associated
another classifier with the same label, in which they are decreased with ∆o−inh.
More formally, UpdateCaller(Wc,t, l, catc) is defined as:

Wc,t+1 = {ri|ri = (ci, li, γi) ∈Wc,t with ci 6= catc and li 6= l} ∪
{(catc, l, γi + ∆inc) for wc = (catc, l, γi) ∈Wc,t} ∪
{rj |rj = (catc, lj , γi + ∆n−inh) with lj 6= l} ∪
{rj |rj = (catj , l, γi + ∆o−inh) with catj 6= catc}

Similarly, UpdateCallee(Ws,t, l, cats) is defined as:

Ws,t+1 = {ri|ri = (ci, li, γi) ∈Ws,t with ci 6= cats and li 6= l} ∪
{(cats, l, γi + ∆inc) for ws = (cats, l, γi) ∈Ws,t} ∪
{rj |rj = (cats, lj , γi + ∆n−inh) with lj 6= l} ∪
{rj |rj = (catj , l, γi + ∆o−inh) with catj 6= cats}

3.3 The information agent fails to categorise

Consider next the situation in which the caller does not have a classifier to
discriminate Gc from Kc (caller step 2 fails). In that case, the caller performs
two steps:

10

1. The caller constructs a new classifier catn that distinguishes the elements in
Gc from those in Kc.

2. The caller invents a new label ln (a random string drawn from a sufficiently
large alphabet) and extends W with a new relation between ln and catn with
an initial value for the strength being γinit: W ′

c = Wc ∪ {(ln, catn, γinit)}.

The interaction between caller and callee can now continue as before with
the transmission of ln as new label.

An important issue arises when the random string was already used by an-
other agent for another classifier. This issue (known as homonymy: one label
having different meanings) is dealt with by the dynamics of the system as pre-
sented here, but it can be minimised by using a technique that guarantees unique
symbols even if generated in a distributed fashion, such as the universally unique
identifiers (UUID) [6].

3.4 The callee does not know the label

The callee does not have the label l that was transmitted by the caller (callee
step 1 fails). In that case, the callee signals failure to the caller. It then receives
Gc and Kc as examples of what the caller is looking for and then goes through
the following steps:

1. Callee IA categorises Gc as distinctive from the context Kc with the classifier
cats. When this fails, the callee IA creates a new classifier (further called
cats) and adds it to its categorial repertoire.

2. Callee IA extends Ws with a relation between cats, the label l, and an initial
strength γinit: W ′

s = Ws ∪ {(l, cats, γinit)}.

Then the callee continues the game as before. The interaction is summarised
as follows:

11

1. Caller owner chooses Gc

with Kc as context
2. Caller IA categorises Gc,Kc

as catc
3. Caller IA codes catc as l

−→ l −→
1. Callee IA fails to decode l

← failure ←
4. Caller IA transmits Gc,Kc

→ l, Gc,Kc →
2b. Callee IA categorises Gc,Kc

as cats
2c. Callee IA stores (cats, l, γinit)
3. Callee IA filters

R = filter(Ds, cats)
←− R ←−

5. Caller owner selects F ⊆ R
6. Caller inserts F in Dc

and updates Wc

→ success →
4. Callee updates Ws

3.5 Handling partial success

The next case occurs when the results given by the callee to the caller is deemed
to be partly irrelevant by the (owner of the) caller. A score can be computed
which is simply the percentage of elements that was deemed appropriate by the
owner. A percentage below θfail signals the failure. There are two causes for this
problem: (1) The classifier used by the caller is not precise enough to capture the
distinction that was intended by the user, or (2) the classifier associated with
the transmitted label by the caller is different from the classifier associated with
the same label by the callee.

The distinction between the two cases is done as follows. After the evaluation
of the results by the owner, the calling agent is in possession of two sets of good
examples (Gc and F) and two sets of counter-examples (Kc and B). With the
extra information available, the agent can now try to find a classifier that has a
higher discriminative success than the initially chosen classifier. If such a classifier
can be found, the agent concludes that it has misinterpreted the intentions of
its owner. If such a classifier cannot be found, it signal a communication failure,
indicating that the callee has a different interpretation of the label that does not
match with its own. The next two sections detail the interactions in both cases.

3.6 The caller has misinterpreted the owner’s request

In case the calling agent can find a new classifier cat′c with a higher discriminative
success between the new sets Gc ∪ F and Kc ∪ B, the interaction proceeds as

12

before using cat′c instead of catc. The classifier cat′c can either be an existing
classifier or it can be a classifier that is newly created. The classifier cat′c is
coded as label l′.

1. Caller owner chooses Gc

with Kc as context
2. Caller IA categorises Gc,Kc

as catc
3. Caller IA codes catc as l

−→ l −→
1. Callee IA categorises

Gc,Kc as cats
2. Callee IA filters

R = filter(Ds, cats)
←− R ←−

4. Caller owner selects F ⊆ R
as relevant data

5. Caller inserts F in Dc

6. The result score is too low
6a. Caller IA categorises

Gc ∪ F,Kc ∪B as cat′c
6b. Caller IA codes cat′c as l′

−→ l′ −→
2. Callee IA decodes l′ as cat′s
3. Callee IA filters

R = filter(Ds, cat′s)
←− R′ ←−

4. Caller owner selects F ′ ⊆ R′

as relevant data
5. Caller inserts F ′ in Dc

and updates Wc

→ success →
3. Callee updates Ws

The second query, using label l′, can be implemented as a recursive call to
the Query function, described previously, using the sets Gc ∪ F and Kc ∪ B.
This call can fail for the same reasons as the first invocation. For example, the
callee may not know the label l′ and signal a failure. In that particular case, the
interaction falls back to the situation discussed in section 3.4.

3.7 The caller and callee interpret the label differently

In this case caller and callee should try to coordinate their categories and labels
so that exchange becomes possible or fruitful in the future. Actions are necessary
both on the side of the caller and of the callee. First of all the strength of the
labels they used in the failed communication are to be diminished:

13

1. Caller IA diminishes the association strength between catc and l in Wc by a
factor ∆dec. This will decrease the chance that the relation is coded in the
future with this particular label.

2. Callee IA diminishes the association strength between cats and l in Ws by
a factor ∆dec. This will decrease the chance that l is decoded in the future
with this relation.

If the caller was not able to come up with a better classifier than the one
used in the first transaction, the caller IA can send examples of the objects of
interest Gc∪F and the context Kc∪B so that the callee can attempt to acquire
the right meaning by finding a distinctive classifier and by adding an association
between this classifier and the label l. This case then becomes identical to the
one discussed earlier (section 3.4, “the callee does not know the label”).

1. Caller owner chooses Gc

with Kc as context
2. Caller IA categorises Gc,Kc

as catc
3. Caller IA codes catc as l

−→ l −→
1. Callee IA categorises

Gc,Kc as cats
2. Callee IA filters

R = filter(Ds, cats)
←− R ←−

4. Caller owner selects F ⊆ R
as relevant data

5. Caller inserts F in Dc

6. The result score is too low
6a. Caller IA fails to

categorise Gc ∪ F,Kc ∪B
6b. fails to create a

better classifier
7. Caller updates Wc

and signals failure
→ failure →

3. Callee IA updates Ws

8. Caller IA transmits
l, Gc ∪ F,Kc ∪B

→ l, Gc ∪ F,Kc ∪B →
4a. Callee IA categorises

Gc ∪ F,Kc ∪B as cat′s
4b. Callee IA stores

(cat′s, l, γinit)

14

3.8 Parameters

In summary, we find the following main parameters for the agent’s adaptive
mechanisms. Each time we give values for these parameters that have proven to
yield adequate performance in large-scale tests of the system.

1. γinit is the initial strength with which a new relation enters into the dictio-
nary L of the agents. γinit = 0.5.

2. ∆inc is the increase of γ in the relation used, in case there is success. ∆inc =
0.1. [ENFORCEMENT]

3. ∆n−inh is the decrease of relations with the same label (but different cate-
gories) in case of success. ∆n−inh = −0.2.
∆o−inh is the decrease of relations with the same classifier (but different
labels) in case of success. ∆o−inh = −0.1. [LATERAL INHIBITION]

4. ∆dec is the decrease of γ in the relation used, in case when there is failure.
∆dec = −0.1. [DAMPING]

5. θdisc is the threshold used in the categorisation. θdisc = 0.5
6. θfail is the threshold used to signal a failed exchange. θfail = 0.5

There is some leeway with the exact value of these parameters. It is even
possible to make all of them 0 (accept γinit) but then all labels ever invented by
any agent will propagate in the population and so we get a very large dictionary.
If they are non-zero, then obviously ∆inc > 0 and ∆n−inh < 0, ∆o−inh < 0. Also
∆dec < 0 because otherwise a relation that is not successful would increase in
strength. The importance of the parameters is summarised in figure 3, taken from
simulation experiments. Adoption means that new labels propagate, enforcement
means that the strength is increased in case of success, damping means that the
strength is decreased in case of failure, and lateral inhibition means that the
strength of competitors is decreased in case of success.

4 Categorisation

We recall that a classifier γ is a computable function that, when given a data
element d ∈ D, returns true (T) or false (F): γ : D 7→ {T, F}. A classifier C ∈ C
is defined by a classifier γc that returns true, if d belongs to the classifier, or
false otherwise. A classifier C is a set whose elements are specified by intensional
definition, i.e. by the classifier γc. The elements of the classifier C are rarely
known in advance, not by the user nor by the information system. Instead,
the user provides a subset of C, the examples K ⊂ C, and a subset of C’s
complement, the counter-examples K ⊂ (D \ C). Thus, the user provides the
information agent with an incomplete, extensional definition of C and D\C. The
categorisation process then consist of generalizing this partial definition into an
intensional definition in the form of a classifier γ. In the worst case, the classifier
γ stores an enumeration of the elements that belong to the classifier. We define
the two classifiers γmin and γmax as follows:

γmin : D 7→ {T, F} : γ(d) = T if d ∈ G, F otherwise

15

Fig. 3. The evolution in average dictionary size for labeling 10 objects in a population
of 10 agents. Enforcement combined with lateral inhibition and damping leads to the
most efficient dictionary, in which only 10 labels are used for 10 objects.

γmax : D 7→ {T, F} : γ(d) = F if d ∈ K, T otherwise

The classifiers γmin and γmax are the simplest form of a classifier. If G = C
and K = D \ C then γmin = γmax. For any relevant classifier built by the
information system it should hold that Dγmin

⊆ Dγ ⊆ Dγmax
. A classifier γ

converges if Dγ → C, for G → C and K → D \ C. In other words, if we know
all the elements in C and all the elements not in C, than the classifier should
map exactly to C. If the user only provides additional good examples such that
G→ C but no counter-examples are added to K, the classifier may not converge:
Dγ → D′

γ , with C ⊆ D′
γ ⊆ Dγmax

. It will generally be necessary that the set
of counter-examples contains enough elements in order to construct an efficient
classifier.

There are in principle many ways to build classifiers. The approach that we
have used for the music domain explored discussed further uses genetic program-
ming techniques as described in more detail in [18].

5 An example: Music sharing

We now show a concrete example of these scripts at work for the case of p2p
music sharing. The examples have been drawn from our experimental implemen-
tation. We introduce three users and their respective information agents. Each
peer has local meta-data, displayed in the tables below. All songs have a unique
identification number, common to all agents. To make the examples more read-
able we will use the title to indicate a song instead of its identification number.

16

The agents also have access to the name of the artists. However, these names
are formatted differently for every agent. The other attributes in the tables are
specific to every agent. Agent0’s database contains a genre and a BPM (beats
per minute) column. Agent1 stores the release year of the recordings and Agent2
has information on the global energy of the songs. The peers thus have different
sets of data and meta-data, and the conceptual schemas used for storing data is
different.

The meta-data of peer 0 is as follows:

ID Name Artist Genre BPM
15 Let’s Spend the Night Together The Rolling Stones Rock 141
14 Ruby Tuesday The Rolling Stones Rock 102
13 Paint It Black The Rolling Stones Rock 160
12 And I Love Her The Beatles Rock ’n Roll 115
11 Another Girl The Beatles Rock ’n Roll 180
10 Twist And Shout The Beatles Rock ’n Roll 128
9 I’m Down The Beatles Rock ’n Roll 164
8 A Hard Day’s Night The Beatles Rock ’n Roll 141
7 Norwegian Wood The Beatles Pop 61
27 Amazing Grace Elvis Presley Rock ’n Roll 63
6 Eleanor Rigby The Beatles Pop 138
26 Are You Lonesome Tonight Elvis Presley Rock ’n Roll 75
5 I Feel Fine The Beatles Rock ’n Roll 180
25 Love Me Tender Elvis Presley Rock ’n Roll 81
4 You Know My Name The Beatles Pop 96
24 Smoke on the Water Deep Purple Rock 120
3 Across The Universe The Beatles Pop 82
2 Helter Skelter The Beatles Rock 155
1 Blackbird The Beatles Pop 94
21 Billie Jean Michael Jackson Pop 119
0 Sie Liebt Dich The Beatles Rock ’n Roll 153
20 True Blue Madonna Pop 119

The meta-data of Peer 1 is:

17

ID Name Nom Année
15 Let’s Spend the Night Together Rolling Stones, The 1967
14 Ruby Tuesday Rolling Stones, The 1967
13 Paint It Black Rolling Stones, The 1966
12 And I Love Her Beatles, The 1964
11 Another Girl Beatles, The 1965
10 Twist And Shout Beatles, The 1963
9 I’m Down Beatles, The 1965
8 A Hard Day’s Night Beatles, The 1964
7 Norwegian Wood Beatles, The 1965
27 Amazing Grace Presley, Elvis 1972
6 Eleanor Rigby Beatles, The 1966
26 Are You Lonesome Tonight Presley, Elvis 1956
5 I Feel Fine Beatles, The 1964
25 Love Me Tender Presley, Elvis 1957
4 You Know My Name Beatles, The 1969
24 Smoke on the Water Deep Purple 1972
3 Across The Universe Beatles, The 1970
2 Helter Skelter Beatles, The 1968
1 Blackbird Beatles, The 1968
21 Billie Jean Jackson, Michael 1983
0 Sie Liebt Dich Beatles, The 1964
20 True Blue Madonna 1986

The meta-data of Peer 2 is:

18

ID Name Band Energy
15 Let’s Spend the Night Together stones 0.612
14 Ruby Tuesday stones 0.322
13 Paint It Black stones 0.571
12 And I Love Her beatles 0.431
11 Another Girl beatles 0.607
10 Twist And Shout beatles 0.745
9 I’m Down beatles 0.623
8 A Hard Day’s Night beatles 0.619
7 Norwegian Wood beatles 0.494
27 Amazing Grace the king 0.38
6 Eleanor Rigby beatles 0.51
26 Are You Lonesome Tonight the king 0.0
5 I Feel Fine beatles 0.523
25 Love Me Tender the king 0.128
4 You Know My Name beatles 0.502
24 Smoke on the Water deep purple 0.53
3 Across The Universe beatles 0.55
2 Helter Skelter beatles 0.642
1 Blackbird beatles 0.191
21 Billie Jean michael jackson 0.533
0 Sie Liebt Dich beatles 0.663
20 True Blue madonna 0.619

As explained earlier, we assume that owners have imposed a taxonomy on
their data shown in the following tables for peer 0, 1, and 2 respectively:

folder files
beatles Across The Universe,

I Feel Fine, Norwegian Wood,
Helter Skelter, You Know My Name,
Eleanor Rigby, Blackbird

stones Let’s Spend the Night Together,
Ruby Tuesday

folder files
sixties Twist And Shout, Paint It Black,

I’m Down, And I Love Her
seventies Smoke on the Water,

Let’s Spend the Night Together
eighties Billie Jean, True Blue

folder files
party music Twist And Shout, I’m Down

We now describe four queries which illustrate the approach. The agents start
from an initial state where they do not know any labels nor categories yet.

19

5.1 Query 1: Agent 0 asks Agent 1 for more “beatles”

In the first query, user0 selects the folder “beatles” and asks its agent to seek
similar songs. Since the user explicitly selects “beatles” and not “rolling stones”,
the agent interprets the request as: “find more beatles, not rolling stones”. The
search query then proceeds as follows:

– Agent0 categorises the owner’s request using the following set of examples:
[Across The Universe], [I Feel Fine], [Norwegian Wood], [Helter Skelter], [You
Know My Name], [Eleanor Rigby], [Blackbird], and counter-examples: [Let’s
Spend the Night Together], [Ruby Tuesday].

– Since the dictionary is empty, agent0 fails to find a classifier that discrimi-
nates the examples from the counter-examples.

– Agent0 constructs the new classifier, Artist(The Beatles). It introduces a
new label4 "6365915a" and binds the name to the classifier with the default
strength of 0.5.

– Agent0 queries agent1 with the label "6365915a".
– Agent1 fails to decode the label "6365915a" since its dictionary is empty. It

returns a failure message to agent0.
– Agent0 transmits the examples and counter-examples of "6365915a".
– Agent1 creates the classifier Nom(Beatles, The) and binds the label "6365915a"

to it with a default strength of 0.5.
– Agent0 iterates the query again. This time, agent1 successfully decodes

"6365915a" as Nom(Beatles, The) and uses the classifier to filter its data
collection. The results are: [And I Love Her], [Twist And Shout], [I’m Down].

– Agent0 asks its owner to evaluate the results. All songs are considered good
results. The query was a success.

– Agent0 updates its dictionary by increasing the strength of the binding be-
tween Artist(The Beatles) and "6365915a".

– Agent1 updates its dictionary by increasing the strength of the binding be-
tween Nom(Beatles, The) and "6365915a".

The following listing shows the same query in a more compact form. We will
use this form of presentation in the remainder of the text.

- [0, Agent0]: search examples: [Across The Universe][I Feel
Fine][Norwegian Wood][Helter Skelter][You Know My Name][Eleanor
Rigby][Blackbird], counter-examples: [Let’s Spend the Night
Together][Ruby Tuesday]

- [1, Agent0]: categorisation failed
- [2, Agent0]: creates Category<Artist(The Beatles)>
- [3, Agent0]: binds 6365915a to Category<Artist(The Beatles)>
- [4, Agent1]: query for 6365915a
- [5, Agent1]: fails to decode 6365915a
- [6, Agent0]: transmits examples and count-examples of 6365915a

4 We use randomly generated labels based on the UUID algorithm.

20

- [7, Agent1]: categorisation failed
- [8, Agent1]: creates Category<Nom(Beatles, The)>
- [9, Agent1]: binds 6365915a to Category<Nom(Beatles, The)>
- [10, Agent1]: query for 6365915a
- [11, Agent1]: decodes 6365915a as Category<Nom(Beatles, The)>
- [12, Agent1]: filter data: results: [I’m Down][And I Love Her][Twist
And Shout]

- [13, Agent0]: owner evaluation: good (3 out of 3): [Twist And
Shout][I’m Down][And I Love Her]

- [14, Agent0]: search sucessful
- [15, Agent0]: update dictionary
- [16, Agent1]: update dictionary

The dictionary of peer 0 is now:

Label Category Strength
6365915a Artist(The Beatles) 0.6

The dictionary of peer 1 is:

Label Category Strength
6365915a Nom(Beatles, The) 0.6

5.2 Query 2: Agent 1 asks Agent 0 for more “sixties”

In the second query, user1 select the folder “sixties” and requests for more songs
like these. Agent1 interprets the request as “find more sixties, not seventies
nor eighties”. It chooses to send the query to agent0. The complete listing of
interaction is given below. In step 1, agent1 categorises the set of examples and
counter-examples as Nom(Beatles, The). This is a reasonable choice because
three out of four of the examples are indeed Beatles songs. However, when owner1

evaluates the results in step 6, the number of songs that are considered good is
low. In this case, agent1 concludes that it has misinterpreted the request of the
owner. It tries to correct its mistake and creates a new classifier, Année(from
1963 to 1966), that better reflects the request. A new label is introduced and
bound to the classifier. The search is then repeated. Agent0 does not know
the new label, so examples and counter-examples are transmitted to indicate
its meaning. Agent0 categorises these examples as Genre(Rock ’n Roll) and
filters its data set with it. The results are all considered valid by owner1. The
query thus ends successfully even though both agents use different categories
and meta-data.

- [0, Agent1]: search examples: [Twist And Shout][Paint It Black][I’m
Down][And I Love Her], counter-examples: [Billie Jean][Smoke on the
Water][True Blue][Let’s Spend the Night Together]

- [1, Agent1]: uses Category<Nom(Beatles, The)>
- [2, Agent1]: codes Category<Nom(Beatles, The)> as 6365915a

21

- [3, Agent0]: query for 6365915a
- [4, Agent0]: decodes 6365915a as Category<Artist(The Beatles)>
- [5, Agent0]: filter data: results: [Blackbird][Eleanor
Rigby][Norwegian Wood][Across The Universe][You Know My Name][And I
Love Her][Helter Skelter][I Feel Fine][Twist And Shout][I’m Down]

- [6, Agent1]: owner evaluation: good (4 out of 10): [Twist And
Shout][I Feel Fine][I’m Down][And I Love Her], bad (6 out of 10):
[Across The Universe][Norwegian Wood][Helter Skelter][You Know My
Name][Eleanor Rigby][Blackbird]

- [7, Agent1]: owner request misinterpreted, uses new
Category<Annee(from 1963.0 to 1966.0)> instead.

- [8, Agent1]: binds 5f6a1a0c to Category<Annee(from 1963.0 to 1966.0)>
- [9, Agent1]: transmits examples and count-examples of 5f6a1a0c
- [10, Agent0]: categorisation failed
- [11, Agent0]: creates Category<Genre(Rock ’n Roll)>
- [12, Agent0]: binds 5f6a1a0c to Category<Genre(Rock ’n Roll)>
- [13, Agent0]: query for 5f6a1a0c
- [14, Agent0]: decodes 5f6a1a0c as Category<Genre(Rock ’n Roll)>
- [15, Agent0]: filter data: results: [And I Love Her][I Feel
Fine][I’m Down][Twist And Shout]

- [16, Agent1]: owner evaluation: good (4 out of 4): [Twist And
Shout][I Feel Fine][I’m Down][And I Love Her]

- [17, Agent1]: search sucessful
- [18, Agent1]: update dictionary
- [19, Agent0]: update dictionary

The dictionary of agent 0 is now:

Label Category Strength
6365915a Artist(The Beatles) 0.6
5f6a1a0c Genre(Rock ’n Roll) 0.6

The dictionary of agent 1 is now:

Label Category Strength
6365915a Nom(Beatles, The) 0.6
5f6a1a0c Année(from 1963.0 to 1966.0) 0.6

5.3 Query 3: Agent 2 asks Agent 0 for more “party music”

In the third query, owner2 is looking for more “party music”. The request will
be directed to agent0. In this query, the context will be empty because there are
no other folders from which to distinguish the selected “party music”. In step
2 of the query, agent2 creates the classifier Band(beatles) to describe the two
example songs. Agent0 learns the new label from agent2 (step 5–8) and returns
a list of Beatles songs (steps 9–11). As in the previous query, the information

22

agent concludes it has misinterpreted the selection of the owner. Using the sets
of good and bad examples, it tries to create a better classifier than the one used.
It introduces the classifier Energy(from 0.523 to 0.745), binds a new label
to it, and calls upon agent0 again (steps 12–14). The new label is explained by
transmitting the examples and counter-examples. Agent0 finds that the existing
classifier Genre(Rock ’n Roll) fits the description well and binds the new label
to it. The corresponding songs in its data set are sent back to agent2 (steps 15–
20). Three out of four results are deemed relevant to owner2 and the query is
considered a success.

- [0, Agent2]: search examples: [Twist And Shout][I’m Down],
counter-examples: none

- [1, Agent2]: categorisation failed
- [2, Agent2]: creates Category<Band(beatles)>
- [3, Agent2]: binds 8b85235d to
Category<Band(beatles)>

- [4, Agent0]: query for 8b85235d
- [5, Agent0]: fails to decode 8b85235d
- [6, Agent2]: transmits examples and count-examples of 8b85235d
- [7, Agent0]: uses Category<Artist(The Beatles)>
- [8, Agent0]: binds 8b85235d to Category<Artist(The Beatles)>
- [9, Agent0]: query for 8b85235d
- [10, Agent0]: decodes 8b85235d as Category<Artist(The Beatles)>
- [11, Agent0]: filter data: results: [Twist And Shout][And I Love
Her][Norwegian Wood][Helter Skelter][I’m Down][Blackbird][You Know
My Name][Across The Universe][I Feel Fine][Eleanor Rigby]

- [12, Agent2]: owner evaluation: good (4 out of 10): [Twist And
Shout][I Feel Fine][Helter Skelter][I’m Down], bad (6 out of 10):
[Across The Universe][Norwegian Wood][You Know My Name][Eleanor
Rigby][Blackbird][And I Love Her]

- [13, Agent2]: owner request misinterpreted, uses new
Category<Energy(from 0.523 to 0.745)> instead.

- [14, Agent2]: binds f5af0ee6 to Category<Energy(from 0.523 to 0.745)>
- [15, Agent2]: transmits examples and count-examples of f5af0ee6
- [16, Agent0]: uses Category<Genre(Rock ’n Roll)>
- [17, Agent0]: binds f5af0ee6 to Category<Genre(Rock ’n Roll)>
- [18, Agent0]: query for f5af0ee6
- [19, Agent0]: decodes f5af0ee6 as Category<Genre(Rock ’n Roll)>
- [20, Agent0]: filter data: results: [And I Love Her][I’m Down][Twist
And Shout][I Feel Fine]

- [21, Agent2]: owner evaluation: good (3 out of 4): [Twist And
Shout][I Feel Fine][I’m Down], bad (1 out of 4): [And I Love Her]

- [22, Agent2]: search sucessful
- [23, Agent2]: update dictionary
- [24, Agent0]: update dictionary

The dictionary of agent 0:

23

Label Category Strength
6365915a Artist(The Beatles) 0.6
8b85235d Artist(The Beatles) 0.5
5f6a1a0c Genre(Rock ’n Roll) 0.6
f5af0ee6 Genre(Rock ’n Roll) 0.5

The dictionary of agent 2 after query 3:

Label Category Strength
8b85235d Band(beatles) 0.5
f5af0ee6 Energy(from 0.523 to 0.745) 0.6

5.4 Owner 0 and owner 2 make changes to their taxonomies

After the third query, owner0 and owner2 edit their data sets. The owner of
the information system can intervene at any moment in the organisation of the
music files, as it is under his control. In this example, owner0 creates a new
folder, named “elvis”, and owner2 adds more party music to its collection. The
contents of the folders after the changes are shown below.

The taxonomy of owner0 after the changes:

folder files
beatles Twist And Shout, Across The Universe,

I Feel Fine, Norwegian Wood,
Helter Skelter, I’m Down,
You Know My Name, And I Love Her,
Eleanor Rigby, Blackbird

stones Let’s Spend the Night Together,
Ruby Tuesday

elvis Are You Lonesome Tonight,
Amazing Grace, Love Me Tender

The taxonomy of owner2 after the changes:

folder files
party music Billie Jean, Twist And Shout,

I Feel Fine, Helter Skelter,
True Blue, I’m Down

5.5 Query 4: Agent 2 asks Agent 0 for more “party music”

The last query start similarly as the previous one. This time again, agent2 is seek-
ing more “party music” from agent0. The initial request of the owner is suitably
categorised as Energy(from 0.523 to 0.745) and the same label as in query
3 is reused (steps 1–3). Agent0 decodes the label as Genre(Rock ’n Roll) and
uses this classifier to filter its data set (steps 4–5). This time, however, a large
number of the result are considered unrelevant to the owner. The Elvis’ songs

24

that were added since the previous query are not retained by owner2 and the
query is deemed unsuccessful. Agent2 concludes that the failing communica-
tion is due to a misinterpretation of the label by agent0. The label is therefore
considered unreliable and the strength of its binding to the selected classifier
is decreased by both agents (steps 6–9). Agent2 then explains the use of the
label by pointing agent0 to the set of examples and counter-examples. Agent0
concludes that the classifier Genre(Rock ’n Roll) unsufficiently discriminates
between both sets and, as a result, introduced a new classifier BPM(from 119.0
to 180.0) (steps 10–13). The query is re-launched and yields many good results.

- [0, Agent2]: search examples: [Billie Jean][Twist And Shout][I Feel
Fine][Helter Skelter][True Blue][I’m Down], counter-examples: none

- [1, Agent2]: uses Category<Energy(from 0.523 to 0.745)>
- [2, Agent2]: codes Category<Energy(from 0.523 to 0.745)> as f5af0ee6
- [3, Agent0]: query for f5af0ee6
- [4, Agent0]: decodes f5af0ee6 as Category<Genre(Rock ’n Roll)>
- [5, Agent0]: filter data: results: [And I Love Her][I Feel
Fine][Amazing Grace][Twist And Shout][I’m Down][Are You Lonesome
Tonight][Love Me Tender]

- [6, Agent2]: owner evaluation: good (3 out of 7): [Twist And
Shout][I Feel Fine][I’m Down], bad (4 out of 7): [Are You Lonesome
Tonight][Amazing Grace][Love Me Tender][And I Love Her]

- [7, Agent2]: search failed
- [8, Agent2]: decreasing binding strength
[f5af0ee6,Category<Energy(from 0.523 to 0.745)>,0.5]

- [9, Agent0]: decreasing binding strength
[f5af0ee6,Category<Genre(Rock ’n Roll)>,0.4]

- [10, Agent2]: transmits examples and count-examples of f5af0ee6
- [11, Agent0]: categorisation failed
- [12, Agent0]: creates Category<BPM(from 119.0 to 180.0)>
- [13, Agent0]: binds f5af0ee6 to Category<BPM(from 119.0 to 180.0)>
- [14, Agent0]: query for f5af0ee6
- [15, Agent0]: decodes f5af0ee6 as Category<BPM(from 119.0 to 180.0)>
- [16, Agent0]: filter data: results: [I’m Down][I Feel Fine][Let’s
Spend the Night Together][Eleanor Rigby][Twist And Shout][Helter
Skelter]

- [17, Agent2]: owner evaluation: good (5 out of 6): [Twist And
Shout][I Feel Fine][Helter Skelter][Let’s Spend the Night
Together][I’m Down], bad (1 out of 6): [Eleanor Rigby]

- [18, Agent2]: search sucessful
- [19, Agent2]: update dictionary
- [20, Agent0]: update dictionary

The dictionary of agent0 after query 4:

25

Label Category Strength
6365915a Artist(The Beatles) 0.6
8b85235d Artist(The Beatles) 0.5
5f6a1a0c Genre(Rock ’n Roll) 0.6
f5af0ee6 Genre(Rock ’n Roll) 0.4
f5af0ee6 BPM(from 119.0 to 180.0) 0.5

The dictionary of agent1 after query 4:

Label Category Strength
6365915a Nom(Beatles, The) 0.6
5f6a1a0c Année(from 1963.0 to 1966.0) 0.6

The dictionary of agent2 after query 4:

Label Category Strength
8b85235d Band(beatles) 0.5
f5af0ee6 Energy(from 0.523 to 0.745) 0.6

6 Conclusions

This paper considered the question of semantic interoperability in collective in-
formation exchange. We advocated the creation of a semiotic dynamics whereby
information agents coordinate the use of labels, similar to the way this is now
done by human users in social exchange websites, and they develop an emer-
gent grounded semantics for these labels in terms of classifiers that are functions
over data or meta-data. We illustrated this for the domain of electronic music
distribution.

On the positive side, the examples in section 5 show how the agents “boot-
strap” their dictionaries. The only data exchanged between the agents are the
unique identifiers of the data and the labels of the query. No meta-data is ex-
changed nor any indication of the owner’s data organisation. This makes it pos-
sible for the taxonomies and the meta-data to be completely local to each infor-
mation system. We have seen cases of successful communication but also how
failure is handled in two situations: when the calling agent misunderstands the
request of its owner, and when the called agent misinterprets the label of the
query. Agents are not using the tags of the folders in the interpretation of the
owner’s request. So there is no attempt to do taxonomy or schema matching.
In fact, the owner’s taxonomy plays only a marginal role, it was mainly used to
define the initial set and the context for the query. The definitions of classifiers
does not depend on them.

The idea of bootstrapping semantic interoperability from local interactions
in a bottom-up fashion is not new (see in partiular [2]). The novelty of the pre-
sented work resides in the fact that the peers do not exchange the organisation
of their meta-data (or database schema’s) and that no direct mapping is built
between these schema’s. Instead, the peers locally maintain a bi-directional map-
ping between classifiers and tags. In addition, the classifiers nor the mapping are

26

established by human experts but are introduced by the agents through the ex-
change of examples and counter-examples. The system is continuously adapting
based on the validity of the results. This validation is not done automatically,
as has been proposed in the literature, but by the user. The input from the end
user, not necessarily an expert, remains a key element of the system.

Although we believe that the approach advocated in this paper provides an
interesting alternative to information exchange without semantics or the seman-
tic web, we want to stress the limits of the approach. It will not always be possible
to have a grounded semantics, partly because user behavior may be too erratic
and subjective to construct classifiers, and partly because the building blocks
available for grounding (such as the signal processing primitives in the case of
music) or the machine learning methods (in this case genetic programming) may
not be effective enough to achieve an adequate grounded semantics. We therefore
see the grounding and negotiation of labels for classifiers as one of the building
blocks to achieve emergent semantics. Other building blocks consist of exploiting
the co-occurrence of tags (as displayed by tag clouds), which establish associa-
tive relations that narrow down the set of data elements corresponding to a tag,
or the query path of a user that establishes additional context [10].

References

1. Aberer, K.,et.al. (2003) Emergent Semantics. Principles and Issues. To appear
in Proc. of the International Conference on Semantics of a Networked World.
www.ipsi.fraunhofer.de/ risse/pub/P2004-01.pdf

2. Aberer, K.,et.al. (2003) The Chatty Web: Emergent Semantics through Gos-
siping. In: Proceedings of the 12th World Wide Web Conference. cite-
seer.ist.psu.edu/aberer03chatty.html

3. Agostini, A. and P. Avesani (2003) A Peer-to-Peer Advertising game.. July 2003,
15 pages. In: Proceedings of the First International Conference on Service Oriented
Computing (ICSOC-03), Springer-Verlag LNCS 2910, pp. 28-42

4. Berners-Lee, T., J. Hendler, and O. Lassila. (2001) The Semantic Web. Scientific
American. May 2001.

5. Davies, J., Fensel, D., & Harmelen, F. van. (2003). Towards the semantic web:
Ontology driven knowledge management. Chicester, UK: John Wiley & Sons

6. Leach, P., Mealling, M., and R. Salz (2004) A UUID URN Namespace. The Internet
Engineering Task Force. Internet drafts. http://www.ietf.org/internet-drafts/draft-
mealling-uuid-urn-03.txt

7. Lenat, D., George A. Miller and T. Yokoi. “CYC, WordNet and EDR — critiques
and responses — discussion.” In:Communications of the ACM 38 (11), November
1995, pp. 45-48. http://www.acm.org/pubs/articles/journals/cacm/1995-38-11/p24-
lenat/p45-lenat.pdf

8. Nejdl, W. et.al. (2003) RDF-based Peer-to-Peer-Networks for Dis-
tributed (Learning) Repositories. VLDB journal www.kbs.uni-
hannover.de/Arbeiten/Publikationen/2002/

9. Rahm, E., and Philip A. Bernstein (2001) A Survey of Approaches to Au-
tomatic Schema Matching VLDB Journal: Very Large Data Bases. 10: 334-350
http://citeseer.ist.psu.edu/rahm01survey.html

27

10. Santini, S., A. Gupta and R. Jain (2001) Emergent Semantics Through Interaction
in Image Databases IEEE Transaction of Knowledge and Data Engineering, summer
2001. www.sdsc.edu/ gupta/publications/kde-sp-01.pdf

11. Staab, S. (2002) Emergent Semantics. IEEE Intelligent Systems. pp. 78-86.
www.cwi.nl/ media/publications/nack-ieee-intsys-2002.pdf

12. L. Steels, ”The Origins of Ontologies and Communication Conventions
in Multi-Agent Systems,” Autonomous Agents and Multi-Agent Systems,
vol. 1, no. 1, Oct. 1998, pp. 169-194. http://www3.isrl.uiuc.edu/ jun-
wang4/langev/localcopy/pdf/steels98theOrigins.pdf

13. Steels, L. (2002) Emergent Semantics. IEEE Intelligent Systems. Trends and Con-
troversies. p. 83-85. www.cwi.nl/ media/publications/nack-ieee-intsys-2002.pdf

14. Steels, L. (2003) Evolving grounded communication for robots. Trends
in Cognitive Science. Volume 7, Issue 7, July 2003 , pp. 308-312.
www.csl.sony.fr/downloads/papers/2003/steels-03c.pdf

15. Steels, L. and Kaplan, F. Collective learning and semiotic dynamics. In Floreano,
D. and Nicoud, J-D and Mondada, F., editor, Advances in Artificial Life (ECAL 99),
Lecture Notes in Artificial Intelligence 1674, pages 679-688, Berlin, 1999. Springer-
Verlag.

16. Tzitzikas, Y. and Meghini, C. (2003) Ostensive Automatic Schema Mapping for
Taxonomy-based Peer-to-Peer Systems. Proc. of CIA-2003, the Seventh International
Workshop on Cooperative Information Agents - Intelligent Agents for the Internet
and Web. Lecture Notes in Artificial Intelligence n. 2782, pages 78-92. August 2003
http://www.csi.forth.gr/ tzitzik/publications/Tzitzikas CIA 2003.pdf

17. Zhang, H., B. Croft, B. Levine, V. Lesse (2004) A Multi-agent Ap-
proach for Peer-to-Peer based Information Retrieval System In Pro-
ceedings of the 2004 Multi-Agent Conference, AAMAS. New York.
http://www.aamas2004.org/proceedings/057 zhangh-p2pir.pdf

18. Zils, A. and Pachet, F. (2004) Automatic Extraction of Music Descriptors from
Acoustic Signals using EDS. In Proceedings of the 116th AES Convention, May
2004. http://www/downloads/papers/uploads/zils-04a.pdf

19. Wiederhold, G. (1992) Mediators in the Architecture of Future Informa-
tion Systems In: IEEE Computer, March 1992, pages 38-49. http://www-
db.stanford.edu/pub/gio/1991/afis.ps

