
LINKING IN FLUID CONSTRUCTION

GRAMMARS

Luc Steels a,b Joachim De Beule b Nicolas Neubauer a

a Sony Computer Science Laboratory, Paris
b Vrije Universiteit Brussel (VUB AI Lab), Pleinlaan 2, 1050 Brussel

Abstract

One of the key problems in any language processing system is to establish an adequate
syntax/semantics interface, and one of the major requirements of such an interface is that
partial meanings contributed by individual words are properly linked with each other based
on grammatical constructions. This paper reports how we deal with this problem within the
context of Fluid Construction Grammars (fcg). Fcg is a general unification-based inference
engine which has been designed to support experiments in the self-organisation of language in
a population of interacting situated embodied agents. The paper focuses on technical details
pertaining to the linking problem.

1 Introduction

The work reported in this paper is part of a larger research effort to understand the origins and
evolution of language by building experiments with situated embodied agents that self-organise
communication systems with natural language like properties [15], [18]. Our earlier work focused on
the self-organisation of lexical languages either with single words expressing perceptually grounded
categories [14] or multiple word utterances expressing combinations of categories but still without
grammar.

Currently we are focusing on the emergence of grammar, and obviously one of the prerequisites
is that agents have ways to represent natural language like grammars and ways to invent and adopt
grammars in situated embodied interactions. Modeling language emergence requires fluidity [10]:
Grammatical conventions are only partly shared by members of the population and may not exist
at some point. They arise by grammaticalisation phenomena as studied by historical linguists [9]
and then propagate in the population based on alignment phenomena, as well documented in dialog
studies [4]. The requirements of the representational formalisms we need in our experiments are
therefore different from those underlying the standard formalisms currently used in computational
linguistics, such as HPSG [13]. Specifically, the agent’s grammars need to be dynamic because they
may change after every interaction, they need to be bi-directional because we want agents to take
turns being speaker and hearer, they need to support that grammatical rules will be competing with
each other for dominance in the language, and they need extreme flexibility so that utterances that
cannot be fully parsed or are ungrammatical from the viewpoint of the hearer can still be parsed and
interpreted to some extent. We therefore call our formalism Fluid Construction Grammar (fcg),
to emphasise its fluid nature and the fact that our major inspiration comes from a recent trend in
linguistics towards a construction grammar viewpoint, which is increasingly seen as a fruitful way
to study human natural languages [6], [12].

Fcg has been under development since 2000 and investigations are far from finished, even though
we have currently a fully operational version (see the website: http://arti.vub.ac.be/fcg/ for more
details). Moreover we do not claim that fcg is the only possible way to formalise or implement
construction grammars, nor that the specific view on construction grammar implied by fcg is the
‘right’ one. Instead our design should be seen as a contribution to ongoing cognitive linguistics
research and to the developing body of implementation techniques for construction grammar. In



earlier papers we already reported on factors that could trigger the emergence of grammar [18],
mechanisms for learning grammatical constructions [16], and the handling of hierarchy in fcg [5].
In this paper we focus on one specific issue, which is the linking problem. It concerns the question
how variables introduced by individual words can be linked together (made equal) before semantic
interpretation is performed. We will show that fcg provides an elegant solution which can moreover
be used both for parsing and production.

So far only two other substantial efforts towards the development of formalisms for construction
grammars have been reported in the literature. One project by Kay and Filmore, known as CxG
(see the detailed description in [8]), uses some of the principles and mechanisms we have used in
fcg: (1) the lexico-grammar is represented as constraints on form-meaning pairings as opposed to
derivational rules, (2) syntactic and semantic structures are represented as feature structures, and
(3) unification is the basic engine for applying constructions in parsing or production. Many formal
details in CxG have not yet been fleshed out, particularly those relating to semantic and pragmatic
issues, and to the issue of linking which is the main topic of this paper. Consequently no computa-
tional implementations have been reported yet. Another project, known as Embodied Construction
Grammar (ECG, [1]), has many similar characteristics and has gone further towards a computa-
tional implementation of constructions (again using a feature-based unification style approach) and
parsing mechanisms [2]. ECG addresses more extensively the issue of semantics through the mental
simulation of events [7] and deals to some extent with the question of linking. However ECG is only
for parsing and does not address the difficult issue of using the same grammatical representation
for both parsing and production.

The rest of the paper is in four parts. First we define the linking problem in some more detail.
Next we introduce some elementary notions of fcg. Then we focus on a very simple example
showing how fcg constructions achieve linking, however the mechanism proposed is a general one
and applies equally well to more elaborate examples.

2 The Linking Problem

There is a general consensus that the lexicon of a language provides building blocks that contribute
the initial meanings of a sentence, and grammatical rules or templates express constraints on
aspects of syntactic and semantic structure that link these individual meanings into a larger whole.
For example in the phrase “Jill walks” the word “Jill” introduces a variable ?x which will be
bound to an object that is named Jill: ‘jill(?x)’. The word “walks” introduces two other variables,
?ev and ?y, which will be bound to a walk event and an object that is the walker in this event
respectively: ‘walk(?ev), walker(?ev, ?y)’. The lexicon does not specify that it is Jill which is the
walker in the walk-event, however we know from the syntactic structure that Jill is the subject of
the sentence which allows us to conclude that it is the walker in the walk-event introduced by the
verb. Within a logic-based representation for the meaning, which will be adopted here because
it is standard in computational linguistics, this kind of linking can be specified by saying that ?x
and ?y are two variables that have to be bound to the same object, i.e. that they are equal. The
meaning of the sentence after taking the grammar into consideration therefore becomes: ‘jill(?x),
walk(?ev), walker(?ev,?x)’. Here is another example. For the phrase “big block” two predicates are
introduced by the lexicon: ’big(?x)’ and ’block(?y)’. But it is the grammar (specifically the fact
that the adjective and the noun form part of the same noun phrase) that tells us that ?x and ?y
are bound to the same object, i.e. that ?x and ?y are equal.

So grammars specify how the meanings contributed by individual words are to be linked to-
gether. A second observation is that natural language grammars do not specify this linking in
an ad hoc way for every combination of words (which would mean that there is a very specific
pattern for linking “big” and “block” and a different one for “red” and “block”). Rather there
is an intermediary layer of semantic and syntactic categorisations and the linking is specified at
that level. A constraint linking a semantic frame and a syntactic pattern is called a (linking)
construction in construction grammar and we will follow this terminology. An example is shown
in figure 1, which relates the abstract cause-move semantic frame with the grammatical pattern
Subject+Verb+Object+Oblique. It is applicable to sentences like “Jill slides the block to Jack”.
The various roles in the frame (cause, goal, theme) are mapped onto grammatical relations (sub-
ject, object, oblique). The fact that the linking now happens at a more abstract level implies



Figure 1: A linking construction relates a syntactic pattern such as Subject+Verb+Object+Oblique
with a semantic frame such as cause-move+cause+goal+theme

that there must be cognitive machinery to categorise the specific predicate-argument structure
(i.e. the slide-event) into the cause-move frame and to categorise the syntactic properties of the
sentence (specific lexical categories, word order, agreement, etc.) into a syntactic pattern such as
SVO+Oblique.

3 Some brief introduction to fcg

In fcg, language processing consists in building up the semantic and syntactic aspects of a sentence
structure represented as feature structures. One is not done before the other (as in strictly modular
approaches to language processing) but both are built up at the same time. Following other
feature-structure based formalisms, the sentence structure will consist of units with slots containing
information about the unit. We use a standard prefix notation for feature-structures (similar to
lisp datastructures). A slot filler is either atomic or a set of predicate calculus expressions. The
expressions may contain variables, which are atomic symbols starting with a question mark as in
?event. There is no ordering among the slots or among the elements in its filler. In contrast to other
feature structure formalisms [13], feature structures are not used hierarchically as fillers of slots. All
units are located at the same level but are labeled (unit-1, unit-2, etc.) and hierarchical structure
is explicitly represented with the slots syn-subunits (for syntactic subunits) and sem-subunits (for
semantic subunits). The labels allow reference to a unit and predication over units, for example
to express ordering constraints, and can be used as binding values for variables. Basically there is
a unit for every word in the sentence and for every group of words that forms a larger unit. But
there may be units which have only a semantic role (i.e. they have no direct analog in the form)
and units which have only a syntactic role (e.g. for grammatical function words like “by” which
have no direct analog in meaning).

The main slots of a unit describing the semantic aspects of (part of) a sentence are:

1. Referent: the entity in the world-model the unit is about (or a variable that will become
bound to such an entity).

2. Meaning: the clauses that will be used to identify the referent.

3. Sem-cat: the semantic categorisations in which the entity referred to by the unit participates.

4. Sem-subunits: the set of subunits of this unit from the viewpoint of semantic structure.

An example for the sentence “Jill walks” is given in Fig. 2. From a semantic point of view the
walk-event is categorised as a motion-event and the walker is the agent of the event. We will discuss
this example further throughout this paper.

The main slots of a unit on the syntactic side are listed below, an example is given in Fig. 3.

1. Utterance: this is the string itself that is covered by the unit (possibly a multi-word phrase).
It is not explicitly listed in the examples that follow.

2. Form: which is a declarative description of the form in terms of strings, stems, affixes, and
precedence or sequencing relations between units.

3. Syn-cat: the syntactic categorisations associated with the unit, such as number or gender.

4. Syn-subunits: the set of subunits of this unit from the viewpoint of syntactic structure.



((unit1 (sem-subunits (unit1b)))
(unit1b

(sem-cat ((event ?x-2)))
(sem-subunits (unit3 unit2)))

(unit2
(referent ?x-1)
(meaning ((jill ?x-1)))
(sem-cat ((animate ?x-1))))

(unit3
(referent ?x-2)
(meaning ((walk ?x-2) (walker ?x-2 ?x-1)))
(sem-cat ((motion-event ?x-2) (agent ?x-2 ?x-1)))))

Figure 2: Example of semantic structure for the sentence “Jill walks”

((unit1
(syn-cat (sentence))
(syn-subunits (unit1b)))

(unit1b
(syn-cat (sv-sentence))
(form ((precedes unit2 unit3)))
(syn-subunits (unit2 unit3)))

(unit2
(form ((string unit2 "jill") (stem unit2 "jill")))
(syn-cat (np (person 3d) (number singular))))

(unit3
(form ((string unit3 "walks") (stem unit3 "walk")))
(syn-cat
((lex-cat verb) (person 3d) (number singular)))))

Figure 3: Example of syntactic structure for the sentence “Jill walks”.
.

Fcg uses a logic-based representation for the syntactic and semantic categorisations and the
constraints on semantic or syntactic structures that characterise a particular construction. Semantic
categories such as ‘(motion-event ?x-2)’ and ‘(agent ?x-2 ?x-1)’ are predicates over the entities in
the domain of discourse which are (re-)conceptualisations of the predicates directly derived from
the sensory datastreams. Syntactic categories are also expressed in predicate-calculus and may
predicate over units if they involve relations like precedence. Three example syntactic categories
are ‘(precedes unit2 unit3)’, ‘(lex-cat verb)’ and ‘(person 3d)’. The final form of a sentence is
described in a declarative fashion. For example, “Jill walks” is represented as ‘(string unit1 “jill”)
(string unit2 “walks”) (precedes unit1 unit2)’. The explicit representation of ordering relations
makes it very easy to deal with relatively free word order or parse sentences even if the word
order constraints are partially violated. A logic-based representation makes it furthermore possible
to invent new syntactic and semantic categories when the need arises, which is important for
implementing learning and the emergence of new conventions.

In line with other unification grammar formalisms, language processing in fcg is viewed as a kind
of inference process and mechanisms pioneered in logic programming and constraint propagation are
employed to implement parsing and production. The sentence structure (syntactic and semantic)
can be viewed as the ‘fact base’ against which templates are matched. The filler of a slot in a
template specifies which elements have to be present in the structure being matched. In contrast to
other unification-based formalisms, the templates do not use numerical indices for referring back to
other parts of a structure. Variables can be used for this as they can be bound not only to specific
items such as the value for the syntactic feature person, but also to units themselves via the unit
labels (as ?top and ?walk-unit in Fig. 4).



The bi-directional application of a template uses two subfunctions: Match and Merge. Match
is equivalent to standard unification familiar from logic programming. Merge is a form of subset
unification, which not only binds variables but also adds all missing parts from the merging structure
to the merged structure. It is similar to the unification used in most unification-based grammars.

1. To apply a template for parsing (i.e. go from form to meaning):

(a) First the right pole of the template is matched against the sentence structure already
built. If the pole matches this yields a set of bindings for the variables contained in the
pole and/or a set of equalities between variables (because the sentence structure being
built may also contain variables).

(b) Then the left pole of the template is merged with the sentence structure. This changes
the sentence structure such that missing parts are added and differing parts are changed
to comply with the pole’s specification. An example of such a change could be the
renaming of a variable which will provide the solution to the linking problem.

2. To apply a template for production (i.e. go from meaning to form):

(a) First the left pole of the template is matched against the structure already built, yielding
a set of bindings.

(b) Then the right pole of the template is merged with the sentence structure.

So producing and parsing are totally analogous, the only thing which changes is the direction of
template application. The type of the template determines which part of the sentence structure
will be used in matching and merging. For example, in the case of a syn-template both the left and
the right pole are syntactic, whereas in the case of a con-template the left pole is semantic and the
right pole syntactic. Linking is computationally achieved as a side effect of the merge-operation in
parsing.

Although technically speaking there is no strict distinction in fcg between lexicon and gram-
mar (i.e. they are both relating aspects of semantic structure to aspects of syntactic structure
and use exactly the same formal structure), we find it useful to make a distinction between differ-
ent template-sets for clarity during debugging. The templates making up the lexicon are further
subdivided into:

1. Morphological templates (morph-templates), which decompose words into a stem with affixes
and add syntactic categorisations, such as gender or part of speech (see Fig. 4).

2. Lexical stem templates (lex-stem-templates), which map the stem of words to their meaning
(Fig. 5).

3. Lexical category templates (lex-cat-templates), which map ‘natural’ syntactic categories (like
the number of a noun, gender in the case of animate entities, tense in the case of the main
verb, etc.) to bits of meaning.

(def-morph "walks"
((?top (syn-subunits (== ?walk-unit)))
(?walk-unit
(syn-cat (== (lex-cat verb) (person 3d) (number singular)))
(form (== (stem ?walk-unit "walk")))))

<-->
((?top (form (== (string ?walk-unit "walks"))))
((J ?walk-unit ?top))))

Figure 4: Example of a morphological template that associates a stem and a number of syntactic
categories with the string “walks”. The left and right pole of the template are separated by a
double arrow referring to the bi-directional application of the template.

There are two additional fcg-operators used in the morph-template in Fig. 4. The ‘==’ (pro-
nounced ‘includes’) operator specifies a special case of matching, specifically that it is sufficient that



the elements that follow the operator are members of the slot filler. For example the syn-cat in the
right pole must contain ‘(lex-cat verb)’ but may contain also other specifications. The J-operator
(described in detail in [5]) specifies hierarchical units which do not have to match but are added
in merging. In this particular case, when the string “walks” is encountered in parsing (application
from right to left of the template), a new unit is constructed and bound to ?walk-unit and made
a daughter of the unit bound to ?top. In production, ?walk-unit is already bound and no new
unit needs to be constructed in the right pole. These operators are also used in the example of a
lex-stem template (Fig. 5). Note that the J-operator now occurs in the left pole. This template
will carve out part of the global meaning and create a new unit which has the stem “walk”.

(def-lex-stem walk-entry
((?top
(meaning (== (walk ?ev) (walker ?ev ?obj1))))
((J ?walk-unit ?top) (referent ?ev)))

<-->
((?top (syn-subunits (== ?walk-unit)))
(?walk-unit (form (== (stem ?walk-unit "walk"))))))

Figure 5: Example of a lex-stem template specifying the meaning associated with the stem “walk”.

4 Linking with Construction Templates

Linking is licensed by templates that map semantic frames to grammatical patterns. These are
called con-templates (for construction templates). Semantic categorisation templates (sem-tem-
plates) (re-)conceptualise the meaning in terms of the semantic frames that occur in constructions.
Syntactic categorisation templates (syn-templates) specify how a grammatical pattern is realised
in terms of more specific syntactic features. For example, sem-templates map the arguments of
a specific predicate, like ‘slide’, into the semantic roles of the more abstract cause-move frame.
Syn-templates map grammatical relations like subject, direct-object, etc. into syntactic categories,
orderings, and agreement phenomena. It can be envisioned to represent all these in a single construct
(as is partly done in this paper for brevity; this might also be the typical state in earlier stages
of the grammar), but that would make it impossible for the same syntactic pattern or the same
semantic frame to be used in more than one construction.

Figure 6 shows an example of a construction template. The J-operator uses now a third argu-
ment which pulls additional units as subunits into the newly created unit (in this case ?event-unit
and ?agent-unit are pulled in as subnodes of the new ?SV-unit which will itself be a subnode of the
?top-unit). Production of “Jill walks” starts from the meaning ‘((walk ev1) (walker ev1 obj1) (Jill
obj1) (status obj1 single-object) (discourse-role obj1 external))’ which is decomposed into several
units by lex-stem templates and reconceptualised with the sem templates as ‘((motion-event ev1)
(agent ev1 obj1))’, yielding a semantic structure similar to that in Fig. 2, except that all variables
have instantiated values. This matches with the left pole of the construction, which then merges
the information in the right pole with the syntactic structure built so far, yielding something similar
to that in Fig. 3 but without specific strings yet (they are added by the morph rules). Note that
a new SV-unit is created both on the semantic side and on the syntactic side and that precedence
relations and agreement in terms of person and number constrain the right pole.

Linking is done as part of the parsing process. Initially, the application of the lexicon contributes
the meanings of individual words, and these are expanded with sem templates to add semantic
categories, yielding the semantic structure of Fig. 7. Note that the variables ?x-1 and ?x-3 are not
yet equalised. The syntactic structure (not shown) matches completely with the right pole of the
Motion-Event construction (Fig. 6). When the left pole of the construction is then merged with the
semantic structure the equalities ?agent/?x-1 and ?agent/?x-3 are identified. This causes that ?x-1
and ?x-3 are equalised after the merging process and the resulting semantic structure is as shown
in Fig. 2.



(def-con Motion-Event
((?top-unit
(sem-subunits (== ?event-unit ?agent-unit)))

(?event-unit
(referent ?event)
(sem-cat (== (motion-event ?event)

(agent ?event ?agent))))
(?agent-unit
(referent ?agent)
(sem-cat (== (animate ?agent))))

((J ?SV-unit ?top-unit (?event-unit ?agent-unit))
(sem-cat (event ?event))))

<-->
((?top-unit
(syn-subunits (== ?agent-unit ?event-unit))
(form (== (precedes ?agent-unit ?event-unit))))
(?event-unit
(syn-cat (== (lex-cat verb) (number ?number) (person ?person))))
(?agent-unit
(syn-cat (== NP (number ?number) (person ?person))))
((J ?SV ?top-unit (?event-unit ?agent-unit))
(syn-cat (== SV-sentence)))))

Figure 6: Example of a construction template as usable for “Jill walks”. On the semantic side, it
assumes a motion-event with an animate agent. On the syntactic side it assumes a noun phrase
preceding a verb, i.e. a Subject-Verb or SV-sentence.

5 Conclusions

This paper reported progress in the development of Fluid Construction Grammar, a formalism
designed for supporting experiments in emergent grammar. We focused in particular on the issue
of linking, i.e. the combining of the meanings of individual words to construct the meaning of the
whole. It turns out that focusing on how variables become equal is a very good approach for framing
the linking process and unification (as part of the merging process) is a straightforward way to
implement it. We have seen that the constructions and other templates used by the grammar can be
used both in parsing and production. In [18] we discuss in more detail how speakers can themselves
discover (by re-entrance) that certain variables need to be equalised and how constructions with
associated semantic and syntactic categorisation templates can be invented and learned.
Research funded by Sony CSL with additional funding from the EU FET-ECAgents project. Joachim De

Beule is a VUB research assistent.

((unit1 (sem-subunits (unit2 unit3)))
(unit2

(referent ?x-1)
(meaning ((jill ?x-1)))
(sem-cat ((animate ?x-1))))

(unit3
(referent ?x-2)
(meaning ((walk ?x-2) (walker ?x-2 ?x-3)))
(sem-cat ((motion-event ?x-2) (agent ?x-2 ?x-3)))))

Figure 7: Semantic structure after application of the lexicon and the sem-templates while parsing
“Jill walks”.



References

[1] Bergen, B.K. and N.C. Chang. (2003) Embodied Construction Grammar in Simulation-Based
Language Understanding. In J-O Ostman and M. Fried (Eds.) Construction Grammar(s): Cog-
nitive and Cross-Language Dimensions John Benjamin Publ Cy. Amsterdam.

[2] Bryant, J. (2004) Scalable Construction-Based Parsing and Semantic Analysis. In Proceedings
of the Second International Workshop on Scalable Natural Language Understanding. Boston 2004

[3] Chang, N.C. and T.V. Maia. 2003. Learning Grammatical Constructions In: Cohen, P. and T.
Oates (2001) p. 10-16.

[4] Clark, H. H., and Brennan, S. A. (1991). Grounding in communication. In: Resnick, L.B., J.M.
Levine, and S.D. Teasley (Eds.). Perspectives on socially shared cognition. Washington: APA
Books.

[5] De Beule, J. and L. Steels (2005) Hierarchy in Fluid Construction Grammar. In: Furbach, U.
(eds) (2005) Proceedings of KI-2005. Lecture Notes in AI 3698. Springer-Verlag, Berlin. p.1-15.

[6] Goldberg, A.E. 1995. Constructions.: A Construction Grammar Approach to Argument Struc-
ture. University of Chicago Press, Chicago

[7] Feldman, J. and S. Narayanan (2003). Embodied Meaning in a neural theory of language . Brain
and Language. to appear.

[8] Fried, M. and J-O Ostman (2004) Construction Grammar: A thumbnail sketch. Chapter 2. In:
Fried, M. and J-O Ostman (2004) Construction Grammar in a Cross-Language Perspective. John
Benjamins Pub. Cy. Amsterdam. pp. 11-87.

[9] Traugott, E. and Heine, B. (1991) Approaches to Grammaticalization. Volume I and II. John
Benjamins Publishing Company, Amsterdam.

[10] Hopper, P. (1987) Emergent grammar. Berkeley Linguistics Conference (BLS), 13:139–157

[11] Kay, P. and C. Fillmore (1999) Grammatical Constructions and Linguistic Generalizations:
the What’s X doing Y? Construction Language 75, pp. 1-33.

[12] Michaelis, L. 2004. Entity and Event Coercion in a Symbolic Theory of Syntax In J.-O.
Oestman and M. Fried, (eds.),Construction Grammar(s): Cognitive Grounding and Theoretical
Extensions. Constructional Approaches to Language series, volume 2. Amsterdam: Benjamins.

[13] Pollard, C. and I. Sag 1994. Head-driven phrase structure grammar. Center for the Study of
Language and Information of Stanford University. University of Chicago Press, Chicago.

[14] Steels, L., F. Kaplan, A McIntyre and J. Van Looveren (2001) Crucial factors in the origins
of word-meaning. In Wray, A., editor, The Transition to Language, Oxford University Press.
Oxford, UK, 2002.

[15] Steels, L. (2003) Evolving grounded communication for robots. Trends in Cognitive Science.
Volume 7, Issue 7, July 2003 , pp. 308-312.

[16] Steels, L. (2004) Constructivist Development of Grounded Construction Grammars Scott,
D., Daelemans, W. and Walker M. (eds) (2004) Proceedings Annual Meeting Association for
Computational Linguistic Conference. Barcelona. p. 9-19.

[17] Steels, L. (2005) What triggers the emergence of grammar?. AISB’05: Proceedings of the
Second International Symposium on the Emergence and Evolution of Linguistic Communication
(EELC’05), pages 143-150, Hatfield, 2005. University of Hertfordshire

[18] Steels, L. (2005) The Emergence and Evolution of Linguistic Structure: From Lexical to Gram-
matical Communication Systems. Connection Science. Vol. 17(3)

[19] Talmy, L. (2000) Toward a Cognitive Semantics: Concept Structuring Systems (Symbol,
Speech, and Communication) The MIT Press, Cambridge Ma.


