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Abstract

The paper describes a system for open-ended communication by autonomous robots about event descriptions anchored
in reality through the robot’s sensori-motor apparatus. The events are dynamic and agents must continually track changing
situations at multiple levels of detail through their vision system. We are specifically concerned with the question how
grounding can become shared through the use of external (symbolic) representations, such as natural language expressions.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Autonomous robots; Event descriptions; Open-ended

1. Introduction

The work reported in this paper is part of a
larger research effort towards grounded open-ended
self-generated communication among robots[22] and
grounded open-ended natural language-like commu-
nication between humans and robots[19]. Grounded
means here that the communication is about the shared
environment in which speaker and hearer are situated
and which has to be perceived and interpreted au-
tonomously by both participants through a perceptual
apparatus. This contrasts with natural language in-
terfaces to purely symbolic information systems like
databases[3] or communication systems for software
agents[4] in which the agents have full access to an
accurate and complete representation of the environ-
ment and each others’ internal states.Open-ended
means that the communication conventions are not
fixed in advance but they are negotiated and adapted
to suit the communication needs of the partners. This
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appears necessary because human communication is
open-ended as well. Humans may invent new mean-
ings and new expressions for these meanings or adapt
existing expressions to serve new purposes as part of
a normal conversation[9].

Grounded verbal communication is an enormously
challenging task which requires the integration of
many capabilities, including speech and language pro-
cessing. We believe that there is no single sweeping
principle that will make a non-grounded AI system
grounded. It is definitely not the case that one can
simply attach a vision/action module to a logic-based
reasoning system to obtain a grounded agent, nor that
one can simply put a conceptual system on top of a
behaviour-based robot. Instead, grounding is a matter
of embodiment and very careful design, as well as
tight integration of many components at many differ-
ent levels. Nevertheless, it is possible to identify a set
of issues that need to be dealt with and general design
principles or strategies.

This paper starts with an introduction into the
grounding issue in an attempt to clear up possible ter-
minological confusions. It then describes very briefly
a system that we have built which is a combination
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and integration of two subsystems reported on ear-
lier: the PERACT system[5], designed for the visual
recognition of actions, and the EVOLAN system[20],
designed for exploring the symbolisation of event
description in multi-agent simulations. This paper
focuses mainly on the visual processing and event
categorisation that anchor symbols in the world. We
next turn to a discussion of the underlying design
principles and end with some conclusions.

2. Terminological issues

There has been a big debate in AI and cognitive sci-
ence on whether intelligence requires symbolic repre-
sentations[8], and if so how these representations are
supposed to be related to the world through a sensory
apparatus and how this relation is acquired[11,13].

For the purposes of clarifying this discussion, we
have found it useful to make a number of new distinc-
tions. Generally speaking, representations code mean-
ings, i.e. features of the environment relevant to the
agent. We can distinguish internal and external rep-
resentations. Internal representations occur when the
physical structures are located inside computer memo-
ries or in brains. External representations are physical
structures outside the individual: marks on a piece of
paper, sounds, gestures, objects. Communication be-
tween two agents always requires external representa-
tions.

Another useful distinction which has been intro-
duced by Sperber and Wilson, is that between Shan-
non coding and inferential coding, which gives rise
to a distinction between information representations
(I-representations) and expressive representations
(E-representations), respectively. Natural language ut-
terances are clear examples of inferential coding and
thus of E-representations[18]. The interpreter is as-
sumed to be intelligent and capable to infer meaning
from mere hints. As a consequence the representa-
tion can be more compact because the interpreter
shares sufficient context and background knowledge
to make the appropriate inference. Most importantly,
the representation need not be exclusively based on
established conventions but can be the outcome of a
negotiation process. Thus analogy is heavily used in
natural language to invent a way for expressing a new
meaning. For example, soon after Douglas, Engelbart

developed the new concept of an “x–y position indica-
tor for a display system” in the form of a box rolling
over the table, it was called a mouse by analogy with
the shape of a real mouse and now the whole world
calls it that way. This shows that inferential coding
can potentially express an open-ended set of mean-
ings because the coding conventions can be adapted
as the needs arise.

The information structures typically used in com-
puters are examples of Shannon codings, and further
called I-representations. No intelligent interpreter is
assumed and so interpretation is straightforward and
automatic. There is even a question whether one can
speak of interpretation. All the information is in the
message itself and the coding is fixed. There is no
need to go through a complex process of disambigua-
tion or the guessing of meaning. The production and
interpretation of E-representations clearly requires in-
formation processing, both to code the meaning that
needs to be expressed and the partial structures (such
as syntactic structures) generated as part of the pro-
duction and interpretation process (which sometimes
even involves a model of the listener). But this does
not necessarily imply that the brain internally uses
E-representations. We do not want to go into that
discussion here, except to point out that often philoso-
phers, anthropologists, artists, etc. use the term rep-
resentation in the sense of (external) E-representation
whereas computer scientists or AI researchers use
it in the sense of (internal) I-representations. Our
more precise terminology is proposed to avoid this
confusion.

The term grounding applies to all possible represen-
tations, and the opposite of a grounded representation
is a formal representation, like an uninterpreted alge-
bra. A grounded representation has intentionality; it
is about objects and situations in the world. This im-
plies that the agent needs processes to establish and
maintain this relation. For example, there might be
internal I-representations in the form of data struc-
tures (or states in neural networks) that code for the
colour, position, shape, size, trajectory, speed of move-
ment, etc. of an object in the world and these could
be constructed and maintained by a vision system that
is segmenting images, tracking them, and computing
their properties in real time. External representations
could also be grounded, in the sense that a description
produced by one agent could be about an object or
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situation in reality and the other agent has to ground
the meaning of this description in his own perception
of reality in order to understand it.

A key issue, and the one we try to solve in the exper-
iments discussed in this paper, is howshared ground-
ing can occur. This is a big problem because the agents
do not have access to each other’s internal states (i.e.
each other’s internal representations). We argue that
shared grounding can be established through a nego-
tiation process embedded in language games. So the
‘symbols’ that we are trying to see grounded are ex-
ternal symbols used in language-like communication,
they are not internal symbols used in some cognitive
process. Not only are we interested in single sym-
bols (words) but also, and particularly, in the shared
grounding of the meaning of grammatical structures.
By negotiation we mean that agents invent representa-
tional conventions, try them out with others, and adapt
their set of conventions based on the feedback on suc-
cess or failure in communication.

There has been quite a lot of work (as illustrated by
this special issue, as well as the papers in[10]) on how
a single agent can ground his internal I-representations
in reality by a sensory-motor apparatus. But there has
been little work so far on shared grounding through

Fig. 1. Robotic installation used for the experiments reported in this paper. It consists of two steerable cameras capturing images of
dynamic scenes. The captured images are shown on separate monitors.

external E-representations, i.e. how a population of
agents, each with a grounded representation system,
can evolve agreement on how their respective inter-
nal representations are coordinated through external
representations. Other papers describing our approach
(see, for example[19,22]) have focused mainly on the
language part, whereas this paper focuses exclusively
on the anchoring components, i.e. the vision and track-
ing system that generates the internal representations
to be expressed.

3. Grounded language communication

The robotic installation used for the present pa-
per is displayed inFig. 1 and similar to that used in
earlier ‘talking heads’ experiments[22]. It consists
of two SONY pan-tilt cameras (EVI-D31) each con-
nected to a computer, which runs the PERACT sys-
tem. The computers are Bi-Xeon 1.7 GHz machines
running Linux Redhat 7.1. The language-specific
aspects of the system (parsers, producers, etc.)
run on a third computer (Mac G4 with Common
LISP) with communication through a local area
network.
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3.1. Language games

The robots engage in interactions which we call
language games[19]. A language game is a routinised,
situated interaction between two agents. The inter-
action not only involves verbal communication, i.e.
the parsing and producing of utterances, but also the
grounding of internal representations through sensory
processing, and, most importantly, steps for learning
new aspects of language if necessary: new words, new
meanings for existing words, new phrases. We believe
that human–robot communication is best structured
in terms of language games because human language
interpretation requires a strong sense of context. The
utterance does not contain all the information nec-
essary for its interpretation. Words are ambiguous,
many things are left unsaid, and the speech signal is
notoriously difficult to decode. Because the language
game makes the communication more predictable and
provides a framework for semantic inference, it pro-
duces the strong constraints needed to make verbal
communication doable and enables social learning
[21].

The present paper focuses on one game only,
namely a description game in which one agent (the
speaker) describes to another agent (the hearer) an
event in the world. The hearer gives feedback whether
he agrees with the description or not. Some snapshots
of a typical example of a scene is shown inFig. 2.
There is a hand which moves towards a (red) object
and picks it up. An adequate description is: “The hand
picks up the red object”. Notice that the background
consists of an unaltered typical office environment
with different sources of light (daylight and artificial
light). The action takes place at a normal pace and
the dialog takes place as a commentary on the actions
in real time.

Fig. 2. Snapshots of a typical event handled in the experiment: a hand grasping an object.

Additional typical events handled by the system are:
the red ball rolls against the green block. The hand
slides the pyramid against the blue box. The hand
puts the red cube on top of the green one. A yellow
ball rolls down a ramp. Because the world consists of
dynamically changing situations, classified as events,
this work is strongly related to other research on visual
event classification[14,17], temporal world modelling
[2], and the conceptual analysis of event expression in
natural languages[23].

3.2. The semiotic cycle

To play a description game requires that the speaker
perceives the situation by capturing streams of im-
ages with the camera, represent the result of sensory
processing as a series of facts in memory, and then
conceptualise the event and the objects in terms of
roles and event types. Next the speaker must map
this conceptualisation into an utterance, which in-
cludes choosing words for the predicates identifying
the objects and the event, and applying the rules of
grammar. The hearer must lookup the words and
decode the grammatical structures, reconstruct a
semantic structure, and interpret it in terms of his
own world model. The language game succeeds if
the utterance produced by the speaker describes an
event in the recent past. The whole process is called
the semiotic cycle (an extension and adaptation of
the well-known ‘semiotic triangle’) and displayed in
Fig. 3.

The internal conceptual representation con-
sists of a series of facts represented in first-order
predicate–calculus, following standard practices in
symbolic AI [15]. A typical set of facts generated
from visual processing for an event in which a red
ball moves away from a green ball is:
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Fig. 3. The semiotic cycle: left, processes carried out by the speaker; right, processes carried out by the hearer.

(move-away ev-1) (move-away-patient
ev-1 obj-1)

(move-away-source ev-1 obj-2)
(green obj-2)

(ball obj-2) (hand obj-4) (red obj-1)
(ball obj-1)

(larger obj-1 obj-2) (box obj-3)
(next-to obj-1 obj-3)

Speaker and hearer see the situation from different
angles, which often implies that there is no complete
equivalence in their world models.

Each fact has three additional information items:

• A time stamp indicating when the fact arrived into
memory. This is used for implementing forgetting:
after a certain time period ‘old’ facts are erased and
can no longer be the subject of a language commu-
nication.

• A time period which specifies the start and end point
of a fact (when known). This makes it possible to
use the temporal interval calculus[2] for represent-
ing and reasoning about actions and time.

• A certainty indication assigned by the vision system
to this fact.

Before making an utterance, the speaker chooses
(randomly) a recent event plus a set of objects related
to this event (for example, ev-1, obj-1 and obj-2). For
each object and for the event itself, the speaker then
seeks a predicate or conjunctive combination of pred-
icates, that are distinctive for the object or the event.
Distinctive means that the predicate (or combination)
is only valid for the intended object but not for any
other object in the context. Thus (ball obj-3) is not
distinctive for obj-3 in the above example, because
both obj-1 and obj-2 are described as such. How-

ever, (green obj-3) is distinctive because obj-3 is the
only green object in the context. The lexicon asso-
ciates words with predicates (for example, the word
“green” with the predicate ‘green’) and grammatical
rules map additional aspects of meaning such as the
predicate–argument relations into syntactic structures.
The speaker assembles all of this into a complete ut-
terance and the hearer uses the same rules in reverse
to come up with a semantic structure.

The semantic structure as reconstructed by the
hearer from parsing the utterance consists of a
predicate–calculus expression with variables that can
be matched against the facts in fact memory, again
following standard practises in natural language se-
mantics. For example, for the utterance “the red ball
moves away”, this expression looks as follows:

(move-away ?event) (move-away-
patient ?event ?object)

(red ?object) (ball ?object)

When this expression is matched against the fact
memory shown earlier, a unique coherent set of bind-
ings of all variables is obtained:

((?event . ev-1) (?object . obj-1))

This is considered as an appropriate interpretation
and therefore the game succeeds. The game fails
when there is no such interpretation or when there
is more than one set of possible bindings for all the
variables.

This paper does not further discuss the (very com-
plex) language component, nor how words or gram-
matical rules are invented and learned as part of the
game (see[19] for more details). Instead, we focus
on how agents establish the relation between the real
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world as captured by the cameras and their internal
world models.

3.3. Issues in grounding

There are a number of very difficult grounding is-
sues which need to be handled within the context of
this application:

• First of all, the environment which generates input
to the system consists of the dynamically changing
unpredictable real world. Agents have to keep up
with the dynamics of the environment and produce
responses within available sensory and computa-
tional resources. It follows that not just anything can
be computed but resources need to be allocated in
a dynamic fashion depending on the requirements
of the communicative situation.

• Second, because the images are unconstrained, with
natural and changing daylight, the results of visual
processing are necessarily going to be noisy. For ex-
ample, segments found on the basis of colour seg-
mentation may suddenly disappear or change when
light conditions are slightly changing, a condition
in the world (like a hand touching an object) may
during a short instant of time change because of
unstable segmentation, part of an event may not be
perceived due to failures in lower level visual pro-
cessing, etc. So we need a way to handle noise, for
example by using top-down expectations.

• Third, because the communication is open-ended, it
will be necessary to adapt the visual processing to
the needs of the communication partners, which im-
plies that at least some of it will have to be learned.
Another thing which has to be learned is what the
vision system ‘tells’ the language system.

4. Visual processing

We now focus on the set of visual interpretation pro-
cesses that the agents use to relate the external dynam-
ically changing real world with the internal conceptual
world models and with the meaning of natural lan-
guage expressions. Rather than detailing the many vi-
sion algorithms that have been used (which are most of
the time well-known state of the art algorithms[16]),
we focus on the general architectural principles. More

information on the PERACT system can be found in
[6].

The vision system can be decomposed into three
subsystems. The first one attempts to detect and track
visual units at different hierarchical levels. The second
subsystem detects and tracks events, again at differ-
ent hierarchical levels. The third subsystem consists
of feature detectors that attempt to find qualitative de-
scriptions for units at different levels of the object or
event hierarchy. The result of all these processes is a
set of streams, reporting objects and their properties
dynamically in response to a changing world. There is
a (short term) memory of these streams that is kept as
they unfold. This is called the visual memory. Some
of the descriptions flow automatically into the robot’s
fact memory (particularly those that are at a higher
level and whose certainty is beyond a threshold) and
these are used by the conceptualisation system to con-
struct or interpret semantic structures.

4.1. Detecting and tracking spatio-temporal units

The first step in grounding is to detect and ‘latch
onto’ regions in the image that are generated by ob-
jects of interest in the environment. This results in a
deictic representation[1] which establishes and moni-
tors indexical references between internal symbols and
external objects. A first innovation of the work pre-
sented here is that this tracking not only takes place
for a single object, but for an open-ended set of ob-
jects at different hierarchical levels—as long as they
are part of the same spatio-temporal context. The de-
tection and tracking of units at different hierarchical
levels constitutes the backbone of the vision system. It
starts in a bottom-up manner from the images captured
by the camera, and goes through various processing
steps, first to extract spatial regions, and then to con-
nect them in time to get spatio-temporal continuities
(seeFig. 4).

More concretely the following layers are present:

(1) Image streams: At the first bottom layer, there is
an influx of images (at a rate of 24 s and with a
size of 160× 120 pixels) supplied by the camera
in the LUV colour space.

(2) Figure/ground separation: The next step is to
identify regions that may correspond to objects
in the scene, thus distinguishing figure(s) from
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Fig. 4. Flow of treatment from raw image to segmented objects.

background. This is currently implemented by
comparing the captured image with a stored im-
age of the background. All zones where the pixels
are not identical to the background are marked
as zones of interest. This avoids processing the
complete image in subsequent layers. The back-
ground needs to be learned prior to further visual
processing but is updated whenever there are
significant changes.

(3) Occupancy grid: Constructing an occupancy grid
is a well known technique used in mobile robotics
for navigation and path planning. An occupancy
grid is a cellular representation of the environment
that contains in each cell information about the
probability that there is an object present[12].
We use a similar technique here. Prior to routine
visual processing, probabilistic colour histograms
are learned for each of the possible objects that
may appear in a scene[7]. These histograms make
it possible to calculate the probability that a certain
pixel belongs to a particular object. The occupancy
grid collects these probabilities for all pixels in
each zone of interest and assigns the pixel to the
object with the highest probability, if it is greater
than a minimal threshold. Note that relying on
colour histograms for object recognition clearly
limits the types of scenes and object sets we can
handle, but as our main goal is on exploring shared
grounding, we do not seek absolute competence
in vision.

(4) Spatial region growing: The resolution of the oc-
cupancy grid is then reduced (for efficiency) and
next used by a region growing algorithm[24] to
group the zones of interest into regions that corre-
spond to objects. The result of this layer is there-
fore a stream of ‘best’ hypotheses for each object’s
coarse spatial occupancy.

(5) Temporal tracking: The first four layers all work
on streams of single images. The next layers work
on multiple images with the goal of tracking the
same object over time. Because objects are iden-
tified using the histogramming technique, it is rel-
atively easy to know whether they re-occur in the
image and to compute their centre so that a tra-
jectory can be established. No sophisticated re-
gion tracking (by trying to match parts of regions
from one image to the next) is performed, which
of course restricts the number of objects of the
same colour that can be handled.

Obviously, this vision system has a number of clear
limitations. The background has to be learned prior to
visual processing and has to be updated when there is
a significant change. The frame rate of the camera is
low (24 images/s), so that fast actions (such as a ball
being dropped onto the table) cannot be detected. Ob-
jects which can participate in scenes have to be learned
in advance. There is only a small set of objects (typi-
cally seven depending on their colour histograms) that
can be used simultaneously in the same set of scenes.
Nevertheless, this system is adequate enough for our
main purposes (namely experiments in grounded lan-
guage communication). Work continues to improve its
reliability and speed by integrating additional vision
algorithms, but the strong temporal constraint imposed
by the real world puts a limit on how much visual pro-
cessing can be done with available hardware. Right
now the system computes all visual information at a
rate that keeps up with the frame rate of the camera.

4.2. Event detection and tracking

The next set of visual processes is concerned with
the detection and tracking of events. The task is similar
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to that of detecting objects, in the sense that deictic
representations are constructed and maintained. The
main difference is that grouping is based on changes
in the properties of objects rather than on invariances.
Event detection is organised in different layers:

(1) Detecting change: The first layer produces a
stream of properties of objects that change over
time. Specifically, it produces qualitative descrip-
tions for:

• Movement of an object, which is signalled if
the centre of gravity of an object has changed
significantly in between two image frames.

• Contact between two objects which is signalled
if the regions of the objects concerned touch
each other for a significant time period.

• Approach between objects which is triggered if
the distance between the centres of gravity of
two objects is becoming significantly smaller
between image frames.

• Front positioning of one objectx with respect
to an objecty which is signalled ifx is moving
towardsy, andy is located within a cone ema-
nating fromx.

A stream of Boolean values for these descriptions
are produced for all the objects in the scene, to-
gether with an indication of their certainty.

(2) Detecting events: The next layer groups these re-
sults in time. Moments when the same configura-
tion of qualitative descriptors holds are grouped
together in blocks. For the scenes shown inFig. 2,
two objects are being tracked: 0 (a hand) and 1 (a
red object), and the following properties: the hand
moves (M0), object-1 moves (M1), object-1 and
the hand touch each other (T10), they approach
each other (A10), object-1 moves in front of the
hand (F10) or the hand moves in front of object-1
(F01). The description streams generated in con-
junction withFig. 2 is as follows, where the num-
ber in front of each line indicates the number of
time steps that the same configuration of descrip-
tions holds.

Blocks of time in which the same configuration
holds are called micro-events. For example, the
first micro-event is one where the hand moves and
approaches an object. The second micro-event is
one where the hand is touching the object. In the
third micro-event the hand and the object move,
the hand still touches the object and the hand is
moving fronted with respect to the object. In the
final micro-event the hand still touches the ob-
ject but neither the hand nor the object move.
Micro-events are generated as soon as they have
been found, in other words when the configura-
tion of qualitative descriptors changes for a sig-
nificantly long time.

(3) The final layer is concerned with the detection of
events. Events are sequences of micro-events. For
example, the pick-up event inFig. 2, involving a
hand and an object, is defined as a sequence of
three micro-events: (1) the hand moves towards
the object, (2) the hand touches the object, and
(3) both move away together. Processes concerned
with recovering such events use a library of event
definitions which is matched against the stream of
micro-events.

4.3. Qualitative descriptors

The final set of processes consists of pattern detec-
tion algorithms which detect significant features about
the objects or events at different levels of the hier-
archy. These algorithms look at the stream of units
and compute properties of single objects (such as size,
shape, colour, texture, etc.) or properties of multiple
objects (such as respective geographical locations and
change in locations). They output the result as streams
of qualitative descriptions with a certainty indication.
The algorithms use standard techniques from compu-
tational geometry and pattern recognition[6].

The qualitative descriptors are integrated in a flex-
ible architecture that makes it possible to add new
detectors at any time at any level of the object or
event hierarchy or reschedule their usage, partly driven
by top-down expectations. Concretely each descrip-
tor runs as a separate parallel process (implemented
as POSIX threads). Each process gets time-slices to
advance its computation. Certain algorithms require
more resources than others, and so ‘quick’ algorithms
yield early results which can already be used at higher
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levels and may be sufficient for the purpose of lan-
guage communication. Processes may be pre-empted
when their results are no longer relevant.

4.4. Top-down information flow

In the discussion so far we assumed that information
flows only in a bottom-up manner: from the images
captured by the camera via a whole set of processes
to the facts in memory. But this is a simplification that
does not work for two reasons:

1. Each of the processing steps discussed may yield
an unreliable result. For example, it is seldom the
case that the qualitative descriptors which provide
the basis for the detection of micro-events yields
a clean set of outputs so that the micro-event is
neatly defined as a block in time. Instead, the con-
figuration is interspersed with very short moments
when some of the descriptors do not hold. If we
would only perform strict bottom-up processing we
cannot deal with this kind of noise. Our solution
has been to introduce for each pattern detector a
top-down influence from the next level up. The user
of the results of a pattern detectors monitors the
certainty of recognition and the constancy of a pat-
tern over time, so that small glitches can be elimi-
nated and weak hypotheses discarded.

2. There is so much visual information in the image
that it is impossible to extract fast enough every-
thing that could possibly be extracted. Moreover, as
little as possible should be put into the fact mem-
ory to avoid overloading or slowing down symbolic
processing. However, occasionally more process-
ing at lower levels is necessary: because an object
being tracked on the basis of colour disappears tem-
porarily from view, or because the continuation of
an action which was taking place in fact does not
take place, because the listener needs to use infor-
mation about the shape of an object which was not
yet computed by the vision system, etc. In these
situations, it must be possible to assign more re-
sources to the processes taking place at a specific
layer and perform additional computation.

We have addressed these issues by introducing the
notion of requests. Requests can be sent from the lan-
guage system to the vision system, and the vision sys-
tem can internally also generate requests. Requests

trigger the activation or re-activation of pattern detec-
tors on specific stretches of the object or event streams.
They may also cause the reconfiguration of pattern de-
tectors to change priorities and give more computer
time to requested information. Finally, they can change
the set of descriptors that is sent by default from the
vision system to the fact memory.

Here are two concrete examples where this facility
is used:

(1) In deciding what to say, the speaker must find a dis-
tinctive description to refer to an object. Suppose
that there are two objects in memory, obj-1 and
obj-2, and that facts in the fact memory only say
that they are both red, perhaps because colour was
the only property computed so far with sufficient
certainty. The speaker cannot discriminate between
the objects and so a request is issued to the vision
system to stimulate computation of other qualita-
tive descriptors for obj-1 and obj-2, that might yield
a distinctive description. There are pattern detec-
tors for colour, shape, texture, size, position, etc.
with default priorities. Some of them may not have
had enough resources to come up with a reliable
conclusion, others may have such a low priority
that they were not started at all. When the request
comes, more computational power is given to these
pattern detectors. Moreover, they do not necessar-
ily operate over the image stream as it is entering
the system but on past stretches as recorded in vi-
sual memory. When the pattern detectors produce
more results, they are sent to the language system,
turned into facts in memory and used in a new at-
tempt for discrimination.

(2) The hearer may be sent an utterance that uses a set
of properties which are not yet in the fact memory.
For example, the hearer may have been asked to
identify “the ball next to the green cube” but his
fact memory may have recorded only that there is
a green and a red object. Again a request is gener-
ated to the hearer’s vision system to go after more
information. This request can be precise: compute
information about shape for these specific objects
given the hypothesis that it can be ball or a cube.

It would be desirable to enrich the power of the
top-down flow of constraints on vision processing, for
example, by predicting the position of objects in future
time steps and use that as hypotheses for the pattern
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detectors, but this is not done yet in the current im-
plementation.

5. Design principles for grounding

We now attempt to extract some of the lessons
learned from our designs and experimentations with
the grounded communication system briefly described
in the previous section. We do not claim that these
principles are unique to the system discussed here, on
the contrary, we try to capture the ‘best practice’ in
the field.

1. Indexical representations: The first important prin-
ciple is to introduce a continuous detection and
tracking of objects and events. The vision system
described here latches onto an object or event and
keeps tracking it as much as possible. This results in
a dynamic deictic representation which maintains
streams of indexical references, even if objects or
events change.

2. Description streams: The second important prin-
ciple is the introduction of description streams
which produce and monitor properties of objects
and events in time. The streams start from the
images flowing in through the camera at a steady
rate and continues all the way up to facts spilling
into the fact memory. The units to which the de-
scriptions apply are assembled, first spatially then
temporally, at many different hierarchical levels.

3. Noise reduction: It is well known that real images
taken from relatively unprepared real world situ-
ations always yield noisy processing results. This
motivates the next design principle: noise at one
hierarchical level can be reduced by preferring the
most coherent analysis at the level just above it.
We apply this principle through the whole system
and at all levels.

4. Top-down information flow: It is clearly not enough
to have information flowing from the sensory data
to the conceptual world model, partly because
there is not enough time to compute everything
that could be computed. So there must also be a
steady top-down flow of requests and expectations
from the ‘cognitive’ layers to sensory processing.

5. Attention: Finally, we believe that an attention
mechanism is unavoidable. The attention mech-

anism is responsible for allocating scarce com-
putation resources. The system discussed in this
paper uses a variety of means to achieve this: fig-
ure/ground computation at a very early stage, a
thread-based implementation of feature detectors
with varying and dynamically modifiable priorities
partly steered by the vision system.

6. Conclusions

Grounded robots that engage in communication us-
ing external representations not only need a physical
body and low-level behaviours but also a conceptual
world model which must be anchored firmly and dy-
namically by the robot in the environment through
its sensori-motor apparatus. We argued that there is
not a simple sweeping theoretical principle to turn
a system that uses conceptual world models into a
grounded system. Instead many processes must be
carefully integrated. We described an implemented
system that has attempted to do so in the context of
experiments in grounded open-ended language com-
munication among robots as well as between humans
and robots. We also proposed a set of design princi-
ples that capture the principles that we have used in
our design.
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