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Abstract: The differential equations of Abrams and Strogatz for the
competition between two languages are compared with agent-based Monte
Carlo simulations for fully connected networks as well as for lattices in one,
two and three dimensions, with up to 109 agents.
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Many computer studies of the competition between different languages,
triggered by Abrams and Strogatz [1], have appeared mostly in physics jour-
nals using differential equations (mean field approximation [2, 3, 4, 5]) or
agent-based simulations for many [6, 7, 8, 9] or few [10, 11] languages. A
longer review is given in [12], a shorter one in [13]. We check in this note
to what extent the results of the mean field approximation are confirmed by
agent-based simulations with many individuals. We do not talk here about
the learning of languages [14, 15].

The Abrams-Strogatz differential equation for the competition of a lan-
guage Y with higher social status 1 − s against another language X with
lower social status s is

dx/dt = (1 − x)xas − x(1 − x)a(1 − s) (1)

where a ≃ 1.3 [1] and 0 < s ≤ 1/2. Here x is the fraction in the population
speaking language X with lower social status s while the fraction 1−x speaks
language Y. As initial condition we consider the situation in which both
languages have the same number of speakers, x(t = 0) = 1/2. Figure 1
shows exponential decay for a = 1.31 as well as for the simpler linear case
a = 1. For s = 1/2 the symmetric situation x = 1/2 is a stationary solution
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Differential equation: a = 1.31 (+,*) and a = 1 (x,sq.) for s = 0.1 (+,x) and s = 0.4 (*,sq.)

Figure 1: Fraction of X speakers from Abrams-Strogatz differential equation
with a = 1.31 and a = 1, at status s = 0.1 (left) and s = 0.4 (right). For
a = 1.31 the decay is faster than for a = 1.

which is stable for a < 1 and unstable for a > 1. From now on we use a = 1.
This simplification makes the resulting differential equation

dx/dt = (2s − 1)(1 − x)x (2)

for s 6= 1/2 similar to the logistic equation which was applied to languages
before, as reviewed by [16]. For s = 1/2 any value of x is a marginally stable
stationary solution.

This differential equation is a mean-field approximation, ignoring the fate
of individuals and the resulting fluctuations. We now put in N individuals
which in the fully connected model feel the influence of all individuals, while
on the d-dimensional lattice they feel only the influence of their 2d nearest
neighbors. The probability p to switch from language Y to language X, and
the probability q for the inverse switch, are

p = xas, q = (1 − x)a(1 − s) . (3)
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Fully connected, a = 1, N = 1000(+), 1000,000(x), 1000,000,000(*); differential equation (line)

Figure 2: Fully connected model with 103, 106, 109 agents at s = 0.4
compared with differential equation (rightmost line) at s = 0.4. The three
left lines correspond to s = 0.1, 0.2, 0.3 from left to right for N = 109. The
thick horizontal line corresponds to s = 0.5 and N = 106 and changes away
from 1/2 only for much longer times. Figs. 2 and 3 use one sample only
and thus indicate self-averaging: The fluctuations decrease for increasing
population.

On a lattice, this x is replaced by the fraction of X speakers in the neighbor-
hood of 2d sites. We use regular updating for most of the results shown in
this paper. Initially each person selects randomly one of the two languages
with equal probability: x(t = 0) = 0.5. In the symmetric situation s = 1/2
with a = 1 that we will consider, our later lattice model becomes similar to
the voter model [17].

Fig.2 shows our results for the fully connected case and Fig.3 for the
square lattice with four neighbours; the results are quite similar to each
other and to the original differential equation. A major difference with the
differential equation (1) is seen in the symmetric case s = 1/2 when the two
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Figure 3: L × L square lattice with L = 101 to 3001 at s = 0.4. The three
left lines correspond to s = 0.1, 0.2, 0.3 from left to right for L = 3001. The
thick horizontal line corresponds to s = 0.5.

languages are completely equivalent. Then the differential equation has x
staying at 1/2 for all times, while random fluctuation for finite population
destabilize this situation and let one of the two languages win over the other,
with x going to zero or unity.

This latter case can be described in a unified way by looking at the num-
ber of lattice neighbours speaking a language different from the center site.
It corresponds to an energy in the Ising magnet and measures microscopic
interfaces. Initially this number equals d on average, and then it decays
to zero, first possibly as a power law, and then exponentially after a time
which increases with increasing lattice size, Fig.4. The first decay describes
a coarsening phenomenon, while the exponential decay is triggered by finite
size fluctuations. In one dimension the initial decay follows a power law,
t−1/2, while in three dimensions an initial plateau is reached. This is followed
by an exponential decay in d = 1, 3 as in two dimensions, Fig.5. Figure 6
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Figure 4: Decay of unstable symmetric solution x = 1/2 for s = 1/2 for
square lattices of various sizes; the larger is the lattice the longer do we have
to wait. A semilogarithmic plot, not shown, indicates a simple exponential
decay. Figs.4-6 average over 100 samples.

shows that the average of |x(t) − 1/2| increases in two dimensions roughly
as the square-root of time until it saturates at 1/2, indicating random walk
behavior. (Note that first averaging over x and then taking the absolute
value | < x > −1/2| would not give appropriate results since < x > would
always be 1/2 apart from fluctuations.)

In all the simulations described above, we went through the population
regularly, like a typewriter on a square lattice, and for full connectivity kept
the probabilities constant within each iteration. Using random updating is
more realistic but takes more time. The long-time results are similar, and the
power-law decay holds for t < 102 with exponents 0.5 for d = 1 (Fig. 5), and
0.1 (compatible with 1/ ln t) for d = 2. For d = 3 a plateau is also reached.
For the simpler regular updating we checked when the fraction x, initially
1/2, leaves the interval from 0.4 to 0.6 on its way to zero or one, Fig.7a. For
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the random updating we checked when the energy reaches a small fraction of
its initial value, taken as 2/L, 0.04 and 0.6 for d = 1, 2, 3, Fig.7. Both figure
parts are quite similar, with scaling laws for the characteristic time which are
compatible with the ones obtained for a voter model [17]: τ ≃ N2 in d = 1,
τ ≃ N ln N in d = 2, and τ ≃ N in d = 3, where N = Ld.

We conclude that agent-based simulations differ appreciably from the
results from the mean-field approach for the symmetric case s = 1/2: While
Eqs.(1,2) then predict x to stay at x = 1/2, our simulations in Fig.4 and
later show that after a decay everybody speaks the same language. In a
fully connected network and in d = 3 the decay is triggered by a finite size
fluctuation, while in d = 1, 2 the intrinsic dynamics of the system causes an
initial ordering phenomena in which spatial domains of speakers of the same
language grow in size.

We acknowledge financial support form the MEC(Spain) through project
CONOCE2 (FIS2004-00953).
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Figure 5: Same as Fig.4 but in one (top) or three (bottom) dimensions.
Simulations shown for d = 1 are done with random updating
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Figure 6: Average over absolute difference between x(t) and x(t = 0) = 1/2)
for d = 2.
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Figure 7: Time for the energy (= number of different lattice neighbours) to
sink to some constant fraction of its initial value, versus population N = Ld,
in one (+), two (x) and three (*) dimensions, from x(t) averaged over 100
samples. Part a uses regular updating, part b the better random updating.
The straight lines have slope 1 for d = 2, 3, and 2 for d = 1.
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