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Emergent Semantics

John Naisbitt’s saying, “We are drown-
ing in information and starving for knowl-
edge,”1 is now a classic quotation for
describing the Web, knowledge manage-
ment, wearable computing, and e-learn-
ing—to name but a few. But, hey, isn’t
semantics en vogue? We’re using semantic
search tools that return precise answers,
fast reasoning engines that exploit seman-
tic relationships, and ontologies that inte-
grate information. We are also investigat-
ing Semantic Web languages.2 So, isn’t the
problem solved, at least in principle—give
or take a little more programming effort?

Philosopher Ludwig Wittgenstein
argued in Tractatus Logico-Philosophi-
cus that language is composed of com-
plex propositions that we can analyze
into simpler ones until we arrive at ele-
mentary propositions.3 He argued that
the world is composed of complex facts
that we can analyze into less complex
ones until we arrive at atomic facts. The
world is the totality of these atomic facts
or “states of affairs,” and elementary
propositions logically stand for them. 

Applying this logic to computer sci-
ence, we could build intelligent systems
that comprise elementary and complex
propositions that stand for atomic and
complex facts. Then, we could describe
the semantics of the languages we use
and employ query or reasoning engines
to exploit our analysis. This resembles
Wittgenstein’s approach, which was to
construct truth tables to analyze complex
propositions. 

However, Wittgenstein renounced
much of his early work, saying his view
of language (often referred to as
Wittgenstein I) was too narrow and
hence mistaken. In Philosophical Inves-
tigations (often referred to as Wittgen-

stein II), he argued that if we scrutinize
how language is used, we might recog-
nize its large variety.4 Words can serve
many different functions, thus we can
use linguistic expressions in multiple
ways. Although some propositions stand
for facts, others are used to command,
question, pray, thank, curse, and so on.
This recognition of linguistic flexibility
and variety led to Wittgenstein’s concept
of a language game—the sending and
receiving of propositions—and his con-
clusion that people play different lan-
guage games. The scientist, for example,
is involved in a different language game
than the theologian. The meaning of a
proposition must now be understood in
terms of its communication context—
that is, it can only be described a posteri-
ori. Eventually, the same might be said
about the words people use to form
propositions.

From this viewpoint, you might ask
whether (most of) the semantics-based
systems we have built exhibit some faults
in their core principles. To some extent,
this is not the case. In particular, semantic
descriptions (such as ontologies) are mod-
els that provide abstractions of the world;
naturally, they cannot reflect the wealth of
all existing phenomena. This abstraction
is fine if the systems run smoothly and do
what they are intended to do. Rather than
an insurmountable dichotomy between
Wittgenstein I and Wittgenstein II, there
might also be a synergy between the two.
This is where emergent semantics might
come into play.

Emergent computation is based on the
idea that appropriate complex structures
might arise purely from the physics of
the task environment,5 rather than from
an architect’s elaborate considerations.

Such an evolution lets us build complex
organisms without an explicit purpose of
creating them.6 However, emergent com-
putation has typically been associated
with evolutionary computation for opti-
mization or combinatorics, which in turn
is rarely applied to semantics.

Letting semantics emerge by observing
interactions between human and machine
agents, however, is an attractive and versa-
tile paradigm for tackling several related
problems:

• We can diminish the knowledge acqui-
sition bottleneck that still hurts many of
our semantics-based applications. Fre-
quently, semantics-based systems don’t
run smoothly and suffer from a shortage
of up-to-date semantic descriptions.

• We can observe many interactions
between machine and human agents
without additional human effort, let-
ting semantic structures emerge on
their own. Currently, these interactions
often go unused.

• We can create a new basis for under-
standing natural language. For exam-
ple, we could create a theory that bet-
ter combines ideas from Wittgenstein I
and Wittgenstein II.

Recent work, described in the follow-
ing essays, has turned these high-level
considerations into existing, running
systems. Simone Santini explains how to
use image retrieval from databases to
exploit observations about system users
and draw conclusions about the semantic
content of images. Frank Nack’s essay
considers the more general area of multi-
media, and Luc Steels discusses how to
let semantics emerge between agents that
communicate with made-up language.



Image Retrieval

Simone Santini, University of California, San Diego

Visual information retrieval has emerged
in the last 10 years as a natural extension of
certain database ideas to multimedia data—
in particular, for images and video. The idea
seemed natural in its simplicity: retrieve
images from a large repository based on
their content or, more precisely, certain stan-

dard interpretations of their contents. 
Such a program’s feasibility assumes that

there is something we can reasonably call 
an image’s meaning. Traditional computer
vision hypothesized that we could, in princi-
ple, extract meaning from the image data and
represent it in a symbolic or numerical way.
Image retrieval makes the ontologically less
committing hypothesis that syntactically
measurable similarity would reveal similar-
ity in meaning. In other words, it is possible
to extract features from images and cast
them into an appropriate metric space in
such a way that similar images have similar
meaning. The query by example model of
image databases is based on this idea. 

Although it makes a smaller ontological
commitment, query by example still pre-
supposes the existence of an image’s mean-
ing. Impossible as it might be to character-
ize this meaning using syntactic features, it
is nevertheless still a function of the image
data and, although absolute meaning can’t
be revealed, similarity of meaning between
images can.

A fair share of the problems that plague
image databases comes from this semantic
presupposition, and we’ll only solve these
problems by redefining the concept and
role of meaning in an information system.

An image’s meaning
I surmise that a fundamental difference

between an image and a database record is
their different status as signs. In particular,
we can always view a database record as a
preposition (that is, a dicentic legisign1,2),
whereas images are terms predicated by an
external discourse. The universe of images
is contextually incomplete: taken in isola-
tion, images have no assertive value but
rely on some external context to predicate
their content. 

This characteristic is not exclusive of
images: the same is true for normal speech
and even fragments of formalized struc-

tures, such as databases. Consider the state-
ment, “Louis XVI had to relentlessly fight
for the success of the French revolution.”
The simplest question to ask about this
statement is whether it is true or, in slightly
more general terms, valid.

The answer depends. If the sentence
appeared in a history book, it would cer-
tainly be false. Yet, in an English grammar
book, as an example of a split infinitive, the
sentence would be entirely appropriate.
Although it doesn’t refer to any historical
fact, its validity would come from its being
immersed in a different language game—
that of valid grammar examples. 

Of course, this is nothing new: the impor-
tance of context for interpretation has been
recognized at various levels, from Umberto
Eco’s aphorism that “every decoding is
another encoding” to the construction of the
Cycorp knowledge base of “human com-
mon sense.”3 Eco’s observation applies very
well to the case of images, but the formalis-
tic-reductionist approach at the basis of the
Cyc attempt does not.

To show this, I present a formalized sys-
tem in which meaning is strongly restricted,
delimited, and formally described.

Formalizing meaning
Consider the database table in Figure 1a.

The records in Figure 1a don’t mean any-
thing, although most people will realize
that the symbols in the first column are
names, and Italian readers will probably
realize that the symbols in the second col-
umn are fiscal codes. Apart from these
intuitions, in a database, the meaning is
formalized through a schema that, in this
case, can be formatted as Figure 1b shows.
With this schema, the information becomes
a series of predicates such as “Dupont
earns 95,000 US dollars per year, and her
fiscal code is DPTDNS45E52B203K.” The
schema provides a framework for interpret-
ing the records.
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Finally, Alexander Maedche elaborates
on how the analysis of text might add to
the semantic descriptions of the primi-
tives in use. All discuss ways to let
semantics emerge from simple observa-
tions from the bottom-up—rather than
imposing concepts on the observations
top-down—to provide precise query,
retrieval, communication, or translation
for a wide variety of applications. 

Are you still drowning in informa-
tion? Then, let’s think about how seman-
tics will emerge in your applications!
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Figure 1. (a) Information for a database; (b) an example in which the information’s
meaning has been formalized through a schema.

Berkowitz BRKSML56D03D403K 90000
O’Malley MLLRBR67M15F301A 80000
Dupont DPTDNS45E52B203K 95000
(a)

name:string fiscal_code: fcodeType salary:USD
(b)



What kind of meaning does this schema
attach to the table? We can make many
deductions based on these records. For
instance, the rules governing Italian fiscal
codes reveal that Dupont is a woman, born
on 12 May 1945. Common conventions
about naming babies make it clear that the
names in the first column are with all proba-
bility the family name, and a general knowl-
edge of heraldry suggests that Berkowitz’s
family is probably Jewish, O’Malley’s is
probably Irish, and Dupont’s is probably
French. 

Are these observations included in the
database semantics, and how is this decided?
In a typical database, the operational aspects
of meaning are determined by the data types
that compose the various columns. A great
deal of work at the conjunction between
database theory and functional programming
has been done to specify the structure of data
types,4 their semantics (through monoid or
monad comprehension),5 and their logic
invariants (through the inclusion of theories
in the specification of the data type).6 In this
way, the meaning of, say, the fiscal code is
encapsulated in the algebra and theory that
describe the data type fcodeType. These rules
will state, for instance, that it doesn’t make
sense to add two fiscal codes, but it makes
sense to compare the birth dates of two fiscal
codes. Depending on the data type definition,
it might not be possible to extract gender and
birth date from a fiscal code.

The only semantics in the database are
the algebraic and logic properties that the
data types induce—all other interpreta-
tions are excluded. The foundational
assumption of databases is that we can
always determine this restriction in the
data’s meaning a priori, so that designing
a schema, some data types, and some data
algebras that completely encapsulate the
desired semantics is possible. 

I call this set of constructs, which deter-
mine the semantics of the records, the data-
base’s discourse. I use this term rather the
more common ontology to emphasize that
the semantic specification that I am consid-
ering has multiple aspects (logic, functional,
algebraic) that the usual concept of ontology
doesn’t cover.

The previous observations amount to
saying that in a traditional database, the
database schema determines the discourse a
priori, completely formalized, expressed in
the same formalism in which the data are
expressed. In language, on the other hand,

the discourse is never completely formalized
but can be encoded without leaving the sys-
tem whose semantics we must determine. In
other words, the contextual indicators of a
sentence’s semantics can be expressed in the
same sign system in which the sentence is
expressed (language). 

Discourse
What plays the role of discourse (in the

sense indicated earlier) for images? Con-
sider a picture of Umberto Eco conversing
with St. Thomas Aquinas. Is this image
valid? As in the sentence about Louis XVI,
it depends. If the picture appeared on the
front page of the New York Times, it would
be considered a lie: Eco never had a con-
versation with Aquinas, and the front page
of the New York Times is supposed to docu-
ment real events.

On the other hand, had the same picture
been published in the Book Review section
of the New York Times, illustrating the
cover of a book titled Semiotics through the
Ages, the picture would have been entirely
appropriate. The difference between these
two situations is in the different set of cul-
tural and social conventions that regulate
the publication of pictures on a newspa-
per’s first page and on its Book Review
page. Similarly, a photograph placed in the
context of a documentary is assumed to
represent something real—not because of
its contents, but because of the documen-
tary photographer’s social role. 

So, we are once again in the situation in
which some type of discourse or context is
necessary for the interpretation. The differ-
ence between images and the discourses
presented earlier is that, in this case, we
can’t express the discourse in the same
terms as the data that it interprets. 

Image databases
Whereas the discourse of data typing in

data, logic, or knowledge bases is always
expressed in the same terms as the proposi-
tions whose validity it determines, this is
not possible for image databases. In other
words, a database schema is composed of
terms of the same kind of the data that are
in the database (strings, numbers, and so
on) and can be manipulated using the same
operations that manipulate the data. In an
image database, these representations are
radically different, because the context
can’t be represented as images.

Because of this, the program of visual

information retrieval I mentioned in the
introduction is, in its most ambitious form,
unattainable. A pure repository of images,
disconnected from any kind of external
discourse, doesn’t have any meaning that
can be searched, unless we make some
additional assumptions:

• The database is a priori inserted in a
domain that is restricted enough to give
meaning to a subset of the image con-
tent, and we can, for all practical pur-
poses, disregard any other meanings of
the images. This is the case for databases
operating in certain domains such as
medicine, where images are interesting
only because of their diagnostic value. In
this case, whether an MRI scan looks
dramatic is irrelevant; only diagnostic
features, such as those detecting a brain
tumor, are of interest.

• The database is explicitly linked to an exter-
nal discourse that can be formalized to a cer-
tain degree. This is the case of Web images:
the Web’s text and structure provide a rea-
sonably rich environment in which we can
identify topics and infer an image’s intended
message, at least to a certain degree.

• The user will endow images with mean-
ing. The similarity relations that are
valid between images in a given situa-
tion and that give meaning to images
depend on the particular circumstances
in which a given user or a group of users
asks a given query. These circumstances
are beyond the database’s control and
generally can’t be formalized or encoded
(since, as I argued before, the discourse
about images can only be formalized
outside of images but, ex hypothesis, this
type of database contains only images).
The meaning, in this case, does not
reside in the database but is built by the
user through appropriate associations
during the image retrieval process.

These three assumptions result in three
different search modalities—that is, in
three different orientations of image data-
base technology.7 The third orientation is,
in many respects, the most interesting. It is
also the major contribution of image data-
bases to the general field of information
technology. In light of this, it seems rea-
sonable that a semantic program for image
databases should concentrate on the fol-
lowing points.

First, part of an image’s semantics
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derives from its relations with other
images, which vary according to the
query’s particular circumstances. This
implies that the semantics of images is at
least in part functional and that a query
process for image databases should manip-
ulate similarity functions. An image data-
base should include a complete algebra of
similarity functions and treat similarity
functions as first-class data.

Second, the semantics of the image’s
descriptors (features) should be specified, as
much as possible, through a discourse (that
is, through algebraic, logic, and functional
means). However, this formalization will
never be sufficient to delimit a semantics of
interest—it will merely help in practical
aspects of database organization8 and support
the user’s true semantic-generating activity.

Finally, an image always has a meaning
relative to the practices and social codes of
a specific user. For example, two people in
a picture can be judged too close (and
therefore in a situation of intimacy) for an
American viewer, but at a fair distance (and
therefore in a situation of formality) for an
Italian viewer, simply because the social
code of spatial configurations is different in
the two cases. In this sense, the goal of the
interaction between the user and database
is not so much to retrieve images based on
a preexisting semantics but to create image
semantics. The interaction itself is not con-
figured as a query but as a navigation in
which the user dictates similarities and
associations between images and, through
this activity, reorganizes the database to
embody the desired semantic.

It is essential, for instance, that through
the use of appropriate interfaces,9 the user
can decide which images are similar. This
activity lets the database adapt its similarity
measure to that which the user has in mind
for that particular query. Consequently, the
database can build, through repeated itera-
tions, the semantics that the user has in
mind for that particular query. 

Relevance feedback has been a first step
in this direction, but it is clear that to let
alternative semantics emerge from the
interaction between the user and database,
the connection between the two must be
much deeper. The user needs expressive
means more powerful than simply selecting
positive or negative examples, and the
whole data organization inside the database
should depend on the status of the interac-
tion with the user.

The challenges that this organization
will pose are at the boundary between data-
base theory, image analysis, knowledge
representation, and human–machine inter-
action. Developing solutions from such a
maelstrom of different technical cultures
and orientations will be an interesting and
exciting experience.
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Media Information Spaces—A
Semantic Challenge

Frank Nack, CWI, Amsterdam

The information society is leaving
behind the cyberspace based on a hybrid
system of traditional media (telephone,
cinema, TV, theatre, museum, books, news-
papers, and so forth) and digital informa-
tion technology (networked and storage
intensive computers, CD-ROMs, DVD, IP-

telephony, Webcams, MIDI, and so forth).
Rather, it is entering a knowledge space
that facilitates new forms of creativity,
knowledge exploration, and social relation-
ships mediated through communication
networks (including hypertext, interactive
multimedia, interactive games, virtual real-
ity, simulations, and augmented reality). 

Such an interactive, open, and multimodal
environment sustains the activation of the
human and the artificial system’s articulation
powers to communicate ideas, where verbal,
gestical, musical, iconic, graphic, or sculp-
tural expressions form the basis of adaptive
discourses. A basic aspect for such a space,
which supports individuals but is still com-
munal, is that information must be made
accessible that is hidden in the unified struc-
ture of the single text, image, video, audio, or
tactile unit. Thus, the goal is to create an
environment in which media units and the
relationships among them are understood as
basic elements that can interrelate to produce
new meanings.

To support this process of generating
meaning, interpretation, and visualization, a
system must know what is contained in the
different media. For visual media, however,
this poses a problem. Even though an image
might provide a limited amount of visual
information, it contains a wealth of meaning.
This functionality is based on the two formal
structures that can be assigned to every per-
ceivable object in visuals: the signifier
(which carries the meaning) and the signified
(which is the concept or idea signified). The
relation between the two elements is not a
naming-process only, as the signified resem-
bles not a thing but a concept. Secondly, the
relation between the signifier and the signi-
fied is arbitrary. It is, in particular, the arbi-
trariness of the relationship between signifier
and signified that enables the creation of
higher-order sign systems and their diversity. 

Thus, visual media requires more than
characterizing its visual information on a
perceptual level using objective measure-
ments, such as those based on image or
sound processing or pattern recognition.
Creatively reusing material for individual
purposes, which usually opens up ques-
tions of aesthetics and subjective inter-
pretation, has a strong influence on the
descriptions and annotations of visual
media data, either created during the
data’s production process or added later.
Providing semantic, episodic, and techni-
cal representation structures that can
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change and grow over time is important.
This also requires adaptable relations
between the different type of structures.

The Semantic Web
The Semantic Web is a first step

toward addressing these problems (www.
semanticweb.org). It should bring machine-
processable content to Web pages, thus
extending the current Web. The idea is to
add ontology-based metadata to text or
HTML documents to improve accessibility
and provide a means for reasoning about
the content. The applied technology is
XML-based, which facilitates structural,
cardinality, and datatyping constraints
(XML Schema) on textual documents,
allowing a comparison on structural levels.
Richer semantic descriptions can be pro-
vided either as relation-oriented schemata
(RDF, RDF Schema) or ontology-based
technology (DAML+OIL). These technolo-
gies support in-depth indexing and classifi-
cation of textual documents for presentation
generation and navigation purposes. 

To some extent, XML-based approaches
also incorporate multimedia, either in the
form of presentational languages such as
Synchronized Multimedia Integration Lan-
guage (SMIL) (integration of media style),
SVG (with CSS for graphics), and XHTML
(with CSS for formatted text), or transfor-
mational methods such as XSLT (document
transformation) and CSS (control of style
appearance).

However, the major drawback of XML-
based environments is that they don’t rec-
ognize visual media’s dynamic nature or its
variety of data representations and their
mixes.

MPEG frameworks
The Moving Pictures Expert Group is a

working group of the International Orga-
nization for Standardization/International
Electronics Commission. MPEG is in
charge of developing standards for coded
representation of digital audio and video,
and it leads one of the broadest efforts in
the direction of complex media content
modeling. It aims to provide a framework
for interoperable multimedia content-
delivery services. 

Semantic description languages have
emerged in two of its standardization activ-
ities: in MPEG-4, as the Extensible MPEG-
4 Textual Format (XMT) and in MPEG-7,
as the Description Definition Language

(DDL)—the multimedia content descrip-
tion interface. 

In MPEG-4, the standard for multimedia
on the Web, XMT provides content authors
with a textual syntax for the MPEG-4 Binary
Format for Scenes (BIFS) to exchange their
content with other authors, tools, or service
providers. XMT is an XML-based abstrac-
tion of the object descriptor framework for
BIFS animations. Moreover, it respects exist-
ing practices for authoring content, such as
SMIL, HTML, or Extensible 3D by allowing
the interchange of the format between a
SMIL player, a Virtual Reality Modeling
Language player, and an MPEG player. It
does this using the relevant language repre-
sentations such as XML Schema, MPEG-7
DDL, and VRML grammar. In short, XMT
serves as a unifying framework for repre-
senting multimedia content where otherwise
fragmented technologies are integrated and
the interoperability of the textual format
between them is bridged.

The MPEG-7 group’s objective is to stan-
dardize ways of describing different types of
multimedia information. The emphasis is on
audio–visual content with the goal of extend-
ing the limited capabilities of proprietary
solutions to identify content by providing a
set of description schemes and descriptors to
make various types of multimedia content
accessible. In this context, a description
scheme specifies the structure and semantics
of the relationships between its components,
which might be both descriptors and descrip-
tion schemata. A descriptor defines the syn-
tax and the semantics of a distinctive charac-
teristic of the media unit to be described,
such as an image’s color, a speech segment’s
pitch, an audio segment’s rhythm, a video’s
camera motion or style, a movie’s actors,
and so forth. Descriptors and description
schemata are represented in the MPEG-7
DDL. The current version of the DDL is
based on XML Schema, which provide a
means of describing temporal and spatial
features of audio–visual media as well as
connecting these spatio-temporal descrip-
tions within the media. The DDL also 
provides the necessary mechanisms for
extending and refining existing description
schemata and descriptors and to define new
schemata or descriptors if required.

Current problems
Problems exist with using MPEG-7 as

the basis for a dynamic media-based
knowledge space. First, MPEG-7 is hierar-

chy centered. This means that a description
of data in MPEG-7 is understood as one
document that applies a tree structure. The
schemata for this document type are fixed
and cannot be altered. This linear approach
is not astonishing, because efficient access
and retrieval was and still is the driving
development force of the MPEG-7 stan-
dardization effort. However, this approach
is far too restrictive; any form of annotation
is necessarily imperfect, incomplete, and
preliminary, because annotations accom-
pany and document the progress of inter-
preting and understanding a concept.
Graphs, which form the basis of semantic
networks, provide better support for carry-
ing out this incomplete task over time.

Related to this problem is the conceptual
idea in MPEG-7 of two general description
types: complete descriptions (which use
the MPEG-7Main as the root element) and
partial description units (which use the
MPEG-7Unit as the root element). Distin-
guishing between a complete and fragmen-
tal description is purely academic and adds
an unnecessary level of complexity.

Another problem is the great number of
MPEG-7 schemata—not so much because
of their number, which is unavoidable, but
because of their interlocked nature, which
makes using schemata in isolation difficult.

Finally, it has also become increasingly
clear that we need a machine-understand-
able representation of the semantics associ-
ated with MPEG-7 description schemes
and descriptors. This representation would
enable the interoperability and integration
of MPEG-7 with metadata descriptions
from other domains. MPEG-7 is currently
developing description schemata mainly
for the film and broadcasting domain, and
to accomplish this, MPEG-7 requires a
common understanding of the semantic
relationships between metadata terms from
different domains. XML Schema, and
hence MPEG-7’s DDL, provide little sup-
port for expressing semantic knowledge,
but RDF Schema might. Jane Hunter and
Carl Lagoze offer an example for interop-
erability between application profiles in
RDF and XML Schema.1

Striving to be a highly interoperable stan-
dard among well-known industry standards
and other related standards of different
domains is a courageous and farsighted step
for a group mainly known for its concern
with efficient audio–visual coding at the bit
level. Moreover, the textual representations in
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MPEG-4 and MPEG-7 not only support the
current trend in content description toward
XML as the accepted standard, but they
also point to new ground. Because textual
representations allow a symbolic represen-
tation of multimedia content by expressing
relations between elements—synchronized
with the different modalities of multimedia
data—it is now possible to model central
aspects of how humans try to make sense of
complex systems.

So, has the paradigm change in multi-
media computing happened yet? Not really,
but we’re moving in the right direction. 
The real challenges are still ahead of us—
generating and using quality metadata. 

It took nearly 30 years of steady infiltration
of technological advances in everyday pro-
duction environments—such as nonlinear
video-editing systems, image-editing tools,
audio systems, and Web presentation technol-
ogy—to communicate ideas in forms other
than text. And still, the technology follows
the strains of traditional written communica-
tion by supporting the linear representation of
an argument, which results in a final multi-
media product of context-restricted content.
Thus, we face the paradoxical situation that
although there are more possibilities than
ever to assist in the creative development and
production processes of media, we still lack
adaptive environments that can serve as an
integrated information space for use in dis-
tributed productions, research, restructuring
(such as by software agents), or direct access
and navigation. 

We need systems for authoring media that
let people use their creativity in familiar ways
and their human actions to extract the signifi-
cant syntactic, semantic, and semiotic aspects
of the media’s content to construct descrip-
tions based on a formal language. There is
much evidence that manual labor can provide
a great deal of useful annotation.2–4 We also
need systems that manage independent media
objects and representations for use in many
different productions with a potentially wide
range of applications.

Yet, if we only had the information gath-
ered during the production of media, includ-
ing its reuse and modifications, we would still
lack knowledge about the material’s potential
intrinsic meanings. Thus, it is important to
make people aware that the notion of a com-
pleted work vanishes in such a system and

leaves space for a creative and productive
cycle, a living environment allowing all sorts
of processes. These spaces are for investiga-
tion based on an interpreting, associative
method rooted in a discourse-oriented collec-
tive interpretation of questions that, by fol-
lowing the branches of interdependencies,
compare the most diverse theories. 
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Language Games for Emergent
Semantics

Luc Steels, University of Brussels AI Lab and Sony
Computer Science Lab, Paris

Every computer scientist knows that we
can only process information when the infor-
mation is somehow represented—there’s no
computation without representation. Tradi-
tionally, human programmers have designed
the representations. They select what aspects
of the domain are relevant and thus must be
made explicit, and they design appropriate
data structures that efficiently support the
processing required for a task. This works
reasonably well, but we need a massive
amount of programs these days, making it
difficult to keep up. Moreover, users want
their programs to adapt to new tasks and a
changing world. This raises the question of
whether computer systems can develop and
adapt representations.

A typical example is Web applications,

which must cope with constantly changing
information sources (material appears and
disappears without any central control) and
needs (the Web touches on all aspects of
human life and is therefore basically open-
ended). Another example is autonomous
robots, which must operate in an open-
ended and unpredictable world in which
new tasks can arise that the designers could
not have foreseen. 

The origin of representation has been a
central topic in AI research from the begin-
ning—it is a problem that human biology has
had to solve as well. The question is usually
studied under the heading of machine learn-
ing and is far from resolved. Indeed, there is
a profound paradox. 

Computation requires a representation,
but how can this computation generate its
own representation? A representation casts
a frame on the world, but this frame is a
strength as well as a limitation. Stepping
out of the frame is like jumping out of a
hoolahoop while holding it. As Ludwig
Wittgenstein put it, “The limits of my lan-
guage mean the limits of my world.”

We can schematically classify efforts to
understand the origins of representations
into two approaches: induction and selec-
tion. I propose a third alternative, which
relies on interaction, construction, and
communication.

Induction
The inductive approach is the best

known and furthest developed, having been
explored in the fields of statistical-pattern
recognition,1 symbolic machine learning,2

and neural-network research.3 A large
training set must be available, and the
inductive process goes over these data to
find what is essential and what is contin-
gent. Either the process is supervised, in
the sense that it receives feedback about
what it needs to learn, or it is unsupervised,
in which case it attempts to detect the nat-
ural classes or regularities in the data. In
the past decade, researchers have devel-
oped a wealth of induction algorithms, and
many applications have been demonstrated
for more compact coding of the data, find-
ing similarities, learning inference rules,
data mining, and so forth. 

However, some fundamental limitations
have come up as well, in the sense that the
intervention of a human designer is much
greater than hoped for. The designer must
assemble an adequate set of training data,
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which she must prepare carefully. Often
she must choose the outline of the repre-
sentation to bias the learning algorithm.
She must carefully select the learning
architecture for the task and domain and
set parameters. Pure unsupervised induc-
tion often leads to concepts that are irrele-
vant for the task at hand. For example, a
series of real world images might cluster
based on the time of the day they were
taken rather than on the objects contained
in the image. 

Many algorithms do not support incre-
mental learning and could even deteriorate
in performance when the learning goes on
for too long. All of this does not diminish
induction’s usefulness but suggests that
humans might have more up their sleeves. 

Selection
Neo-Darwinian models of genetic evo-

lution and observations of early brain
development have inspired an alternative
approach to machine learning. This selec-
tionist approach assumes there is a process
that generates at random a wide variety of
possible representations (alongside the
algorithms that use these representations)
and a selection process that picks out algo-
rithms and representations best suited for
the task. 

Again in the past decade, researchers
have come up with a wide variety of algo-
rithms and impressive demonstrations of
practical applications.4 It seems that such a
selectionist approach is particularly good in
optimization, but there is a catch. A human
designer once again must heavily interfere
to get reasonable results. He must translate
the desired target into selection criteria. He
must also choose the appropriate operators,
which implicitly biases the representations
that might develop. Selection is efficient
when many solutions can be explored in
parallel but is obviously less appropriate
when a single agent (such as a robot) or a
computer system must individually try out
all possibilities. Because selection is based
on a parallel search process, it has all the
negative characteristics of search, such as
the risk of ending up in local minima or long
search time when there are no adequate
heuristics. Thus, selection is also not the
final answer.

Construction
Suppose you and your family just moved

into a new house. Instead of throwing every-

one’s shoes into one big box, you ordered
them, perhaps putting them into separate
boxes or drawers with labels, so family
members could remember which shoes are
in which box. This implies that you not only
categorized the shoes but also created an
external representation of the categorization
to communicate within the group. 

This is a typical example of human semi-
otic activity. Induction couldn’t have solved
this problem, because there were no con-
cepts to be learned, training sets, or existing
labels. Similarly, randomly generating rep-
resentations would have been an odd way to
organize the shoes; imagine the entire fam-
ily putting shoes into piles, hoping the
result would be an effective organization. In
reality, three activities must occur: interac-
tion, construction, and communication.  

Interaction involves tasks and activities
that generate the need for new meanings—
in this case, we need to organize the shoes
so the family members can easily find their
shoes. Construction involves agents that can
impose new categories. These categories are
chosen in function of the task. For example,
the agents could order the shoes based on
who wears them, their size, the season in
which they’re worn, their age, and so forth.
These categorizations are not based on nat-
ural categories (for example, a grouping
based on color would not make sense) but
rather on features that will guide the shoes’
retrieval. With communication, external
tokens associated with the categories inter-
vene—for example, shoes are put into
labeled drawers. These communication con-
ventions must be negotiated among those
involved in the task—there are no absolute
pregiven conventions. Communication is
crucial, because it is the motor for testing
the concepts’ adequacy and for pushing the
development of new concepts when there
are misunderstandings or task failures. 

This intuitive model suggests new ways to
approach the problem of emergent semantics.
I have performed numerous experiments with
teams at the University of Brussels and the
Sony Computer Science Laboratory in Paris
to better understand this social construction
of meaning and to turn it into an operational
model.5 We’ve learned that this will require
several ingredients.

First, we need multiagent systems. If
representations result from a collective
effort based on interaction and communi-
cation between agents, then we cannot
restrict ourselves to a single agent or a

computer program that is passively receiv-
ing a stream of training cases. In addition,
the agents need a rich basis of interactions
between themselves and the world. In our
own work, we are particularly interested in
grounding meaning in the real world
through a sensorimotor apparatus. So, we
need a sufficiently complex body and a
rich enough environment, involving other
robots as well as humans. In our experi-
ments, we use autonomous robots, such as
the Sony AIBO pet robot, as a platform for
the agent. These robots are capable of
operating in an open environment without
narrow prior task definitions. 

The second component is construction.
Concepts need not arise gradually by strip-
ping away contingent properties of individual
cases. Instead, it is possible to take a sensory
dimension (say, the objects’size) and intro-
duce a distinction by cutting the space into
two distinct regions. One region would corre-
spond to the concept of small and the other to
that of large. If necessary, the dimension
could be cut up further into very small or very
large regions, and so forth. More sophisti-
cated construction operators work with multi-
dimensional spaces or with prototypes used
through nearest neighbor algorithms. 

The third component is communication.
Agents should be designed to communicate
as part of the task, which means that they
must develop symbols to externalize their
conceptualizations of reality. Human
designers need not define the symbols in
advance. Several researchers have now
shown abundantly in various experiments
that agents can invent new physical tokens
(words, grammatical constructions,
gestures), using random combinations from
an alphabet, and associate these with con-
cepts they want to express or which they can
hypothesize in others.6 It is crucial that the
memories of the associations keep a score
between a symbol and its meaning, use the
symbol–meaning pair with the highest score
when they must communicate, and update
this score based on feedback in success in
the communication. This way, distinctions
propagate in the population and become
building blocks for more complex represen-
tations. They give rise to a culture in which
concepts evolve in a memetic process and in
which there is a true coevolution of
language (external representations) and
meaning. Individual agents are engaged in
constructing new representations (both
internally and externally). 
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The construction process is collective
(due to coordination through language) and
incremental, just like evolution by natural
selection is collective and incremental. The
amazingly rich and ever expanding human
conceptual frameworks we see today are
the outcome of centuries of incremental
construction processes preserved through
cultural transmission. Potential applica-
tions include the formation and adaptation
of ontologies for Web-based agents6 or
evolving dialogs with humanoid robots.7

Although much needs to be done to turn
these ideas into commonly used technol-
ogy, we can see the beginnings of a new
approach to emergent semantics, comple-
mentary to induction and selection. 
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Emergent Semantics for
Ontologies

Alexander Maedche, University of Karlsruhe

Tim Berners-Lee coined the vision of a
Semantic Web, in which background knowl-
edge on the meaning of Web resources is
stored through the use of machine-process-
able metadata. The Semantic Web should
bring meaning to the content of Web pages,
and ontologies and metadata have been
recognized as the key ingredient for putting
the Semantic Web into practice. 

In 1999, the World Wide Web Consortium
published the Resource Description Frame-
work (RDF) as a recommendation for a
framework and data model for metadata
representation on the Web. Recently, stan-
dardization bodies, in cooperation with dif-
ferent research projects, have been heavily
working on formal knowledge representa-
tion languages for the Web such as OIL or
DAML+OIL, building on RDF and its asso-
ciated typing system RDF-Schema. These
formal languages let us represent complex
structured ontologies that impose a formal,
machine-processable semantics to the primi-
tives in use.

However, the Semantic Web should also
bring added value to human users, not just
serving machine needs for understanding
content. As human users typically apply
context-dependent rules within the process
of deriving the meaning for a specific word,
it is obvious that the communication process
between humans and machines cannot be
ensured by formal, machine-processable
and understandable semantics alone. 

Emergent semantics is a research topic that
deals with this aspect. Thus, we must explic-
itly distinguish between machine-readable
and machine-interpretable conceptual struc-
tures with a clearly defined, formal machine
semantics and the semantics humans assign
to conceptual structures in a specific context.
Within emergent semantics, we’ll investigate
and establish means for supporting the inter-
action between humans and machines for the
cooperation and generation of meaning.

Semiotics and computational
semiotics

Many research communities have re-
searched the general problem of how the
context-dependent meaning is assigned to 
a specific word. Here, I refer to semiotics
—that is, the study of signs, symbols, and
signification, and of how meaning is cre-
ated. Researchers recently coined the term
computational semiotics. It involves using
and evaluating semiotic theories to analyze,
design, and develop computing systems. 

In general, there are three levels for
understanding a message:

• Syntactic: Which natural language prim-
itives are used? Which meanings may be
assigned to these natural language primi-
tives within the system?

• Semantic: What is the meaning of the
primitives used within the system?

• Pragmatic: How do humans interpret the
natural language primitives? How do
humans use natural language primitives
for particular purposes?

Humans require words (or general sym-
bols) to talk and to communicate about
things. The mapping from words to things is
indirect and takes a detour over concepts. The
meaning of a given word in context and its
reference to a concrete thing is given by a
concept. The mapping from words to con-
cepts is the result of the human communica-
tion process. The meaning triangle in the
tradition of Charles Peirce, Ferdinand de
Saussure, and Gottlob Frege described by
Charles Ogden and Ivory Richards in 1923
explains this relationship.1 It illustrates that
although symbols cannot completely capture
the essence of a reference (concept) or of a
referent (thing), there is a correspondence
between them. The relationship between a
symbol and a thing is indirect. The link can
only be completed when an interpreter
processes the symbol, which invokes a corre-
sponding concept and then links that concept
to a referent (thing) in the world. How con-
cepts themselves occur is a matter of discus-
sion among philosophers.2 Let’s focus on
intelligent systems and the Semantic Web.

Ontologies try to formalize natural lan-
guage to enable machine-processable and
understandable data. However, as I men-
tioned, an important aspect is that humans
must agree with a specific ontology and its
intended conceptualization. Ontology devel-
opment is a cooperative standardization
process, and one crucial point within it is the
communication between the different mem-
bers that should later agree on the defined
standard. To support the evolution of a com-
mon meaning in the engineering process, we
must consider not only formal semantics but
also human cognitive structures and the way
humans communicate them. 

Researchers at the University of Karl-
sruhe have used two comparatively simple
means to do this. First, we introduced an
explicit lexical layer for the Web ontology
and metadata representation language,
RDF(S) (RDF(S) unites RDF and RDF
Schema). Thus, we enabled a connection
between ontologies and the conceptual
system such as that communicated through
natural language. We developed the lexical
layer by extending RDF Schema, using a new
namespace (see http://kaon.semanticweb.
org/2001/11/ kaon-language). This pro-
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vides a simple middle ground between a
cognitively motivated approach—such as
WordNet—and formal semantics.

Second, based on this intermediate layer,
we use the implicit semantics contained in
communication protocols—that is, in the
form of data such as documents and email
within the ontology engineering process. In
the classical ontology engineering process,
the conventional wisdom implicitly con-
tained in this kind of input data is often
neglected. Thus, we have developed a means
to semiautomatically extract ontologies from
different kinds of input data. We provide a
short description of the developed ontology
learning approach, which builds on the sem-
inal work of text knowledge acquisition
done by Doug Skuce and his colleagues in
the 1990s.3

Lexical layer for ontologies
In RDF(S), a unique uniform resource

identifier defines the ontology’s elements.
URIs are the Semantic Web architecture’s
primary element, and they identify resources
on the Web such as documents, images,
downloadable files, services, and electronic
mailboxes. However, URIs are typically

neither human readable nor understandable.
RDF(S) proposes using so-called labels that
provide a human-readable version of a re-
source name. There is no clear definition of
how to use these labels—even the labels’
language definition falls back to XML syn-
tax without being processable in the RDF
data model.

In our work, we pursue a more complex
model that lets us assign different kinds of
lexical entries to URIs. The distinction
between lexical entry and concept is simi-
lar to the distinction of word form and so-
called synset (synonym sets) used in Word-
Net. (WordNet was conceived as a mixed
linguistic and psychological model about
how people associate words with their
meaning.) Beside the standard primitive
label that is also available in RDF Schema,
our extension defines specific lexical
entries of URIs such as synonyms, word
stems, and so forth.

Ontology learning
Ontology learning is a bottom-up

approach, which starts from a given set of
data that reflects the human communica-
tion and interaction process. Thus, it con-

siders the discovery of semantics implicitly
contained in the existing data that humans
have generated by exchanging signs. It
includes several complementary disciplines
such as machine learning and statistics to
support semiautomatic, cooperative ontol-
ogy engineering.

In our previous work, we introduced a
complex framework for ontology learning
from different kinds of data.4 We mainly dis-
tinguished between extracting an ontology
from scratch and supporting the ontology
evolution process by analyzing legacy and
application data appearing in different forms.
Emergent semantics requires support from
both ontology learning steps. First, we can
analyze existing results of the human com-
munication process to get a first version of an
ontology. Second, an existing ontology used
within an application might evolve over
time—meanings might change over time to
reflect user behavior.

Obviously, the communication process
between humans and machines cannot be
ensured by formal, machine-processable and
understandable semantics alone. Users typi-
cally apply context-dependent rules within
the process of meaning generation. To estab-
lish a consensus within this process or even to
formalize the rules humans apply within
meaning generation is a future challenge.
Upcoming research must deal with the com-
munication documented in texts as well as
with communication processes such as ontol-
ogy engineering sessions performed over the
Web.
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