Scaling laws in language evolution
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Human language stands as one of the most important leaps in evolution
(Bickerton, 1990; Deacon, 1997; Maynard Smith and Szathmary, 1995). It
is one of its most recent inventions: it might have appeared as recently as
50.000 years ago. Our society emerges, to a large extent, from the cultural
evolution allowed by our simbolic minds. Words constitute the substrate of
our communication system and the combinatorial nature of language (with
a virtually infinite universe of sentences) allows to describe and eventually
manipulate our world. By means of a fully developed communication system,
human societies have been able to store astronomic amounts of information
far beyond the limits imposed by purely biological constraints. As individuals
sharing our knowledge and the cumulative experience of past generations, we
are able to forecast the future and adapt in ways that only cultural evolution
can permit.

The faculty of language makes us different from any other species (Hauser
et al., 2002). The differences between animal communication and human
language are fundamental, both in their structure and function. Although
evolutionary precursors exist, it is remarkable to see that there seems to
be no intermediate stage between them (Ujhelyi, 1996). Such a shift might
result from a number of causes (Wray, 2002) from rare events (making human
language a rather unique, unlikely phenomenon) to so called macromutations.
But alternative scenarios stem from a sudden transition (Ferrer and Solé,
2003).

Unfortunately, language does not fossilize and to a large extent we might
forever ignore the tempo and mode of language evolution. But we certainly
know that languages are not static and are strongly influenced by social
constraints. Economic and cultural forces modify the fate of human com-



munication systems and they can trigger their disappearance or favour their

predominance?!.
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Fig. 1. Scaling law in the distribution of language diversity D as a function of area.
The best fit to the power law D ~ A is shown. Redrawn from Gomes et al., 1999.

As information spreads and breaks geographical barriers, so do dominant
languages expand their reach. The direct effect is the generalized decline of
rare languages. As urban centers attract more and more people and small
communities disappear, native languages are wiped out. Starting from the
late XXth century, with the development and widespread exchange of in-
formation through the planet, the trend has been accelerating. Linguistic
change is a multiscale process, and known to develop at different time scales
within different social groups. But as it occurs with other social and economic
complex systems, language itself displays well defined trends suggesting the
presence of universal patterns of organization. Such patterns are particularly
obvious when looking at the scaling laws observed at multiple levels. In this
chapter we present several scaling phenomena arising within human language
at different scales.

1 Language biodiversity

One of the universal laws of ecological organization is the so called species-
area relation (Rosenzweig, 1995). It establishes that the diversity of species
D (measured as the number of different species) in a given area A follows a

!'New languages can rapidly emerge provided that appropriate conditions are
met. As an example, a full sign language emerged among deaf children in Nicaragua
when young children deprived of exposure to any language invented a new one,
unrelated to spanish nor the so called american sign language. After a few decades,
it became fully developped.



power law

D~ A® (1)

where the exponent z varies from z = 0.1 to z = 0.45 typically. Interestingly,
languages seem to follow similar trends. They exhibit an enormous diversity,
strongly tied to geographical constraints. As it happens to occur with species
distributions, languages and their evolution are shaped by the presence of
physical barriers, population sizes and contingencies of many kinds. And as
it happens with biological entities, languages emerge but also get extinct.
In this context, differences are also clear: speciation in ecosystems can take
place without necessarily implying physical barriers, whereas languages seem
to need some type of population isolation to evolve differences. A second
difference involves the way extinction occurs. Species get extinct once the
last of its members is gone. Languages get extinct too once they are not used
anymore, even if its native speakers are still alive.
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Fig. 2. Scaling laws in language diversity. Here we plot the cumulative distribution
of languages using the number of countries with a language diversity greater than
D. Redrawn from Gomes et al., 1999.

Studies of geographical patterns of language distribution reveal complex
phenomena at multiple scales. As an example, it was shown that they also
display a diversity-area scaling law, with z = 0.41 + 0.03 (Gomes et al.,
1999). In figure 1 we show the results of this analysis for a complilation
listing more than 6700 languages spoken in 228 countries. The power law fit
is very good and spans over almost six decades (with a deviation for areas
smaller than 30Km?) (Gomes et al., 1999). Similar results are obtained by
using population size N instead of areas. In this case, it was shown that the
new power law reads:

D~ N” 2)



with v = 0.50 + 0.04.

The species-area relation has been explained in a number of ways through
models of population dynamics on two-dimensional domains. Beyond their
differences, these models share the presence of stochastic dynamics involving
multiplicative processes. In ecology, such type of processes are characterized
by positive and negative demographical responses proportional to the current
populations involved: a larger population will be more likely to increase, but
also more likely to suffer the attack of a given parasite (and thus experience
a rapid decline).

A different measure of language diversity involves the language richness
among different countries (figure 2). If A'(D) is the frequency of countries
with D diferent languages each, we can plot the cumulative distribution
N5 (D) defined as:

No (D) = /D ~ N(DYaD 3)

The resulting plot is rather illustrating: the distribution follows a two-regime
scaling behavior, i. e.
N>(D) ~ D7° (4)

with # = 0.6 for 6 < D < 60 and g = 1.1 for 60 < D < 700. What
is revealed from this plot? The first domain has an associated power law
with a small exponent (here N'(D) ~ D~1-6): many countries have a small
language diversity. But once we cross a given threshold D = 60 the decay
becomes faster. One possible interpretation is that countries having a very
large diversity will have harder times to preserve their unity under the social
differentiation associated to ethnic diversity (Gomes et al., 1999).

The population-level view of languages provides the top of a hierarchy
of levels down to the words forming them and their interactions. Are there
scaling laws at those lower levels? How are they inter-related? The answer to
these questions can be obtained by looking at language as a complex adaptive
system (CAS), where words emerge, evolve and interact leading to emergent
patterns which we identify as the characteristic traits defining language.

2 Language epidemics

Words constitute the basic meaningful units of language architecture. One of
the challenges of current evolutionary theories is understanding how words
originate, change and spread within and between populations, eventually
being fixed or extinct. Moreover, meaningful communication beyond non-
syntactic patterns requires the emergence of a set of rules able to easily ex-
ploit the underlying combinatorial power of word-word interactions. A very
first approximation to word dynamics in populations should give account
for the spread of words as a consequence of learning processes. Such model
should be able to establish the conditions favouring word fixation.
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Fig. 3. Bifurcations in word learning dynamics: using a simple model of epidemic
spreading of words, two different regimes are present. If the rate of word learning
exceeds one (i. e. R; > 1) a stable fraction of the population will use it. If not, then
a well-defined threshold is found (a phase transition) leading to word extinction.

Consider a population of individuals in which each subject is born ignoring
all words. These words, however, can be acquired through learning. Words are
likely to be learned in a non-independent manner, but as a first approximation
let us assume that they are incorporated independently of each other (Nowak
et al., 1999). If z; indicates the fraction of the population knowing the word
W;, the population dynamics of such word read:

dl‘i
dt

= Rll’z(]. - :L’Z) — T; (5)

with ¢ = 1,...,n. The first term in the right-hand side of the previous equa-
tion introduces the way words are learned. The second deals with deaths
of individuals at a fixed rate (here normalized to one). The way words are
learned involve a nonlinear term where the interactions between those indi-
viduals knowing W; (a fraction ;) and those ignoring it (a fraction 1 — z;)
are present. The parameter R; introduces the rate at which learning takes
place.

Two possible equilibrium points are allowed, obtained from dx;/dt = 0.
The first is 7 = 0 and the second

fel-— 6
P=l-4 (6)

The first corresponds to the extinction of WW; (or its inability to propagate)
whereas the second involves a stable population knowing W;. The largest the
value of R;, the highest the number of individuals using the word. We can



see that for a word to be maintained in the population lexicon, we require
the following inequality to be fulfilled:

R, >1 (7)

This means that there is a threshold in the rate of word propagation to sustain
a stable population. By displaying the stable population z* against R; (figure
3) we observe a well-defined phase transition phenomenon: a sharp change
occurs at R{ = 1, the critical point separating the two possible phases. The
subcritical phase R; < 1 will inevitably lead to loss of the word.

The previous toy model of word dynamics within populations is an over-
simplification. But it illustrates fairly well a key aspect of language dynamics:
thresholds exist and play a role (Nowak and Krakauer, 1999). They remind us
that, beyond the gradual nature of change that we perceive through our lives
(mainly affecting the lexicon) sudden changes are also likely to occur. An im-
portant aspect not taken into account by the previous model is the process
of word generation and modification. Words are originated within popula-
tions through different types of proceses. They become also incorporated by
invasion from foreign languages. Once again, the processes of word invasion
and origination recapitulate somehow the mechanisms of change in biolog-
ical populations. Both ecosystems and languages reveal features indicating
universal principles of organization. Within the former, the distribution of
species abundances follows a common scaling behavior irrespective of their
intrinsic differences. In languages too, in spite their overwhelming diversity,
all share a common trait: they have evolved in order to express the needs
of their users. As a consequence of such needs and fundamental principles of
optimization in communication, universal patterns have also emerged. In the
next section, the best known of them -the Zipf’s law- will be explored.

3 Language structure: Zipf’s law

Roughly speaking, the Zipf’s law states that, by ordering the words of a long
text (as a sample of a given language) by how often they are spoken, the
second most frequent word is about half as frequent as the most frequent,
the third most frequent is about a third as frequent as the most frequent,
and so on. In mathematical terms, Zipf’s law links ¢, the rank of a word (in
a list of words decreasingly ordered by frequency) with P(i), its frequency.
The relation follows a power law in the form:

P(i) = pii=*® (8)

where a ~ 1 and p; is the probability of the most frequent word. The same
law can also be presented as probability density function:

Qj) o< j° (9)
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Fig. 4. Power laws in language: by ordering the most frequent words against their
rank (a) we obtain the standard plot of the Zipf’s law. An equivalent plot is obtained
by using the frequency distribution (b) where the frequency of words appearing f
times in a text is shown (redrawn from Ferrer and Solé, 2002). The first domain
corresponds to the standard Zipf’s law scaling. The second is associated to specific
words.

where Q(j) is the probability that a word is present j times in a text.
Both scaling laws are related. Let us indicate by

my =T0Q (n)

the number of words having population n, being T' the total number of words.
The rank is given by

R(n) = /noo My dn' (10)

and the most frequent word has R = 1, the second most frequent word has
R = 2, and so on, for decreasing values of n in the integral. The last equation
establishes a general relation between the rank of an event in the sample and
the probability distribution according to the event frequency. From

R ~ n—l/oz
(obtained from 8) and 9 in equation 10 we obtain
n'=F ~ /e

from where a formal relationship between exponents is derived:



If « = 1 (standard Zipf’s distribution) then 5 = 2. In figure 4 the two alterna-
tive plots are shown. Here the data have been compiled from Melville’s Moby
Dick (Ferrer and Solé, 2001, 2002). The estimated exponents are consistent
with our previous discussion.
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Fig. 5. Two regimes in the Zipf’s law. Although standard analyses indicated that
the Zipf’s law involves only one regime, detailed analysis of large corpuses (such
as the British National Corpus, used here) indicates that two different scaling laws
are actually involved (redrawn from Ferrer and Solé, 2001).

Although early analyses of different corpuses (most based on single books)
confirmed the presence of a single-scale distribution, a more careful explo-
ration of the rank ordering plot (using much larger corpuses) revealed a very
interesting pattern: the existence of two different exponents in the same rank
ordering plot (Figure 5). Using the British National Corpus (BNC), which
includes a total of &~ 9 x 107 words and N = 588.030 different words, two ex-
ponents were found to be required to fully describe language structure (Ferrer
and Solé, 2001). Here they are indicated as a1 = a =~ 1 and ay ~ 2, for ranks
i < N and i@ > N, respectively. Thus, the frequency of words is actually a
double law, the initial Zipf’s law followed by another, steeper scaling law:

W [pit i< N
P(i) = {Nc'szi‘lz otherwise (13)

where py is a the probability of the n-th most frequent word (it can also be
obtained from Eq. 8 and thus be 1/p; N{¥ = p,/N).

The two scaling regimes are associated to two different sets: a kernel
lexicon formed by & N versatile, common words and a very large lexicon used
for specific communication. The size of the kernel lexicon is likely to be related
with cognitive constrains. In this context, it has been suggested that here the



change in exponents is related to the average number of words reliably stored
in a human brain. The set of words included within the standard Zipf’s
regime are those shared by most users, whereas words within the second
scaling regime are very specific and obviously not shared by all speakers. The
point of separation between both regimes seems to occur at N = 5000 — 6000.

The existence of a kernel lexicon indicates that there might be well-defined
bounds to lexicon complexity associated to proper communication within a
developped society sharing a common language. What is the smallest size re-
quired to obtain fluid communication among users? Pidgin languages provide
examples of very small lexicons. Roughly speaking, a pidgin is a system of
communication which has emerged within a given group of individuals not
sharing a common language but who need to communicate. They may arise
when speakers of different languages try to have a makeshift conversation.
The final lexicon usually comes from one language but structure can come
from the other. Estimates of the number of items of a pidgin vary from about
300 — 1500 words, depending on the language and are thus far lower from the
number of lexical items of a common speaker of an ordinary language (which
is estimated to be 25,000 — 30, 000).

For the first domain, a minimal set of words is clearly required to perform
fluently in communicating ideas and needs. But since pidgins already allow
communication to take place, the increased richness of developped languages
might reflect the stability and richness of the underlying society. The second
scaling domain is tied to the statistical pattern of complexity of a diverse
social structure with multiple and specialized communities using their own
jargon. As it happened with whole languages, social forces also shape the
patterns of diversity exhibited by word frequencies. However, an additional
ingredient is here in place: cognition. In order to explain the Zipf’s law within
the first domain, we have to look into how information is transmitted among
users in order to reach optimal information transfer. A simple principle for-
mulated by Zipf might allow to explain it.

Fig. 6. Word-meaning associations are defined through a bipartite graph. Here
words and objects of reference are indicated as lighter and darker balls, respectively.
Links (associations) define a matrix of relations among them. We can see polyse-
mous words (w1) having several meanings and also synonymous words (w2, ws).



4 Least effort and power laws in language

The Zipf’s law is common to all known languages. How is this regularity
interpreted? Some authors concluded that it is just some irrelevant feature
common to random texts (Li, 1992; Miller 1957). But careful inspection of
this idea revealed that it is fundamentally wrong: many statistical features
exhibited by real language are not shared by their random counterparts (Fer-
rer and Solé, 2002). An old conjecture concerning the origins of Zipf’s law
was actually made by Zipf himself, and is known as the principle of least
effort. The essential idea in our context is that two efforts are implicit in
communicating a message. The first involves the effort of the speaker, who
wants to describe the world at the minimum cost (by means of a reduced
lexicon). The second deals with the hearer’s effort, who wants to be able to
understand the message with the smallest level of ambiguity (by means of
a diverse lexicon). More precisely, Zipf’s law would emerge from a conflict
between speaker’s unification and hearer’s diversification forces acting upon
vocabularies. Unification reduces the repertoire of polysemous words, whereas
diversification leads to large vocabularies, tipically formed by unambiguous
words. Such a conflict, as it happens with many disordered systems analysed
in statistical physics, can lead to phase transitions between two qualitatively
different types of behavior (Solé et al., 1996; Solé and Goodwin, 2001). The
least effort principle has been made explicit by formally measuring the two
efforts using measures borrowed from information theory (Ash, 1965).
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Fig. 7. Schematic distribution of links in the word-object universe for different
efforts of the hearer and the speaker. Words and objects are represented as light and
dark balls, respectively. In (A) we have one word being used to name all objects,
whereas in (C) a one-to-one mapping of word-object associations is present. An
intermediate situation is shown in (B) where both specific and ambiguous words
are being used.

The principle of least effort can be properly mapped into a mathematical
model based on information theoretic quantities. Let us consider an external



world defined as a finite set of m objects of reference (i. e. meanings):

R={r1, sTiyeesTm } (14)
and a set of n words (signals) used to label them:

W = {wy, .., w;,...,wp} (15)

If a word w; is used to name a given object of reference r;, then a link will be
established between both. Let us call A = (a;;) the matrix connecting them,
where 1 < ¢ < nand 1 < j < m. Here a;; = 1 if the word a; is used to
refer to r; and zero otherwise. A graph is then obtained, including the two
types of elements (words and meanings) and their links. This is known as a
bipartite graph. An example of such graph is shown in figure 6.

The matrix A is often called the association or lexical matriz. For the
previous example, it would read:

(16)

O OO =
O OO =
O = = O
_o oo

The lexical matrix is a binary matrix and allows to compute a number
of relevant quantities. The first is the number of links (degree) of each word.
For a given word w; € W this is given by

ki = Zaij (17)
j=1

and provides a measure of the ambiguity (polysemy) associated to w;. Con-
versely, the degree k% of a given object/meaning r; € R will be given by

n
j=1

and measures the number of synonyms associated to r;.

The lexical matrix also allows to calculate a set of probabilities from
which the efforts can be derived. Assuming for simplicity that n = m, the
conditional probability P(w;|r;) of using word w; € W given an object of
reference 7 € R is

_ Gji
Plwilry) = (19)
The so called joint probability P(w;,r;) of having an association {w;,r;} will
be defined (from Bayes’ rule) by:

P(wi,rj) = P(r;)P(wi|rj) (20)



where we will take P(r;) = 1/n for all objects in R. The frequency of a given
word is thus simply

P(w) = Y P(wi,)) (21)

By using these sets of probabilities, we can properly weight the efforts of the
speaker (2, and the hearer (2.

In order to illustrate the spectrum of possible trade-offs between speaker
and hearer efforts, consider the three situations depicted in figure 7. The
two extremes correspond to (a) least (largest) effort for the speaker (hearer)
and (c) least (largest) effort for the hearer (speaker), respectively. The inter-
mediate situation (b) corresponds to a compromise between both. For each
bipartite graph we can define average quantities based on information theory
and use them as measures of the efforts involved.

Let us first consider 2,. The effort of the speaker is clearly related to the
diversity of words being used. Diversity is thus naturally measured by means
of Shannon’s entropy (Ash, 1965):

HOW) == p(w;)log p(w;) (22)

i=1

This quantity is maximal when all elements have the same probability, i. e.
for P(w;) = 1/n for all w; € W. In such case, H(W) = log(n). It corresponds
to a maximal repertoire of words being used and thus maximal effort for
the speaker. The minimal value of entropy is zero, and is reached when a
single word is being used (i. e. if P(w;) = 1 and P(wjx; = 0). Such situation
corresponds to minimum effort for the speaker, since it is using a single (or
few) words to name all objects.

QA™™) < Q(A) 2

Fig. 8. Evolving language graphs. Here the basic flow diagram for the algorithm
used here is presented. Each iteration involves change of one link (adding or re-
moving it). If the effort 2 decreases as a consequence, the new interaction matrix
is accepted. Iterative application of the algorithm leads to a stationary bipartite
graph of word-object interactions (redrawn from Ferrer and Solé, 2003).




Defining hearer’s effort (2, is more difficult. Here we need to weight how
effective is the hearer’s understanding when a given word is emitted by the
speaker. More precisely, what is the likelihood that the hearer properly iden-
tifies the object r; after receiving the word w;? Such event has a probability
given by P(rj|w;) and thus the average effort will be measured by the diver-
sity associated to this set of probabilities. This is given by the conditional
entropy associated to w; € W:

H(Rw;) = Zp (rjlwi) log p(rj|w;) (23)

where p(rj|w;) = p(rj,w;)/p(w;). The effort for the hearer is defined as the
average noise, that is

H(RIW) = Zp w;)H(R,w;) (24)

The total effort is defined in terms of a linear combination of the effort
for the hearer and the effort for the speaker. More precisely,

020\ = XH*(RIW) + (1 — N H*(W) (25)

where the entropies have been normalized so that 0 < H*(W), H*(R, W) <
1. The energy function depends on a single parameter 0 < A < 1 which
weights the contribution of each term. The question now is what type of
distribution of words is obtained if we look for the word-meaning association
matrix minimizing the total effort 2(X). If A = 0 (A = 1) then we only
minimize the effort of the speaker (hearer). The interesting question is what
type of pattern should be expected at intermediate values of A when different
compromises between the two efforts are at work.

In order to explore the previous question we need to scan the universe
of different lexical matrices A, since all measures are based on the word-
association wiring diagram. A simple algorithm was devised to this purpose
(Ferrer and Solé, 2003). The basic rules are summarized in figure 8. They
involve: (a) make a change in one or a few elements of a;;, i.e. remove of
add a few links; (b) compute the total effort £2()) for the new lexical matrix;
(c) if the new changes reduce the effort, accept the new matrix. Otherwise,
keep the original. These steps are repeated iteratively until an equilibrium
network of word-meaning interactions is achieved. In figure 9 the final efforts
for each of these A values are plotted in the left column. A well-defined, sharp
change is observable close to a critical value A\, =~ 0.4. Below this value, one
or a few words are used to label all objects (and thus no communication
is possible). Beyond the threshold, a one-to one mapping is observed. The
conflict between both needs is solved at the transition point, where both are
minimized. The right column of figure 6 displays the three tipical word-rank
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Fig. 9. Left: the efforts of the speaker and the hearer, plotted against A. The two
efforts experience a sharp change close to a critical value A. = 0.4. Rigth: The
three types of rank distributions obtained for the least effort model (see text).
These correspond (from top to down) to A = 0.3,0.4 and 0.5, respectively. Close to
criticality, the Zipf’s law is recovered.

distributions obtained for the three regimes: (a) subcritical (A < A.), (b)
critical (A = A.) and (c) supercritical (A > A.). At criticality, the Zipf’s law
is fully recovered.

5 Discussion and prospects

Scaling in language diversity and architecture are a consequence of both in-
creasing returns intrinsic to social dynamics and constraints associated to
communication needs. Human populations expand and shrink due to a num-
ber of socioeconomic forces. Words and languages, as an essential part of
culture and social cohesion, change as well. The presence of universal pat-
terns reveals the existence of convergent evolution. Appropriate communica-
tion results from a compromise between diversity and specificity and largely
canalizes language architecture.



Fig.10. Communication among artificial entities might provide insigth into the
origins of language. Communicating robots have been shown to be able to develop
primitive forms of lexical organization and grammar. Although far from inteligent
agents, interacting artificial agents are able to generate self-organized lexicons and
rudimentary forms of language.

Is it possible to really know the origins of language and how it shaped
(and was shaped by) society? Language does not fossilize and thus we may
never know how it emerged and how the first protolanguage sounded like.Our
ancestors developped the capacity of language by mechanisms that we can
only conjecture. But some alternative possibilities might be available to us.
If universals are shown to be really robust and common to language architec-
ture (Ferrer 2004), an answer to the previous question would be nevertheless
available.

One possible approach to these questions is to analyse the patterns of
communication emerging from interacting, artificial systems. Such an approx-
imation has been proven successful within biology, and is known as Artificial
Life (shortly Alife). Alife systems can be structurally far from their organic
counterparts, but they often display very similar solutions to common prob-
lems. For example, evolving populations of programs competing for computer
memory resources and incorporating mistakes when replicating can develop
parasitism, sex or cooperation (Ray, 1991; Adami 1998). Such type of behav-
iors are easily recognized as essential traits of living systems. The observation
of common traits strongly suggests convergent evolution at its fundamental
level. In other words, if virtual creatures eventually behave as real ones, it
might be the case that the spectrum of possible solutions displayed by com-
plex systems is actually very narrow. Simple forms of language are actually
known to emerge within populations of interacting, artificial agents. Such
individuals have a simple cognitive architecture but the colective is neverthe-
less able to develop communication (Cangelosi and Parisi, 1998; Kirby, 2001).
These developments define a whole area within Alife known as evolutionary
linguistics (see Steels, 2003 and references therein).



Artificial creatures are not just a window into language origins and uni-
versals. The near future will host the emergence of new communication forms
among humans and robots. Advances in artificial intelligence and technology
have made possible the development of embodied agents with the necessary
degree of internal complexity to exhibit different types of emergent behavior.
Robots can incorporate a high degree of behavioral plasticity, memory and
interaction capabilities. Either under the presence of comunicating humans or
other robots, they can actively respond to incoming information and develop
new behavioral patterns. Communication among artificial creatures and hu-
mans is one of the fundamental issues of AI, but emergent communication
among artificial beings is no less important. Our future society will experi-
ence considerable changes once robotic agents become incorporated to our
daily life and start interacting with us. Perhaps new forms of language might
finally emerge and start change our society in ways that we barely imagine
right now.
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