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Abstract. Models of the cultural evolution of language typically assume a very
simplified population dynamic. In the most common modelling framework (the
Iterated Learning Model) populations are modelled as consisting of a series of
non-overlapping generations, with each generation consisting of a single agent.
However, the literature on language birth and language change suggests that pop-
ulation dynamics play an important role in real-world linguistic evolution. We
aim to develop computational models to investigate this interaction between pop-
ulation factors and language evolution. Here we present results of extending a
well-known Iterated Learning Model to a population model which involves mul-
tiple individuals. This extension reveals problems with the model of grammar
induction, but also shows that the fundamental results of Iterated Learning exper-
iments still hold when we consider an extended population model.

1 Introduction

Language is culturally transmitted — children learn their language on the basis of the
observed linguistic behaviour of others. A recent trend has been to explain the structural
properties of language in terms of adaptation, by language, to pressures arising during
its cultural transmission. Using this approach, properties of language such as recursion
[10], generalised phrase structure [4] and compositionality [2, 8] have been shown to be
adaptations which help language survive the repeated cycle of production and learning.
A particular feature of this work has been its foundations in 1) linguistic theory and 2)
experimentation based on computational models in the A-Life tradition.

These models suffer from an impoverished treatment of population dynamics. As
discussed in Section 2.1, populations are modelled as a series of discrete, non-overlapping
generations (with each generation typically consisting of a single agent), or a mono-
generational collection of multiple agents. Both of these treatments of population dy-
namics are rather unsatisfactory, particularly given (as discussed in Section 2.2) the ap-
parent importance of factors such as population structure and demography in language
evolution in the real world. This paper has three main aims:

1. to highlight this problem and the desirability of addressing it.
2. to describe initial investigations into the impact of population dynamics on lan-

guage evolution (see Section 3), highlight the problems encountered (Section 4)
and present results (Section 5).

3. to outline future directions to take in addressing these issues (Section 6).



2 Population Dynamics and Linguistic Evolution

2.1 Population Dynamics in Models

Computational models of the cultural transmission of language are based around the
Expression/Induction (E/I) cycle [5]. In such models, the internal knowledge of indi-
viduals determines the observable behaviour that those individuals produce (the Ex-
pression part of the process). This behaviour then forms the basis for the formation of
internal knowledge in other individuals, via learning (the Induction process). This in
itself is a fairly general model of cultural transmission.

Within the E/I framework, two distinct basic models have emerged which I will
term the Iterated Learning Model (ILM, a term introduced by Brighton [2]) and the
Negotiation Model (NM, a term based on Batali’s work [1]). In both these models,
agents acquire their linguistic competence based on observations of the behaviour of
other agents. The difference between these two basic models is in their treatment of
population dynamics.

In the NM, a population consists of a mono-generational collection of agents. At
each time-step, members of the population produce linguistic behaviour, which is ob-
served and learned from by other members of the population. There is no population
turnover in the NM — new agents do not enter the population and no agents are re-
moved.

Unlike in the NM, there is population turnover in the ILM. This turnover is typically
generational, where the entire population is replaced at each time-step, although gradual
turnover variants do exist. In either case, transmission is exclusively from fully encul-
turated individuals to naive individuals. Furthermore, the population at each generation
is typically taken to consist of a single agent.1

2.2 Population Dynamics in Language

This simplification of population dynamics is a reasonable idealisation in tackling the
complex problem of modelling the cultural evolution of linguistic structure. Indeed,
it would be entirely acceptable were it not for the fact that the real-world data shows
that issues of population structure and demography play an important role in shaping
language during language birth and language change.

Based on a review of language birth events, Sonia Ragir has suggested that “the
emergence of new languages, both signed and spoken, depends on: (1) a critical mass
of individuals generating shared patterns of linguistic practices; (2) historical continu-
ity maintained by a continuous influx of new participants into the language pool” [13].
Similar factors have been highlighted in studies of language change driven by dialect
contact. In their list of factors influencing the outcome of dialect contact, Kerswill &
Williams emphasise the importance of “[t]he proportion of children to adults in the im-
mediate post-settlement years” [7, p75] and “[t]he presence of the possibility of forming

1 There are implementations of the ILM which move away from the single agent population
model [4, 9]. However, these models either suffer from a very rigid, tightly spatially organised
population model (as in [9]) or a strongly biased model of a learner (as in [4]).



new social networks among children and younger people: These possibilities are influ-
enced by demographic factors such as high density of population, a ‘critical mass’ of
population, and the presence of universal schooling” [7, p75].

3 The Basic Model

The linguistic facts outlined in the previous section highlight the importance of pop-
ulation dynamics in the cultural evolution of linguistic form. E/I models potentially
constitute a powerful tool for the investigation of such social and population dynamics
and their impact on the structure of emergent or extant languages. However, as they
currently stand, the ILM and NM implementations of the E/I framework do not allow
us to address such issues directly. It is our goal to develop models, building on existing
models as much as possible, which are explicitly designed to allow the investigation of
population dynamics and their influence on linguistic structure.

The first step in this process is to verify that the elementary results obtained through
Iterated Learning experiments pertain when we move to a non-trivial model of popu-
lations — in other words, do structured languages still emerge when we move away
from extremely small population models? In order to investigate this question, we have
adopted the model of grammars and grammar induction developed by Simon Kirby
[8, 10].2 These elements of the model are briefly described below in Section 3.1. We
slot this model of language and language learning into a generational turnover ILM,
designed to examine the impact of learning from multiple individuals (described in
Section 3.2).

3.1 Grammars and Grammar Induction

Representation An individual’s linguistic competence consists of a definite-clause
grammar with attached semantic arguments. These definite-clause grammars consist
of a set of rules, where the left hand side consists of a non-terminal category and the
semantic label for that category and the right hand side consists of zero or more non-
terminal categories, with semantic labels, and zero or more strings of characters,3 which
correspond to phonetically-realised components of a signal. Semantic representations
are predicate-argument structures.4 Two example grammars5 might be:

2 The SICStus Prolog source code for Kirby’s model is available at
http://www.ling.ed.ac.uk/lec/software.html

3 We consider the case where there are 26 possible characters, corresponding to the 26 characters
of the Roman alphabet.

4 We consider the limited semantics where there are five two-place predicates and five possible
arguments. As in Kirby’s models, we rule out the case where the first and second arguments
are identical. This yields

�����������
	���
possible meanings.

5 Atomic semantic elements are marked with primes, characters are represented in type-
writer font, upper case italics represent non-terminal categories and lower case italics
represent variables over semantic elements. S is the privileged, top-level non-terminal cate-
gory.



Grammar 1
S / p(x,y) � N/x V/p N/y
V / love

� � loves
N / lynne

� � lynne
N / garry

� � garry
plus various other lexical rules
...

Grammar 2:
S / love

�
(lynne

�
,garry

�
) � lynnelovesgarry

S / love
�
(lynne

�
,beppe

�
) � igajojopop

S / kick
�
(trevor

�
,barry

�
) � mo

plus various other sentence-level rules
...

Both grammars would produce the stringlynnelovesgarrymeaning love
�
(lynne

�
,

garry
�
), but clearly do so in rather different ways — Grammar 1 would do so in a com-

positional manner (each subpart of the meaning corresponds to a subpart of the signal),
whereas Grammar 2 would do so in a rote-learned, holistic manner.

Learning Learners in Kirby’s model are presented with a set of utterances, where utter-
ances consist of meaning-signal pairs, and induce a grammar based on these utterances.
Grammar induction consists of two main processes — rule incorporation and grammar
compression. In an incorporation event a learner is presented with a meaning-signal pair�������
	

and forms a rule: S/
� � �

. This amounts to simply memorising an observed ut-
terance.

After every incorporation event, learners attempt to extract regularities and com-
press their grammars. This involves two main sub-processes, chunking and merging.
During chunking, pairs of rules are examined in the search for meaningful chunks,
which are then separated out into new syntactic categories. This leads to an increase
in grammar size. Grammar compression is then achieved by merging similar rules. Un-
derstanding these processes is not essential for the understanding of this paper, and we
refer the reader to previous papers [8, 10] for a full explanation. The key point is that
learners exposed to utterances containing repeated meaningful subparts of signal will
tend to arrive at grammars like Grammar 1 above, which will in turn lead to them gen-
erating utterances with regular meaning-signal correspondences. In contrast, learners
exposed to an idiosyncratic set of utterances will arrive at grammars more like Gram-
mar 2 above, and will in turn produce irregular, unprincipled sets of utterances.

Production and Reception When called upon to produce an utterance for a meaning,
or to interpret a received signal, agents search, depth-first, for a combination of rewrite
rules which will cover the given meaning or signal. If such a set of rules cannot be found
during production then the producer applies an invention procedure, with parts of the
meaning which are not expressible using the grammar being expressed with random
strings. The inventor learns from its own invention, via the process described above.



3.2 The Population Model

We will begin by verifying that results obtained using this model extend to the case
where populations consist of multiple individuals. We will consider a generational
turnover ILM — the population consists of a set of non-overlapping generations, where
each generation consists of � agents. This model of population turnover was chosen as
a starting point as it most closely resembles the population model used in the majority
of simulations of the emergence of linguistic structure, and can be straightforwardly
extended to a more complex model involving overlapping generations.

Each individual in the population at generation � receives � exposures to the lin-
guistic behaviour produced by agents at generation ����� . A single exposure consists
of a meaning-signal pair. In previous models, the set of meaning-signal pairs which an
individual learns from is typically drawn from the behaviour of a single individual. In
this model each learner has � cultural parents. Those cultural parents are selected at
random, with replacement, from the � agents in the previous generation. Each of the
� meaning-signal pairs the learner observes is then generated by a randomly selected
member of this set of cultural parents.

4 Problems and Solutions

4.1 Problem: signal growth

When �	�
� the simulation effectively reduces to the simple case where each generation
consists of a single agent. For the case where ���
� (individuals potentially have more
than one cultural parent), this simple extension to the generational turnover ILM runs
into problems. The length of the right hand side of rules rapidly increases over genera-
tions, due to the addition of strings of meaningless terminal characters. This can result
in the right hand side of rules expanding to include several hundred terminal characters.
This radical string growth is a consequence of three factors:

1. the emergence of multiple, overlapping but non-identical grammars in the popula-
tion.

2. inconsistent training data presented to learners (as a consequence of point 1).
3. the greedy induction algorithm.

Radical right hand side growth only occurs when you consider multiple cultural
parents because the process requires variability in the input to the language learner,
which does not occur in the typical single-agent ILM. The “spare” terminal characters
are motivated by a small number of observed utterances. The initial addition of the
spare characters is due to the greedy nature of the induction algorithm — learners do
not consider multiple possible grammars at a time, nor are they capable of backtracking
from the kind of over-generalisation that introduces spare characters.

4.2 Solutions to the Problem

This is clearly an undesirable artifact of the model of grammar induction, which is only
exposed by moving away from the simplest possible population model. How can this



problem be resolved? The first obvious solution is to move from greedy incremental to
batch grammar induction — rather than compressing the grammar as much as possible
after each observation, the learner should only compress its grammar after a reasonable
number of utterances have been observed. This approach has been adopted previously
[15].

While batch induction may be suitable for strictly generational models of popula-
tion turnover, it is unsuitable for a more realistic model of population turnover. A batch
learning procedure draws a strict distinction between learners and non-learners. This
kind of clear-cut distinction is undesirable in a model involving a less restrictive popu-
lation dynamic — ideally, we want learners to produce observable behaviour which can
be learned from by other learners. Incremental induction allows maximal flexibility in
this regard.

The second possible alternative is to allow learners to entertain multiple hypotheses
at any one time — rather than maintaining a single grammar, and compressing it as
much as possible, a learner can maintain multiple competing grammars, compressing
them differently and therefore having multiple ways of expressing certain meanings.
In this scenario, we allow learners to retreat from incorrect generalisations of the type
which occur in the more greedy induction process.

This multiple-competing-hypothesis approach has been used in implementations of
the NM [1]. There are two main problems with this approach. The first is that there
has to be pruning of grammars from time to time — maintaining all possible grammars
rapidly becomes intractable. Identifying which grammars can be safely pruned is in
itself a non-trivial issue. The second problem is that there must be a way of evaluating
the competing grammars, in order to decide which is best. Batali implements this in
his costing system. However, this costing system is rather ad-hoc. We would like the
evaluation metric to be well-motivated, in terms of justifiable compression, the types of
grammar evaluations that language learners make, or some other general consideration,
such as the nature of the communicative task. We are working towards just such a
grammar induction model, in conjunction with Simon Kirby and Willem Zuidema at
the LEC.

A more immediate solution can be obtained by including justifiable production bi-
ases in the model. In other words, we allow the inducer to arrive at the wrong hypoth-
esis, but filter out the more outrageous consequences of this hypothesis. In the case of
this model, this is achievable by building in a production preference in favour of short
utterances — production proceeds in a depth-first manner, as before, but at each step the
producer chooses the rule with the shortest right hand side. This production bias plau-
sibly applies in humans, as a preference for signal simplicity [12], or as a consequence
of more general principles of least effort [14]. Including this production bias eliminates
the string growth problem.

5 Results: language evolution in populations

Runs of the ILM were carried out to verify that convergence on a shared, expressive
grammar was possible in the context of a population-level ILM, and to ascertain whether
the number of cultural parents each individual learns from (� ) has any impact on cultural



evolution. For the results presented here, we use a population size of ten ( � � � � ),
and vary the number of cultural parents used in each run ( ��� ��� � � ). Each learner
observes � ��� � meaning-signal pairs, each of which is produced by one of its � cultural
parents. Runs were allowed to proceed for 1000 generations. Ten runs of the ILM were
carried out for each condition.

We evaluate three aspects of the populations’ grammar at each generation:

Grammar Size: The number of grammar rules each agent has after learning.
Coverage: The proportion of meanings each agent can express after learning, without

recourse to invention.
Communicative Accuracy: The proportion of meanings an agent is able to success-

fully communicate to two randomly selected communicative partners.6

Grammar size and coverage give an indication of the degree of structural regularity
in an agent’s grammar. A grammar size of approximately 50 (equal to the number of ex-
posures each individual receives) and coverage of around

��� � indicates an idiosyncratic,
non-compositional grammar, where each meaning is associated with an unstructured
signal in a holistic fashion. A grammar size of around 11 and coverage of 1 indicates a
highly compressed, highly expressive compositional grammar (one sentence-level rule,
plus five lexical rules for predicates and five lexical rules for arguments). Coverage of 1
also indicates stability — if all meanings can be expressed, then the underlying gram-
mar must exhibit regularities, which subsequent learners can extract. Communicative
accuracy indicates the degree of within-generation coherence in the population. A com-
municative accuracy of 1 indicates that agents agree on the signals which should be
used to express each possible meaning.

It should first be noted that, for all values of � (numbers of cultural parents), the
majority of runs converged on compressed, expressive grammars which resulted in
high intra-generational communicative accuracy. In other words, fundamental results
from the ILM extend to the case where the population dynamics are non-trivial —
compressed, compositional, communicatively-functional grammars can evolve through
Iterated Learning in populations where learners learn from multiple cultural parents.
� does appear to have some effects on the structure of the emergent grammars. Fig. 1

plots mean grammar size, coverage and communicative accuracy against � . The mean
values of the three measurements were calculated by averaging over the final ten gen-
erations of each of the ten runs for each condition. As can be seen from this figure,
there appears to be a “sweet spot” for � , at around � �
	 or � . For these values of
� , coverage is at a maximum, grammars are highly compressed and intra-generational
communicative accuracy is high. Away from this value of � , coverage is (fractionally)
lower, grammars are larger and communicative accuracy is lower. However, this analy-
sis is complicated somewhat by the fact that there were non-convergent runs for � ���
and � � (as suggested by the lower average coverage for these values of � ). Excluding
these non-convergent runs, the overall trend is weakened, although still visible.

6 In order to evaluate communicative accuracy between a speaker and a hearer, the speaker
produces a signal for each possible meaning, and the hearer parses that signal to arrive at a
meaning. If the speaker’s meaning matches the hearer’s interpreted meaning, the interaction is
a success.
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Fig. 1. The relationship between � and language structure, as evaluated by grammar size, coverage
and communicative accuracy. For �

� �
or
�
, cultural evolution in populations leads to smaller

grammars and higher intra-generational communicative accuracy.

Number of cultural parents also impacts on the speed with which populations con-
verged on a shared, stable grammar. Measuring stability in these simulations is a some-
what fraught task — the stochastic sampling of the language of the previous generation
can always introduce change into an apparently stable system. The best approximation
of stability is coverage — a system which can express a high proportion of meanings
without recourse to invention tends to be stable. Fig. 2 plots � against time to con-
vergence, according to two measures of stability based on coverage. As can be seen
from this figure, low or high values of � tend to result in longer times to convergence,
although this is perhaps less clear with respect to the stricter measure of convergence.
The main point is that the values of � which were identified as the “sweet spot” in Fig. 1
tend to lead to more rapid convergence — there are certain values of � which optimise
grammar compression and functionality, and lead to more rapid convergence within a
population. When � is too low, learners view few alternative possible grammars and
have little opportunity to preferentially acquire more compressible grammars. When
� is too high, learners observe too many competing grammars, resulting in instability
and difficulty in achieving consensus. At the optimal value of � , these factors are better
balanced — learners witness enough variability to allow their biases to come into play,
while at the same time being able to achieve stability and consensus.

6 Future Directions

We aim to expand upon this initial research in two ways. Firstly, we will develop a
model of grammar induction which does not suffer from the type of problem outlined
in Section 4 above. This inducer will maintain multiple potential candidate grammars,
and therefore be able to retreat, to a degree, from inappropriate generalisations.
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Fig. 2. Time to convergence as a function of � . A population was considered to have converged
if it arrived at grammars with a certain level of coverage (either

��� �
or
��� ���

), and stayed above
that level of coverage for the remainder of the simulation run. At least 80% of all runs reached
convergence according to the weaker definition, and 70% according to the stronger definition.
Once again, there appears to be a sweet spot for � , which leads to more rapid convergence.

Secondly, we will develop more sophisticated models of population dynamics. As
discussed in this paper, we have verified that it is possible for a population of agents to
converge on a compressed, compositional, shared grammar through Iterated Learning.
We will move away from the strictly generational turnover approach, to a situation
where there is gradual population replacement, and unrestricted learning interactions.
We are particularly interested in the effects of high degrees of learner-learner contact,
which the literature on language birth and change suggests is a key factor.

7 Conclusions

A-Life techniques can be applied to the investigation of the cultural evolution of linguis-
tic structure. Implementations of the Expression/Induction framework (both Iterated
Learning and Negotiation Models) typically suffer from an impoverished treatment of
population dynamics. This is unfortunate, given that factors such as population structure
and demography appear to play an important role in the processes of language birth and
language change. It is our aim to develop this modelling approach to allow the impact
of population dynamics on linguistic evolution to be investigated and quantified.

As a first step in this process, we must verify that previous models can be extended
to a treatment of language evolution in populations, and that the key results derived from
these models pertain in the new situation. The model outlined in this paper demonstrates
that this is the case — general, compositional grammars can evolve culturally within a
population. Furthermore, the number of cultural parents each learner has (one aspect of
population dynamics) has some impact on the structure of the emergent languages and



the speed with which they evolve. However, in addition to this positive result, extension
to a population model also reveals some flaws in a well-known Iterated Learning Model,
which are not exposed in a minimal population model.

We are developing our approach along two lines. Firstly, we are involved in tackling
the problems arising from incremental induction and greedy compression, by working
on a new, theoretically well-motivated model of grammar induction. Secondly, we are
extending our model to a wider range of population dynamics. This kind of experi-
mentation, drawing on A-Life techniques, promises to be profitable in investigating
language evolution in general, and, in particular, in identifying important factors in lan-
guage evolution in populations.
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