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Abstract

This paper investigates the problem of how language learners decipher
what words mean. In most models of language evolution, agents are pro-
vided with meanings a priori and explicitly transfer them to each other
as part of the communication process. By contrast, we investigate how
successful communication systems can emerge without innate or transfer-
able meanings, and show that this is dependent on the agents developing
highly synchronised conceptual systems. We experiment with various cog-
nitive, communicative and environmental factors which have an impact
on the likelihood of agents achieving meaning synchronisation. We show
that an intelligent meaning creation strategy in a clumpy world leads to
the highest level of meaning similarity between agents.
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guage evolution.



1 Introduction

Attempts to explain the particular structure of language often appeal to a “con-
ventional neo-Darwinian process” [18], whereby humans have evolved an innate,
genetically-encoded language device in the brain specifically tailored to the ac-
quisition and maintenance of language [4]. More recently, however, researchers
have begun to develop models which emphasise the emergence of linguistic phe-
nomena as the result of the repeated process of language learning and use. For
example, Kirby [9] explores in detail how certain language universals [7] can be
explained by focusing on how processing complexity affects the transmission of
language.

Much recent work in the field of language evolution has focused on the evo-
lution of syntactic structure as the crucial event which marks both the genesis
of language and the defining criterion which separates it from animal commu-
nication systems. Kirby [10], for example, demonstrates that syntax can arise
from unstructured communication systems by generalising rules from analysis of
signal-meaning pairs, and Brighton [3] shows that pressures such as the poverty
of the stimulus [4] also lead to the emergence of syntax when the process of
language production and learning is repeated over generations.

There are, however, some major problems with the assumptions behind sim-
ulations such as these. Firstly, syntax develops only because the signals are
coupled to pre-existing structured meanings, and so it is no surprise to find
that the structure of the emergent syntax directly parallels that of the pre-

defined semantics [16]. Explanations of the origin of the meanings, and of how



they become associated with signals, are conspicuously absent. Secondly, com-
munication consists of the simultaneous transfer of signals and meanings, thus
ignoring one of the most crucial features of real language acquisition, namely
that meanings are not transferred with words, and yet learners do manage to
infer meanings and associate words with them. Thirdly, they rely on variants of
reinforcement learning to guide the agents [23], although the existence of reliable
error signals in language learning is widely rejected [2]. In contrast, we argue
that constructing meanings and learning which of them are most relevant is a
crucial part of the language learning process which should not be overlooked.
The paper is divided into six main parts. In section 2, we discuss the as-
sumption of explicit meaning transfer and its implications for models of com-
munication and learning. In section 3, we report details of the model of mean-
ing creation and communication, describing how we overcome the problem of
explicit meaning transfer. In section 4, we show the importance of meaning sim-
ilarity for the emergence of communicative success, and describe a baseline for
meaning similarity. Finally, in sections 5-7, we investigate how cognitive biases,
communicative biases, and environmental factors such as the agents’ experience
and the structure of the world affect levels of meaning similarity, and, indirectly,

communication.

2 Explicit Meaning Transfer

Kirby [10] and Batali [1] have shown separately how the simple ability to cre-

ate general rules, by taking advantage of coincidental correspondences between



parts of utterances and parts of meanings, can result in the emergence of a
compositional, syntactic communication system. In a nutshell, this occurs be-
cause general rules generate more utterances than idiosyncratic rules, and are
therefore replicated in greater numbers in following generations, if the agents
are subject to pressures which limit their exposure to the language such as the
poverty of the stimulus. We have also noted, however, that the successful emer-
gence of syntax in these models is dependent on the signals being coupled to
structured meanings. The structure of the meanings is assumed by the model,
and it is not coincidental that the syntactic structure which emerges parallels

exactly the pre-existing semantic structure.

zknvrt

Figure 1: A communicative episode which consists of the explicit transfer of

both a signal ‘zknvrt’ and a meaning ‘three apples’ from speaker to hearer.

At the heart of any kind of communication system is what constitutes ob-
servable behaviour during linguistic transfer, or what is actually transmitted

between speakers and hearers. In figure 1, which represents the linguistic trans-



fer in a standard model, we can see that the speaker (on the left of the picture)
utters a signal ‘zknvrt’, but that simultaneously, the meaning in the speaker’s
brain (represented by three ‘apples’) is transferred directly to the hearer’s brain.
The hearer learns the association between signal and meaning, and crucially, it
knows that this association is appropriate to make because the signal and mean-
ing are explicitly linked in each communicative episode.

This kind of model of associative learning sidesteps one of the most impor-
tant and difficult problems facing researchers into the acquisition of language,
namely Quine’s [19] famous gavagai problem of determining the meaning of an
unfamiliar word from a set which is, in principle, infinite. The consequences
of this idealisation of the learning process are considerable, not least because
if meanings are explicitly and accurately transferable by telepathy, then the
signals are not being used to convey meaning. If the signals do not convey
meaning, then their role in the model is far from obvious. In fact, we can see
that the inclusion of signals in the model is merely a complicating factor, and
yet removing them seems uncomfortably close to creating a model which bears
very little resemblance to a language-like communication system. We are left,
therefore, with the conclusion that meanings cannot be explicitly transferred,
but must instead be inferred by the hearer from the signal and the context in
which they are heard.

So how, then, does a hearer know which meaning to associate with a signal?
Firstly, having assumed that meanings are not transferable, then the agents must

be able at least to infer them from elsewhere. We assume that the obvious, and



most general source for this is the world around the agent, or the environment
in which it is placed. This in turn suggests that at least some of the meanings
agents talk about are used to refer to objects and events which actually happen
in the environment, and which are then the subject of communication. The
agents’ meanings, therefore, are grounded in the world [8]. As an aside, the need
to infer meanings from the environment has interesting implications for models
such as those described by Kirby [10] and Batali [1]. These models contain no
environment or indeed anything accessible and external to the agents, so the
‘meanings’ used must be abstract, pre-defined tokens. Because they have no
reference, or do not identify any thing in the world, they cannot be inferred,
and so can only be communicated through explicit transfer. Avoiding explicit
meaning transfer in our model, therefore, means that we must have some kind
of external world for the agents to experience.

Secondly, there are two possible explanations for how the agents come to
have meanings which refer to things: either the meanings are innate, and have
somehow evolved through biological evolution; or they are created by the agents,
as a result of their interactions with the environment. Innate meanings are
not inherently implausible, but they seem to require either that the number of
meanings useful to the agents is small and fixed, or that the world in which
the agents exist is very stable and unchanging. If the world is dynamic, then
the agents may have evolved innate meanings for something that was useful to
their ancestors, but these may not be of use to them now. In practice, then, it

is more reasonable to assume that the agents create meanings de novo in each



generation, based on empirical testing of their environment, to discover which
distinctions are communicatively relevant.

In this paper, therefore, we are departing from previous accounts which
assume that language learning is equivalent to learning a mapping between
signals and pre-defined meanings. Instead, we would argue that it is more
complicated, and involves constructing meanings empirically, learning which of
the meanings are relevant, and then learning a mapping between signals and

these meanings.

3 Details of the Model

3.1 Meaning Creation

Our model of independent, grounded meaning creation is based on that de-
scribed by Steels [22]. We establish a simple world made up of a number of
objects!, which can be described in terms of the values of their features. Fea-
ture values in the model are real numbers, randomly generated in the range
[0,1]. These features are abstract and do not have any specified meaning, but
can be thought of in terms of perceptual features such as ‘smell’ or ‘colour’. The
agents in the world interact with the objects using sensory channels. They have
the same number of sensory channels as the objects have features, and there is a
one-to-one mapping between them. Sensory channels are sensitive to the feature
values, and in particular can detect whether a particular feature value falls be-

tween two bounds. Meaning creation happens by splitting the sensitivity range

n the results reported here, the world contains twenty objects unless otherwise specified.



of a channel into two discrete segments, resulting in two separate categories or
meanings, each sensitive to half the original range. After repeated splitting or
refinement, we can represent the meanings on the sensory channels as nodes on
a discrimination tree, as shown in figure 2.
QmD—
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T

Figure 2: A Steelsian discrimination tree which has been refined twice. Each

node shows the bounds between which it is sensitive.

The agents interact with their environment through discrimination games
[22], in which they try to distinguish one particular object from a context of
randomly chosen objects. The agents use their discrimination trees to categorise
the objects, and succeed in the discrimination game if they find a category or
meaning which describes the target object and does not describe any of the
other objects in the context. Failure in such a discrimination game triggers the
refinement of a randomly-chosen sensory channel, and therefore the creation of
more conceptual structure in the agent. It is important to stress that concept
creation is driven by the failure of the agents’ meanings to discriminate in their
interactions with the world. Given enough discrimination games in a static
world, the agents will always develop a successful conceptual structure, although

the precise details of this structure are of course not fixed, and will vary between



agents.

The agents therefore have a mechanism for constructing concepts which is
grounded in the environment, is based on experience, creates meanings which are
useful to the agents in allowing them to discriminate between the objects they
find, and results in conceptual structure which can be measured and compared.
We quantify the similarity of two agents’ meaning structures by averaging the
similarity of the particular discrimination trees built on each of their sensory
channels in turn. In greater detail, if (¢, ) is the number of nodes which trees
t and u have in common, and n(t) is the total number of nodes on tree ¢, then
we describe the similarity between any two trees ¢t and u using the following

formula:

1 (k(t,u) | Kk(t,u)
T(t’“)‘§< (@ T n(u)) @

We can use this general measure of tree similarity 7 to develop an overall measure
of meaning similarity o between two agents, by averaging over all their sensory
channels. If a;t; identifies channel number j on agent ¢, and each agent has ¢
sensory channels, then the meaning similarity ¢ between agents a; and as is

defined as follows:

o(a,az) = % <ci T(alti;azti)> (2)

=0

If two agents a; and ay have identical conceptual structures, where o(a1,a2) = 1,

then we refer to their meanings as being synchronised.



3.2 Communication

We then extend the meaning creation model to investigate whether the agents
can communicate with each other, using the meanings they have constructed.
In order to simulate communication between the agents, we endow them with
the ability to create signals, or words, which they use to express the meanings.
We assume, for simplicity, that the agents can express and understand these
words without difficulty, i.e. that the signals can be transmitted without er-
ror. The agents also have a dynamic lexicon of associations between words and
meanings, which they use both to decide which signals to send, and to decide
on an interpretation for the signals they receive. Each entry in the lexicon con-
tains the signal s and meaning m, a count of how many times the pair has been
used u, and a confidence probability p, representing the agent’s confidence in
the association between the signal and meaning, or the proportion of times in

which s has been used that it has been associated with m, or:

p(s,m) = ?(sim)
2im1 u(s,19)
where [ is the number of entries in the lexicon?.
Having successfully undertaken a discrimination game, and found a discrim-
inatory meaning, one agent (the ‘speaker’) utters a signal which represents this
meaning. A second agent (the ‘hearer’) then tries to infer the meaning from the

context in which the signal was heard, and deduces which object in the context

the speaker was referring to. Successful communication occurs when the object

2Further details of this communication model and of the structure of the agents’ lexicons

can be found in [20].
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which is identified by the speaker’s meaning is the same object as that which is
identified by the hearer’s meaning. It is not necessary that the agents use the
same agent-internal meaning, only that both agents refer to the same object, or
pick out the same object in the world. Importantly, neither speaker nor hearer
is given any feedback on whether the meaning was successfully interpreted.
This kind of communicative model, therefore, does not rely on the explicit
transfer of meaning, nor on feedback to guide the learning. The algorithms
for deciding which signal to choose to express a meaning, and for deciding
which meaning to interpret a signal as, are therefore crucial to the success of
the model. Oliphant and Batali [17] have demonstrated an ideal strategy for
achieving an accurate communication system between two agents under these
circumstances, which they dub obverter. Essentially, this strategy boils down to
the speaker choosing signals which it knows the hearer will understand correctly.
Unfortunately, true obverter learning assumes that the speaker has access to
the lexicons of the other members of the population, so that it can choose the
optimal signal for each meaning. Such mind-reading is of course unrealistic,
and more damagingly returns us to a telepathic world in which communication
using signals is not actually necessary. In order to avoid this, we modify the
obverter strategy, by allowing the agent to read only its own mind, and using
this as a basis for decision making; the speaker therefore chooses the signal that
it itself would be most likely to understand if it heard the signal in this context.
The hearer, on the other hand, on hearing a signal, knows neither the object

to which the speaker is referring, nor the meaning which the speaker has in mind
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for the signal. It creates a list of possible meanings, namely every meaning in
its conceptual structure which identifies any one of the objects in the context
and distinguishes it from all the other objects in the context. The hearer has
no reason to prefer any one of these possible meanings over another yet, so each
of them is paired with the signal and lexicalised, i.e its usage and confidence
probabilities in the lexicon are updated. Once all the possible meanings have
been lexicalised, the hearer searches through the list of possible meanings, and
chooses the one in which it has the highest confidence. If the agent has equally
high confidence in more than one meaning, then it chooses one of these meanings
at random. The object which this meaning identifies is then compared to the
original target object of the speaker’s discrimination game, to determine the

success of the communicative episode.

3.3 Meaning Structure and Communication

Before we investigate the interactions between meaning creation and communi-
cation, we need to verify that the modified obverter strategy can deliver suc-
cessful communication without explicit meaning transfer. In order to do this,
we therefore temporarily dispense with the meaning creation algorithms, and
instead pre-define the agents’ conceptual systems. Figure 3 shows the com-
municative success rates for two agents with identical, synchronised meanings
(left) (o = 1), and for two agents whose meanings have a similarity measure
of 80% (right) (¢ = 0.8). The communicative success rate is the proportion of

communicative episodes in which the target object described by the speaker is
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identified by the hearer.

Meaning Similarity 80% (0=0.8) . . Synchronised Meanings (o =1)

A \/w \/A/X

Communicative Success. Communicative Success.
Meaning Similarity Meaning Similarity

0 500 1000 1500 2000 0 500 1000 1500 2000
Episodes Episodes

Figure 3: Levels of meaning similarity and communicative success

We can immediately see that when ¢ = 1, the communicative success rate
rises rapidly from zero, stabilising as it approaches 1. In principle, the success
rate will reach 1, but this is not guaranteed in a particular population over
a finite timescale. On the right of figure 3, we see that when o = 0.8, the
communicative success rate again rises rapidly again in the initial period, and
then stabilises again around the level of o. Given an infinite timescale, we can
expect the communicative success rate to equal the agent meaning similarity,
but even over a finite timescale it forms a good approximation.

This shows very clearly the strong link between the level of meaning simi-
larity and the rate of successful communication. As we have eliminated both
explicit meaning transfer and also feedback from the agents to guide their inter-
locutors to the ‘correct’ answer, unlike models such as those described by Steels
and Kaplan [23], we force the agents to infer the meanings of words from the set
of possible meanings in each context. It is clear that it is impossible for an agent

to attach a word to a meaning which does not exist in its conceptual structure,
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and so we find inevitably that only those words which refer to shared concepts
are successfully used in communication. We have also shown previously [20]
how words referring to unshared meanings inevitably suffer semantic drift over
time, such that they come to refer to more general meanings which are shared
by the agents.

Agents, therefore, can learn communication systems without the explicit
transfer of meanings, without knowledge of the topic of conversation, and with-
out feedback about the success of the conversation guiding to the correct mean-
ing. Successful communication arises by the context-driven disambiguation of
signals, as long as agents can infer meaning from their experiences in the world.
The level of communicative success is very strongly dependent on the level of

meaning similarity shared by speaker and hearer.

4 The Standard (or Unbiased) Model

We have seen the importance of synchronised conceptual structure to the devel-
opment of successful communication without explicit meaning transfer, but how
likely is it that synchronisation will occur? In this section we investigate the
levels of meaning similarity, and by implication communicative success, achieved
in a standard, unbiased model. This will also provide a baseline with which to
compare the effects of adding cognitive and communicative biases to the agents,
as well as external environmental factors such as the structure of the world and
the experiences of the agents. In the standard model, we establish a standard

world with two agents and twenty randomly generated objects. Each object is
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described in terms of ten features, and each agent has ten corresponding sen-
sory channels on which it can build discrimination trees. The agents play a fixed
number of discrimination games, with each agent having an equal probability

of being chosen to play the discrimination game.

Meaning Similarity

0 200 400 600 800 1000
Episodes

Figure 4: Agent meaning similarity (o) rates in the standard world. 100 runs
overlaid, with each run represented by one line on the graph. The mean (5) at

1000 episodes is 0.62 (0.61-0.64), with a coefficient of variation of 0.10.

Figure 4 shows the level of meaning similarity between the two agents. We
can see that overall there is a moderate amount of variation, with no runs pro-
ducing very high or very low levels of meaning similarity. Meaning similarity is
always artificially high at the beginning of each run, because both agents have
sensory channels without any tree growth, and therefore identical conceptual
structure. As the agents fail in the discrimination tasks, and create new mean-
ings which are not necessarily the same as each other, overall levels of meaning
similarity fall. They then stabilise when the agents have created sufficient con-
ceptual structure to succeed in the discrimination tasks, and there is no further

need for much meaning creation. To measure the relative variation we see in
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figure 4, we take a cut-off point of 1000 episodes, and calculate the average
(mean) agent meaning similarity ¢ and the coefficient of variation (CoV), which
is the standard deviation expressed as a percentage of the mean®. We express
& together with a 95% confidence interval, recognising that the particular 100
runs of the simulation we have carried out only represent a sample drawn from
an infinite set of runs. In the standard model, therefore, we expect to get mean-
ing similarity rates of about 62%, which is not high enough to produce a very

successful communication system under normal circumstances.

5 Cognitive Biases and Tree Growth Strategies

In order to explain the apparent paradox of child language acquisition, re-
searchers have regularly appealed to several particular cognitive biases, includ-
ing the object bias [13], which states that a child will assume that an unfamiliar
word names a whole object, rather than a particular property of it, and the
shape bias [11], which states that a child is more likely to assume that an unfa-
miliar word refers to the shape of an object rather than to other properties such
as its colour or taste. In our model, the channels are intrinsically meaningless,
S0 we cannot speak in terms of particular properties, but we can investigate how
more abstract biases affect the construction of conceptual categories.

When a discrimination game fails, the agent chooses a channel on which a
node will be refined. This is done on the basis of the channel’s bias b,, , where a

identifies the agent and n the number of that agent’s sensory channel. The bias

3The standard deviation is scaled relative to the mean so that we can more accurately

compare results from distributions with different means.
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is specified when the agent is ‘born’, and does not change during the simulation.
It is equivalent to the probability of channel n being chosen for refinement. In
the standard model, each channel bias is equal (i.e. there is a uniform bias
distribution), and so the agent essentially chooses a channel at random each
time, but the channel biases can of course be defined according to particular
probability distributions. We will now look at random biases, where the bias for
each channel is chosen randomly at the start of the simulation; and proportional
biases, where the biases are defined according to a fixed probability distribution.
With proportional bias allocation, the bias on each channel represents a fixed
proportion p of the remaining bias, taking into account biases which have already

been allocated, as follows:

if n=0, b, = p

n

if n>0, b, p(1—2b,->
=0

Because the biases represent probabilities, they are always scaled after al-
location so that the sum of biases for each agent equals 1. For instance, if p
were 0.5, and the agent had five channels, then the biases would be allocated
as in table 1. We can also see that the allocation of biases by proportions is
therefore deterministic, so if two agents have the same value of p, then they will
have identical cognitive biases. Unless specified otherwise, p is set to 0.5 for all
simulations reported here.

Under proportional bias allocation, channels with low numbers always have

17



relatively higher biases, but this is purely an artefact of the implementation,

and nothing in the results relies on it.

Channel n Bias b,, Scaled Bias

0 0.5 0.5161
1 0.25 0.2581
2 0.125 0.129

3 0.0625 0.0645
4 0.03125  0.0323

Table 1: Allocation of biases under the fixed proportional method, with p = 0.5.

As well as changing the biases, and therefore the likelihood of tree growth
occurring on particular channels, we can also define completely different strate-
gies for the channel choice. In addition to the probabilistic method, where the
agent chooses a channel at random based on the biases described above, we
will investigate the intelligent strategy, where the agent searches through its
channels in order of their biases, until it finds a refinement which would have
resulted in successful discrimination in this particular discrimination game, had
the refinement already taken place. If no channel which meets this criterion is
found under the intelligent strategy, then no refinement takes place.

A crucial feature of the intelligent strategy is that a refinement will always
make a helpful distinction in at least the particular discrimination game during
which it was created, whereas refinements under the probabilistic strategy are
not guaranteed to be successful at all.

Table 2 shows the average rate of agent meaning similarity after 1000 episodes,

18



Strategy Biases o CoV

Uniform 0.62 | 0.10
Probabilistic Random 0.52 | 0.18
Proportional | 0.62 | 0.18

Random 0.39 | 0.35
Proportional | 0.43 | 0.30

Intelligent

Table 2: How different tree growth strategies and cognitive biases affect average

agent meaning similarity rates.

averaged over 100 runs of the simulations as above, with both tree growth strate-
gies (probabilistic and intelligent) and channel bias allocations (uniform, ran-
dom and proportional) being varied*. Counter-intuitively, we find that the best
results are achieved under the uniform model which we looked at in figure 4.
The same level is achieved if agents have proportionally allocated biases, sug-
gesting that the important factor is that in both these cases the agents’ biases
are identical. When the agents have random biases, on the other hand, then
the level of meaning similarity drops to just over 50%. Under the intelligent
strategy, it is interesting that the level of meaning similarity is even lower, and
the variation very high, with some runs producing meaning structures with al-
most no similarity at all. Having identical biases is clearly not a very important
consideration under this strategy.

So why do agents produce very divergent conceptual structures when they

4The combination of uniform biases and intelligent tree growth strategy is not included,
because the intelligent tree growth strategy is based on searching the channels in order of
their probabilities; if these are all equal, then there is no obvious way to order them except

randomly, which makes the search equivalent to a random, or probabilistic choice.
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use the intelligent tree growth strategy? The intelligent strategy always focuses
refinements on channels which would have succeeded, and, other things being
equal, channels which already have high levels of tree growth are more likely
to produce a distinguishing meaning than those which have only very general
meanings. Therefore, after a few initial refinements have been made, the intel-
ligent strategy tends to focus further refinements on those channels on which
trees have already been grown, and so divergence is therefore almost inevitable
under this strategy, unless the initial refinements made by the agents happen

to be the same.

6 The Principle of Contrast

Biases which may help explain language acquisition are not just proposed in re-
lation to meaning creation, but also to communication; Clark [5], for instance,
proposed the Principle of Contrast (PoC), which proposes that every difference
in a signal corresponds to some difference in meaning, while Markman [14] put
forward the closely related Mutual Exclusivity Assumption, which suggests that
children assume that objects do not belong to more than one category. For ex-
ample, Markman and Wachtel [15] describe how experimenters present children
with a banana and a whisk, and then ask them to “show me the fendle”. The
children tend to interpret fendle as referring to the whisk, and it is hypothesised
that this is because they already know a word for the banana, so they assume
that the unfamiliar word must refer to the unfamiliar object. More recently,

these suggestions have been complemented by further research showing how
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Figure 5: Meaning similarity rates with discrimination-driven meaning creation
(left), & = 0.43 (0.41-0.46), and with the addition of communication-driven
meaning creation (right), & = 0.47 (0.46-0.48).

language itself can, to a certain extent, shape the learner’s meaning structure
despite innate biases [12].

The crucial idea, that every difference in a signal corresponds to some dif-
ference in meaning, and that there are therefore no true synonyms, can be
implemented in our model by ensuring that when an unfamiliar signal is en-
countered, an agent will create a new meaning which corresponds to one of
the objects in the context, and assume that the new signal corresponds to this
meaning. This means that meaning creation can therefore now be triggered by
two mechanisms in the model: not only failure in the discrimination game, but
also failure in the interpretation of an unfamiliar word.

Figure 5 shows how adding meaning creation driven by failure in communica-
tion to the model has very little effect on the overall level of meaning similarity.
We can see that there is a slight increase in @, but if we use the Kolmogorov-
Smirnov (K-S) statistic, which expresses how different two distributions are [6],

we find that there is no statistical difference between the two sets of results.
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Essentially, the extra information that the hearer gets about the meanings from
the use of an unfamiliar word in a particular context does not help it to build

a conceptual structure closer to that of the other agent.

7 Environmental Factors
7.1 Experience

Our model of empirical meaning creation is based on the agents building their
conceptual structure in response to failures in their interactions with the world,
and it would seem reasonable to investigate the importance of the particular
situations which they experience. Humans who have similar experiences create
distinctions based on these experiences which can be unnoticed or irrelevant to
others, leading to the creation of particular specialised terminology or jargon to
name these distinctions.

In order to investigate how much of the agents’ conceptual structure is influ-
enced by the order in which they encounter certain objects and sets of objects,
we implement simulations in which both agents are given identical discrimi-
nation games to perform. Fach discrimination game itself still consists of a
random topic to be distinguished from a random set of objects, but both agents
now undertake the discrimination game, creating meanings when they fail as in
previous experiments. Table 3 shows the levels of meaning similarity achieved
when the agents are given identical discrimination games to perform, compared
to the results in our reference table (table 2), when they have different, ran-

domly chosen games. Large values of the Kolomogorov-Smirnov statistic show
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that the meaning similarity distributions are statistically significantly different;
in this paper, distributions where p < 0.05 are denoted by an asterisk (*), and

those where p < 0.01 are denoted by a double asterisk (**).

o
Strategy Biases Diff Exp | Same Exp
Uniform 0.62 0.63
Probabilistic Random 0.52 0.54
Proportional 0.62 0.64
Random 0.39 0.54*
Intelligent .
Proportional 0.43 1.00%*

Table 3: How the agents’ experiences affect average agent meaning similarity

rates.

We can clearly see that under the probabilistic strategy, there are no signifi-
cant differences when the agents have identical experiences, but that in contrast,
the intelligent strategy produces significantly increased levels in meaning simi-
larity, under both random and proportional biases. Indeed, if the agents have
the same biases and the same experience, we have in effect a deterministic sit-
uation, and so it is no surprise that we find complete meaning synchronisation

(0 = 1) in this case.

7.2 A Clumpy World

The world in which we live is not uniformly random, indeed there are many
constant properties behind the phenomena we encounter, which can be described

in terms of physical and chemical laws. We know, for instance, that unsupported
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objects will always fall until they reach a lower surface. Scientists can measure
the level of the gravitational force which causes this, and we know that the
gravitational force decreases as the object moves further from the centre of the
planet, yet in practical terms, the objects in our world do not differ in terms of
the gravitational force applying to them. In terms of a space of possible worlds,
all the objects in our world are clumped together in one section of the space,
where the gravitational force is always constant.

Bloom [2] describes how babies use the structure in the world, such as the
properties of objects, to make sense of the world through categorisation and
ultimately, in deciphering the meaning of words. K. Smith [21] has shown
how compositional systems are more likely to emerge in generalising agents
when the environment exhibits a high degree of structure. In our model, we
investigate how the agents fare in the meaning construction task in a world
which is structured or constrained in certain ways, and we explore how the
meaning similarity which emerges differs from that in a random world.

In a clumpy world, the objects are grouped together in some way and this is
implemented in our model by giving each member of a group identical feature
values for some particular feature (such as the gravitational force applying to
them). This means that the objects in a particular group are therefore a priori
indistinguishable on this channel, no matter how many times the discrimination
tree is refined, and so the objects can only be told apart using meanings created
on another sensory channel. In the random world, we could consider each object

as a group in itself, with each group containing just one object; in the clumpy
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world, we define the number of groups arbitrarily according to the channel and
number of objects in the world. The number of groups on channel ¢, g(c) is

defined as follows:

9()= 7 (5)

where O is the number of objects in the world. If there is no exact division,

then g(c) is always rounded up to the next whole number.

Channel ¢ 0 1 2 3 4 5 6 7 8 9
Groupsg(c) 20 10 7 5 4 4 3 3 3 2

Table 4: Allocation of groups in a clumpy world.

In a world of 20 objects, therefore, the number of groups on each channel
will be as shown in table 4. We can see that the channels towards the end
of the list have few groups, and so are much less likely to be of any use in a
discrimination game, though we also note that none is completely useless, where
all objects fall into one group (this would only happen under this setup if the
agents had more sensory channels than there were objects in the world). The
groups are arbitrarily biased so that more distinctions can be made on low-
numbered sensory channels, just as the proportional allocation of biases was
biased toward low-numbered sensory channels. If the structure of the world
is biased in a certain direction, it makes sense, if we want to appeal to some
selectionist motivation for the existence of the cognitive biases, for the channel
biases to be biased in a similar way.

Table 5 shows that all tree growth strategies produce significantly higher
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o
Strategy Biases Random World | Clumpy World
Uniform 0.62 0.70*
Probabilistic Random 0.52 0.59*
Proportional 0.62 0.68%*
Random 0.39 0.82%*
Intelligent | 1, ortional 0.43 0.88%*

Table 5: How the structure of the world affects average agent meaning similarity
rates.
levels of meaning similarity, when compared to simulations under the same
conditions in a uniformly random world. The probabilistic strategy produces
significantly increased levels of meaning similarity under all conditions, where
the order of the agents’ experiences did not have any significant effect. Under the
intelligent strategy, the levels of meaning similarity have more than doubled in
comparison to those achieved in the uniformly random world, and the differences
are highly statistically significant (p < 0.01).

An intelligent meaning creation strategy, therefore, results in poor meaning
similarity levels if the agents are in a random world, but it is very good at
taking advantage of any structure in the world, and produces very high meaning

similarity levels in a clumpy world.

8 Summary

In this paper, we have described a model of empirical meaning creation and of

the evolution of communication, in which successful communication can emerge
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without innate meanings, and without the explicit transfer of meanings; we
have also described the importance of meaning synchronisation in the model.
Furthermore, we have investigated meaning similarity levels under various condi-
tions, experimenting with various cognitive, communicative and environmental
factors, motivated by research into how children acquire and learn what words
mean.

The structure of the world plays a large role in determining which strategy
of meaning creation will create a conceptual structure which is most likely to
result in successful communication. If the objects in the world are distributed
randomly, then the agents can do no better than creating meanings based on
their innate biases, and reasonably high similarity will occur when the agents
happen to have the same biases. If the world is structured, on the other hand,
then it is much better for the agents to use an intelligent strategy for meaning
creation, which takes account of the structure in the world to a much greater

degree.
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