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Abstract. This paper investigates the development of experience-based
meaning creation and explores the problem of establishing successful
communication systems in a population of agents. The aim of the work
is to investigate how such systems can develop, without reliance on phe-
nomena not found in actual human language learning, such as the explicit
transmission of meaning or the provision of reliable error feedback to
guide learning. Agents develop individual, distinct meaning structures,
and although they can communicate despite this, communicative success
is closely related to the proportion of shared lexicalised meaning, and the
communicative systems have a large degree of redundant synonymy.

1 Introduction

There is a growing body of literature in which investigations into the evolution
of language1 are carried out by computer simulation [8,1,4]. For most of these
researchers, the evolution of language is regarded as essentially being equivalent
to the evolution of syntax, because the use of syntactic structure is seen as
the main difference between animal and human communication systems. For
example, vervet monkeys have a well-known communication system which allows
them to distinguish different predators [5], but they do not combine their signals
to convey complex meanings. Kirby [9] has shown that the simple ability to create
general rules, by taking advantage of coincidental correspondences between parts
of utterances and parts of meanings, can result in the emergence of syntax, as
general rules generate more utterances than idiosyncratic rules, and are therefore
replicated in greater numbers in following generations. Similar accounts [2,10]
also show syntax emerging as a consequence of the recognition and coding of
regularities between signals and meanings.

Nehaniv [14] has pointed out, however, that syntax only develops success-
fully from unstructured signals because the signals are coupled with meanings
which are already structured, and it is no coincidence that the emergent syntac-
tic structure parallels the pre-existing semantic structure. In these simulations,
1 This field is concerned not with the evolution of particular languages, such as En-

glish, from their ancestor languages, but rather with the general capacity, apparently
unique to humans, for using infinitely expressive communication systems [13].
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the meanings are also explicitly part of the linguistic transfer from speaker to
hearer, therefore obviating the critical problem, exemplified by Quine [17](p. 29–
30), of how a learner determines the meaning which a signal intends to convey.
Furthermore, attempts to develop learnt communication systems frequently in-
volve some sort of reinforcement learning process [20,6], which has the primary
role in guiding the learning mechanism. Oliphant [15] points out, however, that
such error signals, which work well on an evolutionary timescale, are less useful
over an individual’s lifetime where failure might mean immediate death, and
indeed even the very existence of reliable error signals is questioned by many
authors on child language acquisition [3].

If we try to define the meaning of a word, we find ourselves caught in a kind
of lexical web, where words can only be defined by their relationship to other
words, and in terms of other words. There is no obvious way of entering this web,
unless at least some words are grounded in reality [7], such that they can be used
to point out actions and objects in the real world. It is reasonably uncontroversial
to say that meanings must capture patterns of categorisation (whether categories
are defined in classical terms of shared features or prototypes [21]) which enable
us to state, for instance, which things are rabbits and which are not. Furthermore,
meanings are not innate, but are created anew in each language learner, who
creates an individual system of meaning based on their experiences [3].

Our aim is to model, in a population of agents, the creation of meanings by ex-
plicit categorisation, and then to investigate the spread of meanings through the
population, without the meanings themselves being transferred between agents,
and without any error signals to reinforce the learning process.

2 Meaning Creation by Object Discrimination

In order to develop a model of independent, grounded meaning creation, we
establish a simple world of agents and objects, similar to that described by
Steels [19], in which the objects can be described in terms of their features2,
which are intrinsically meaningless, but which can be thought of in terms of more
imaginable language-like features such as colour, height or smell. The agents in
the model world interact with the objects by using sensory channels, which are
sensitive to the corresponding features of objects, and can detect whether a
particular value of a feature falls between two bounds. Initially, the channels can
only detect that a value falls between 0.0 and 1.0, but the agents have the power
to split the sensitivity range of a channel into two discrete segments, resulting in
a discrimination tree [20]. The nodes of a discrimination tree can be considered
categories or meanings,3 as seen in the sensory channel in figure 1, which has
been refined twice, and has four new meanings.
2 Feature values are represented as pseudo-randomly generated real numbers which

are normalised to lie between 0.0 and 1.0
3 Meanings are given in the notation sc-path, where sc identifies the sensory channel,

and path traces the path from the tree root to the node in question, where 0 signifies
a lower branch and 1 an upper branch.
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(0.0–0.5) [0-0]

(0.5–1.0) [0-1]

(0.0–1.0)

(0.75–1.0) [0-11]

(0.5–0.75) [0-10]

Fig. 1. A discrimination tree (channel 0) which has been refined twice. Each node shows
the bounds between which it is sensitive, and the meaning to which it corresponds
(following Steels).

In order to provide a framework for the unguided refinement of the sen-
sory channels based on observation, we follow Steels [19] in using discrimination
games, in which an agent attempts to distinguish one object from a larger set of
objects. Each game proceeds as follows:

1. An agent considers a random set of objects (the context), one of which is
chosen at random to be distinguished from the others and is called the topic.

2. The agent investigates all its sensory channels to categorise the objects.
3. If the topic is uniquely identified by any category, the game succeeds.
4. If the game fails, the agent refines a randomly-chosen sensory channel.

Object Categories/Meanings
A 0-0 1-00 2-111
B 0-11 1-1 2-110
C 0-0 1-1 2-111
D 0-10 1-01 2-10

The above table shows an agent categorising objects as part of a discrimination
game. The agent has four objects A-D, and has categorised them with three
sensory channels. If the aim of this game is to discriminate B from the context
ACD, then the game can succeed, as both 0 − 11 and 2 − 110 are possible
distinguishing categories. On the other hand, if the aim is to distinguish C from
the context ABD, then the game will fail, as none of the categories which C
falls into distinguish it from all the other objects. Failure triggers the refinement
of a random channel, creating more detailed categories, which may be useful in
future games. Over time, the agents develop their sensory channels such that
the discrimination games nearly always succeed, though the extent to which an
individual channel is refined depends on the number of channels which the agent
has: the more channels, the fewer refinements on each are necessary.

Figure 2 shows the idiosyncratic meaning representations of two agents in the
same world. The first agent has developed the first three channels to a greater
extent than the second agent, who in turn has developed the fourth and fifth
channels more extensively. It is helpful to quantify the amount of difference
between two trees t1 and t2, which we can do by averaging the proportion of
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Agent One

Agent Two

Fig. 2. Two agents each have five sensory channels, with which they construct different
representations of the same world.

nodes in tree t1 which are also in t2, and the proportion in t2 which are also
in t1. Averaging over all the trees in figure 2, the two meaning representations
have a meaning similarity measure of 75%. It is important to note that both
agents are successful in the discrimination games, and so their representations
are equally good descriptions of their world. This model, then, satisfies one of
our goals, namely that the agents are not given innate meanings, but can create
inventories of basic concepts individually, based on their own experiences.

3 Communication

The next step is to investigate whether the agents can communicate with each
other, using the meanings they have constructed. Clearly the agents must be
able to use some sort of signals, and so they are endowed with the ability to cre-
ate signals from random strings of letters, and to express and understand these
signals without error. In addition, they maintain a dynamic lexicon of associa-
tions between signals and meanings, which develops as they participate in the
experiments, and which they use in order to make decisions about their commu-
nicative behaviour. Communicative success occurs if the speaker and hearer are
both referring to the same object, but it is not necessary for them to use the
same meaning to do so.

A communicative episode is played between two agents chosen at random,
the speaker and the hearer. Figure 3 shows a model of the speaker’s role, which
begins with a discrimination game, in which meanings which can distinguish the
topic (filled circle) from the rest of the context (dashed area) are collated. One of
these meanings is chosen at random and then looked up in the speaker’s lexicon.
If the speaker cannot find a word for the meaning it is trying to convey, then it
creates a random string of letters and stores this in its lexicon with the required
meaning. Having obtained a word to convey the meaning, the speaker utters the
word, and the focus passes to the hearer, who receives the word, and can observe
the context in which it was uttered, shown in figure 4.
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[3-1]

oij1-0
xk1-1
gttr2-0
oij2-0
gttr2-1
gttr3-1
oij3-10

gttr

Fig. 3. A communicative episode begins with an agent chosen at random to be the
speaker, who finds a meaning to distinguish the topic from the context, and utters a
word to convey this meaning.

The word is decoded via the hearer’s lexicon into a meaning, and the hearer
then establishes which object in the context (if any) is uniquely identified by
the meaning it has chosen. If the referent (object) identified by the hearer corre-
sponds to the speaker’s original topic, then the communication episode succeeds.
The success or failure of a communication game has no effect on the internalised
representations of either agent. This model of communication conforms to our
initial assumptions, as the internal meanings are explicitly not transmitted with
the signals, and the agents do not receive feedback from each other about the
success of their communicative or learning processes.

gttr

[0-1]oij 0-00
oij 0-01
gttr 0-1
xk 2-0
gttr 2-1
xk 4-10
xk 4-11

Fig. 4. The communicative episode continues with the hearer, who, given the context,
decodes the word into a meaning which identifies an object.

4 The Lexicon

The mappings from meaning to signal and vice-versa are at the heart of the
communication process, and are handled via a lexicon, which stores associations
between meanings and signals, as well as a count of how often the signal-meaning
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pair has been used (either uttered as a speaker or understood as a hearer), and a
confidence probability, which represents the agent’s confidence in the association
between the signal and the meaning.

The confidence probability of the signal-meaning pair, consisting of signal
s and meaning m, represents the history of all associations between words and
meanings an agent has ever made, and is defined as the proportion of the times
s has been used in which it has been associated with m, or Usage(s,m)∑l

1
Usage(s,l)

where l

is the number of entries in the lexicon. A short extract from an example lexicon
is given below, only showing the entries for two of the signals (gttr and oij), and
the meanings associated with them.

Signal Meaning Usage Conf. Prob.
gttr 0-0 1 0.083
gttr 0-1 2 0.167
gttr 0-11 1 0.083
oij 1-0 9 0.600
gttr 2-0 4 0.333
oij 2-0 6 0.400
gttr 2-1 1 0.083
gttr 3-1 2 0.167
gttr 4-00 1 0.083

How does the speaker decide which signal to choose, when it is trying to express
a particular meaning (say 2 − 0)? Given the lexicon above, the signal oij would
seem a reasonable choice for two reasons: it has been associated with 2 − 0 on
six occasions, compared to gttr’s four, and the agent is more confident in the
association with oij (0.4) than gttr (0.33). However, Oliphant and Batali [16]
have demonstrated an ideal strategy for achieving an accurate communication
system, known as obverter, where the speaker chooses words which he knows
the hearer will understand. Unfortunately, true obverter learning assumes that
the speaker can read the lexicons of the other members of the population, to
calculate the optimal signal to use for any meaning. Such mind-reading is not
only unrealistic, but even avoids the need for communication at all, and so an
alternative is needed. It seems reasonable to assume that the only lexicon the
speaker has access to is its own, and so we assume that the speaker uses this as
an approximation to that of the hearer. Instead of explicitly choosing the word
that the hearer will understand, the speaker chooses the word that it would be
most likely to understand if it was the hearer. Returning to the lexicon above,
we can see that although oij has been associated with the meaning 2−0 on more
occasions than gttr, if heard, it would actually be interpreted as 1 − 0 (because
1−0 is the meaning which maximises the confidence probability for oij), whereas
gttr would be interpreted with the correct 2 − 0 meaning.

Interestingly, the agent would not find a word from its lexicon to express
many meanings which do have some associations (e.g. 0 − 0, 3 − 1 etc.). One
of the outcomes of obverter learning is the avoidance of ambiguity, so we find
that, at any one time, each word in the lexicon is only used with one meaning,
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although the particular meaning can of course change as the associations in the
lexicon are updated. This means that, although there are eight meanings in the
lexicon extract, only two of them are actually used by the speaker, and so only
these can be regarded as being truly lexicalised.

We have seen how the speaker tries to second-guess the hearer and chooses
words which are likely to be understood before uttering them, but a greater prob-
lem is faced by the hearer in understanding the meaning which is being conveyed.
On hearing a signal, the hearer’s only guide in determining the intended mean-
ing is the observation of the context (which of course includes the target topic
object). From this, the hearer constructs a list of all the possible meanings, that
is, all meanings which categorise only one of the objects in the context. All these
possible meanings are equally plausible, so the hearer associates each of them
with the signal in its lexicon, adjusting its confidence probability for each ac-
cordingly. Over time, the interpretation of each word will tend to the speaker’s
intended meaning, if the two agents have identical meaning structures [18].

5 Results

The meaning structures constructed by the agents in our model world, however,
are of course not only not identical, but also change over time. Under these cir-
cumstances, is it possible for the agents to communicate? Figure 5 (left) shows
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Fig. 5. Communicative success, meaning similarity, and lexicalised similarity for a pop-
ulation of two agents and 100 objects. Each discrimination game is played with a con-
text size of five objects. The number of sensory channels available to each agent is five
(left) and 100 (right).

that communication is successful a large percentage of the time, although it is
not optimal, and does not appear to increase significantly after the initial rise
to around 90%. The similarity of the agents’ meaning structure drops initially,
as the agents refine their sensory channels individually and separately, and then
does not change significantly. This occurs because the pressure to develop mean-
ing structure comes only from failure in discrimination games, and after an initial
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flurry, the agents all have sufficiently detailed meanings to succeed in nearly all
discrimination games. Once this state is achieved, the communication rate stops
improving and remains fairly constant. If the number of sensory channels avail-
able is increased substantially (figure 5: right), a similar result is found, except
that the rate at which communication stops improving is much lower. It can also
be seen that the communication success rate is closely parallelled in both cases
by the lexicalised similarity of the agents, which is defined in the same way as
meaning similarity (see section 3), but only taking into account tree nodes which
are lexicalised.

An interesting phenomenon which occurs in these kind of simulations is the
large amount of synonymy which pertains in the lexicons, where more than one
word is interpreted with the same meaning. As an example, after 1000 com-
municative episodes, two agents have the meaning structures shown in figure 6.
Attached to each node on the discrimination trees is the number of words which
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Fig. 6. Two agents each have five discrimination trees numbered 0-4. Each lexicalised
node is marked with the number of words which would be interpreted as that meaning.

this agent would interpret as the meaning denoted by the node, or the number of
synonyms attached to the meaning. For instance, we can see that there are five
words which would each be interpreted by agent A as 1−10, and six which would



Establishing Communication Systems 389

be interpreted as this by agent B. Further inspection (not shown) indicates that
four of these synonyms have been lexicalised by both agents, suggesting a high
level of redundancy, which is caused by meaning drift:

The interpretation of a word, of course, changes over time as the agents
develop their experience of the word’s use. Words are only created when an
agent wants to express a meaning which isn’t lexicalised. For example, in figure
6, agent A might wish to express the meaning 3 − 0000, but it does not have a
word which it would interpret correctly, so it creates a new word ujszo. Agent B
hears the new word, and creates a list of possible meanings. This list, however,
cannot include A’s meaning 3 − 0000, because B’s meaning structure does not
contain this meaning, and so B will lexicalise ujszo with a different meaning.
Over time, B’s preferred meaning is likely to be a more general meaning, which
is shared by A.4 There is now a difference of opinion over the meaning of ujszo,
but crucially, agent A can continue to associate it with B’s meaning, while B
cannot associate it with A’s original meaning. A’s association between ujszo and
the shared meaning gradually increases, until it eventually exceeds that of the
original meaning. Both agents will now use ujszo for the more general meaning:
the word’s meaning has drifted. As a direct consequence, A no longer has a word
with which it can express the meaning 3 − 0000. If it does need to convey this
meaning, it must create another new word, and the cycle begins again.

Meaning drift is an inevitable characteristic of systems in which the agents’
conceptual systems are not the same, if there are an unlimited number of signals,
and there is little pressure to modify meaning structure. Inducing the meanings
of words from context inevitably biases the meanings towards those meanings
which are more general, and shared by the agents. Words which refer to specific
meanings which are not shared will see their meanings drift to those which are
shared, resulting in a large number of synonyms for the shared meanings, and
few, if any, words at all for the agent-specific meanings.

6 Discussion

We have developed a world in which agents can communicate about their en-
vironment, without explicitly transferring meanings, without knowing exactly
what the speaker is referring to, and without providing the learner with any
feedback about communicative success, all criteria motivated by research into
how human children acquire language [3]. Although communication can succeed
in cases where agents refer to the same object with different meanings, the overall
success of communication seems to be directly related to the amount of shared
meaning structure in the agents. The communication system has a great deal
of synonymy, caused by the differences in meaning structure and the unlimited
number of possible signals. Work is under way to extend the model, focusing
on ways to reduce synonymy, for instance by implementing the principle of con-
trast [12], and to investigate the effects of specific biases in meaning induction,
4 Because general meanings are created before more specific meanings on the discrim-

ination trees, they are more likely to occur in both agents’ meaning structures.
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such as the shape bias [11]. It is claimed that such biases explain the learning of
meanings [3], and this work will go some way to showing where these claims are
feasible.
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