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Abstract 

This paper presents a computational study of part of the lexical-acquisition task faced by 
children, namely the acquisition of word-to-meaning mappings. It first approximates this 
task as a formal mathematical problem. It then presents an implemented algorithm for 
solving this problem, illustrating its operation on a small example. This algorithm offers one 
precise interpretation of the intuitive notions of cross-situational learning and the principle 
of contrast applied between words in an utterance. It robustly learns a homonymous lexicon 
despite noisy multi-word input, in the presence of referential uncertainty, with no prior 
knowledge that is specific to the language being learned. Computational simulations 
demonstrate the robustness of this algorithm and illustrate how algorithms based on 
cross-situational learning and the principle of contrast might be able to solve lexical- 
acquisition problems of the size faced by children, under weak, worst-case assumptions 
about the type and quantity of data available. 

I. Introduct ion 

Suppose that you were a child. And suppose that you heard the utterance John 

walked to school. And suppose that when hearing this utterance, you saw John 
walk to school. A n d  suppose, following Jackendoff (1983), that upon seeing John 
walk to school, your perceptual faculty could produce the expression GO(John,  
TO(school)) to represent that event. And further suppose that you would entertain 
this expression as the meaning of  the utterance that you just  heard. At birth, you 
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could not have known the meanings of the words John, walked, to, and school, for 
such information is specific to English. Yet, in the process of learning English, you 
come to possess a mental lexicon that maps the words John, walked, to, and school 
to representations like John, GO(x, y), TO(x), and school, respectively. This paper 
explores one way that this might be done. 

The above situation is not sufficient for you to arrive at the correct word-to- 
meaning mappings. On the basis of this situation alone, you could not rule out the 
mappings John ---) TO(x), walked --) school, to ~ John, and school ---) GO(x, y), 
for these mappings, taken together, are also consistent with the aforementioned 
utterance-observation pair. Yet, considering multiple situations, and requiring the 
hypothesized lexicon to be consistent across those situations, might allow you to 
converge on the correct word-to-meaning mappings. 

The situation faced by children is likely to be more complex than the above 
example suggests. When seeing John walk to school, you also saw him moving his 
feet and wearing a red shirt. Thus, your perceptual faculty might also produce 
MOVE(John, feet) and WEAR(John, RED(shirt)) as possible meanings of 
the utterance John walked to school. How are you to know that GO(John, 
TO(school)) is the correct meaning of that utterance, ruling out the other 
possibilities? I refer to this problem as referential uncertainty. When acquiring 
word-to-meaning mappings, the learner faces a myriad of problems, among them: 
(a) deciding how to disambiguate the referential uncertainty to determine the 
correct meaning of each utterance and (b) deciding how to break that utterance 
meaning into parts to assign as the correct meaning of each word in the utterance. 
This paper addresses these two problems. 

The general notion of cross-situational learning has been proposed by many 
authors, among them Pinker (1989) and Fisher et al. (1994). Nonetheless, the 
following question remains: How can one render this intuitive idea as a precise 
algorithm and measure its effectiveness for  learning word meanings ? This paper 
addresses this question. I should stress at the outset that I do not claim that 
children employ the particular algorithm presented in this paper. As a computa- 
tional model, this work provides an existence proof for an algorithm that solves an 
approximation of the lexical-acquisition task. It leaves the investigation of what 
techniques children actually use to solve that task to further empirical study. It is 
hoped that the algorithm presented here will provide a theoretical framework to 
support such investigation. 

2. Overview 

Later in this paper, I present the details of a particular lexical-acquisition 
algorithm and discuss the assumptions that allow it to function. Since the 
algorithm encodes some fairly straightforward common-sense principles, it is 
helpful to first present the intuition behind those principles. 
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2.1. Constraining hypotheses with partial knowledge 

Partial knowledge of word meanings can allow the learner to filter out 
impossible hypothesized meanings of utterances that contain those words. For 
example, imagine that the learner heard the utterance Mary lifted the block. Further 
imagine that, when hearing this utterance, the learner entertained three potential 
meanings for this utterance, given the non-linguistic context: CAUSE(Mary, 
GO(block, UP)), WANT(Mary, block), and BE(block, ON(table)). On the basis 
of non-linguistic context alone, the learner could not know which of these 
hypotheses is correct. Imagine, however, that the learner possessed partial 
information about the meanings of the words in that utterance. More specifically, 
imagine that the learner knew that the word lifted contained CAUSE as part of its 
meaning. Given such partial information, and certain assumptions about how the 
meanings of words combine to form meanings of utterances that contain those 
words, the learner could rule out WANT(Mary, block), since that hypothesis does 
not contain CAUSE as part of its meaning. Similarly, imagine that the learner 
knew that none of the words Mary, lifted, the, and block could contain BE as part 
of their meaning. Such knowledge would allow the learner to rule out BE(block, 
ON(table)), since no word could contribute BE to the target utterance meaning. 
This intuition motivates the following conjecture: When learning word meanings, 
children use partial knowledge of word meanings to constrain hypotheses about 
the meanings of utterances that contain those words. 

2.2. Cross-situational inference 

One way that a learner might determine the meaning of a word is to find 
something in common across all observed uses of that word. Commonality across 
observed uses can be elucidated by forming a set of possible meanings for each 
use, from the non-linguistic context, and intersecting those sets. Such a strategy 
could potentially be used at two different levels: intersecting sets of entities that 
represent portions of the meaning of a word or intersecting sets of entities that 
represent the entire meaning of a word. As an example of the former, consider the 
following scenario. Imagine that the learner heard the two utterances John lifted 
the ball and Mary lifted the block. And imagine that the learner hypothesized 
CAUSE(John, GO(ball, UP)) as the meaning of the former and CAUSE(Mary, 
GO(block, UP)) as the meaning of the latter. From the first use of the word lifted, 
the learner could form the set {CAUSE, John, GO, ball, UP} of meaning 
fragments. From the second use of the word lifted, the learner could form the set 
{CAUSE, Mary, GO, block, UP} of meaning fragments. Under certain assump- 
tions, intersecting these sets would allow the learner to infer that the meaning of 
the word lifted cannot contain any meaning fragments except CAUSE, GO, and 
UP. 

As an example illustrating the intersection of sets containing whole-word 
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meanings, consider the same situation again. Given certain compositionality 
assumptions, from the first use of the word lifted, the learner could form the set 

"John, ball, UE GO(x, y), GO(ball, x), GO(x, UP), GO(ball, UP)," 
CAUSE(x, y), CAUSE(John, x), 

CAUSE(x, GO(y, z)), CAUSE(John, GO(y, z)), 
CAUSE(x, GO(ball, y)), CAUSE(John, GO(bali, x)), 

CAUSE(x, GO(),, UP)),CAUSE(John, GO(x, UP)), 
CAUSE(x, GO(ball, UP)), CAUSE(John, GO(ball, UP)) 

of potential whole-word meanings. This set contains all subexpressions of 
CAUSE(John, GO(ball, UP)), the hypothesized whole-utterance meaning, as well 
as all variations of those subexpressions with one or more of their subexpressions 
replaced with variables. Likewise, from the second use, the learner could form the 
set 

"Mary, block, UP, GO(x, y), GO(block, x), GO(x, UP), GO(block, UP)," 
CAUSE(x, y), CAUSE(Mary, x), 

CAUSE(x, GO(y, z)), CAUSE(Mary, GO(y, z)), 
CAUSE(x, GO(block, y)), CAUSE(Mary, GO(block, x)), 

CAUSE(x, GO(y, UP)), CAUSE(Mary, GO(x, UP)), 
CAUSE(x, GO(block, UP)), CAUSE(Mary, GO(block, UP)) 

of potential whole-word meanings. Intersecting these sets would allow the learner 
to restrict the meaning of the word lifted to be either UP, GO(x, y), GO(x, UP), 
CAUSE(x, y), CAUSE(x, GO(y, z)), or CAUSE(x, GO(y, UP)). 

Both of these forms of inference are instances of what is commonly known as 
cross-situational learning. This intuition motivates the following conjecture: When 
learning word meanings, children apply cross-situational inference, both at the 
level of word meaning fragments', and at the level of whole-word meanings, to 
constrain the possible meanings of words, given their context of use. 

2.3. Covering constraints 

Cross-situational inference at the meaning-fragment level is only able to rule out 
fragments as potential components of a word's meaning. It cannot provide 
evidence that a particular fragment is essential. For example, applying cross- 
situational inference to the above situation, the learner could infer that ball could 
not be part of the meaning of the word lifted, since it is absent from the situation 
surrounding the second use of that word. However, using cross-situational 
inference alone, the learner could not determine that CAUSE must be part of the 
meaning of lifted. To make such an inference, the learner might apply an 
additional source of constraint. Suppose that human language has the property that 
all components of the meaning of an utterance must be derived from the meanings 
of words in that utterance. Imagine that, by applying cross-situational inference to 
other utterances, the learner could rule out CAUSE as a component of the 



J.M. Siskind / Cognition 61 (1996) 39-91 43 

meanings of the words John, the, and ball. Under the covering constraint, the 
learner could infer that CAUSE must be a part of the meaning of lifted, since it is 
part of the meaning of John lifted the ball yet is not part of the meaning of any 
other word in that utterance. Cross-situational inference allows one to determine 
what fragments can be part of a word's meaning. In contrast, covering constraints 
allow one to determine what fragments must be part of a word's meaning. This 
intuition motivates the following conjecture: When learning word meanings, 
children apply cross-situational inference and covering constraints in a com- 
plementary fashion to progressively reduce the set of fragments that can be in a 
word's meaning, and increase the set of fragments that must be in that word's 
meaning, until the two sets are equal, thus identifying a single set of fragments out 
of which a word's meaning can and must be constructed. 

2.4. Principles of exclusivity 

Suppose that human language has the property that the words in an utterance 
must contribute non-overlapping portions of the utterance meaning. The learner 
could use this property, via a principle of exclusivity, to perform an additional 
form of inference in the following fashion. Imagine that a learner heard the 
utterance John walked and hypothesized the meaning WALK(John) for that 
utterance. Further imagine that the learner already determined, via a combination 
of cross-situational inference and covering constraints, that John must mean John. 
Applying only cross-situational inference and covering constraints to this data, the 
learner could not determine whether WALK(John) or WALK(x) is the meaning of 
walked. However, under the stipulation that John and walked contribute non- 
overlapping portions of the utterance meaning WALK(John), knowing that John 
means John rules out WALK(John) as a potential meaning of walked. This 
intuition motivates the following conjecture: When learning word meanings, 
children apply principles of exclusivity to constrain the possible meanings of some 
words in an utterance, given knowledge about the meanings of other words in that 
utterance. 

The above collection of conjectures is intended only as a partial description of 
the lexical-acquisition strategy used by children. They leave open the possibility 
that children employ additional information and forms of inference during lexical 
acquisition beyond these four conjectures. 

The ultimate goal of this research is to test the above four conjectures. This 
paper, however, adopts a much more modest goal, namely testing the effectiveness 
of these strategies for performing lexical acquisition by way of computational 
simulation. Computational simulation places strong constraints on theories. It 
requires that intuitive pre-formal notions be rendered precise and assumptions be 
made explicit. The remainder of this paper does precisely that. It presents a formal 
approximation of the lexical-acquisition task faced by children, along with an 
algorithm for solving that formal problem. It discusses, and attempts to justify, the 
assumptions that underlie both the formal problem and the implemented algorithm. 
And it demonstrates, by way of simulation, that the algorithm can solve the formal 
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problem. Given  our current  unders tanding of  human  mental  processes, however,  

some of  the assumptions  needed to render the pre-formal not ions precise cannot  be 

verified. Thus, the quest ion of  whether children employ the strategies discussed 
here is open to further research. 

3. The lexical-acquisition task 

The mental  lexicon presumably  contains  a variety of  different kinds of  

informat ion about words, including their acoustic, morphological ,  syntactic, and 
semantic properties. A full account  of  lexical acquisi t ion will need to explain how 

all such informat ion is learned. This paper, however,  is concerned with a subtask 

of lexical acquisit ion,  namely  learning word- to-meaning mappings.  For the 

remainder  of this paper, I use the term "lexical  acquis i t ion"  to refer only to this 

subtask. 

In this paper, I adopt a simplified model  of interaction be tween the lexical- 

acquisi t ion faculty j and other cogni t ive faculties such as speech perception and the 

perceptual /conceptual  faculty. This model  is depicted in Fig. 1. In this model,  the 
lexical-acquisi t ion faculty receives two streams of  input, one from the speech- 

utterances observations 

word-symbol strings conceptual expressions 

lexicon 
Fig. 1. The simplified model of interaction between the lexical-acquisition faculty and other cognitive 
faculties that is adopted in this paper. 

Through much of this paper, I use the term "faculty" when referring to various facets of the human 
cognitive capacity such as speech and visual perception, conceptual reasoning, and lexical acquisition. 
For some, this term might carry implicit connotations of modularity. By using the term "faculty," I do 
not intend to suggest that such capacities are indeed modular. Rather, for the sake of simplicity, I adopt 
a modular architecture as a working hypothesis. Without this hypothesis, and the approximations that it 
affords, it would not be possible to conduct the simulations presented later in this paper. While the 
modular architecture that I adopt is likely to be only an idealized approximation, I believe that 
simulations conducted under this idealization, nonetheless, provide useful insight into the lexical- 
acquisition process. Modularity is thus a weak, worst-case assumption, in that additional information 
pathways could only help, not hinder, the lexical-acquisition process. 
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perception faculty and one from the perceptual/conceptual faculty. The speech- 
perception faculty segments the acoustic stream into utterances and words, and 
classifies sequences of acoustic segments, such as /~e.p|/, into word symbols, 
such as apple. 2 Cutler et al. (1983), Norris and Cutler (1985), Cutler and Carter 
(1987), Jusczyk et al. (1993), Christophe et al. (1994), and Brent and Cartwright 
(this issue), among others, discuss some different segmentation strategies that 
children appear to use, depending on their native language. The perceptual/ 
conceptual faculty produces hypothesized meaning representations to associate 
with each utterance heard. For example, the perceptual/conceptual faculty might 
produce the conceptual symbol apple when seeing an apple, or the conceptual 
expression CAUSE(mother, GO(ball, UP)) when seeing Mother lift a ball. Badler 
(1975), Okada (1979), Borchardt (1985), Hays (1989), and Siskind (1992, 1995), 
among others, describe computational approaches to visual event perception, while 
Regier (1992) describes a method for learning such perceptual/conceptual 
processes. In order to accommodate the acquisition of meanings of words that refer 
to non-visual stimuli, as well as lexical acquisition by blind children, one can take 
the perceptual/conceptual faculty to be the combination of all perceptual mo- 
dalities, not just vision. One can similarly generalize the notion of speech- 
perception faculty to include visual and haptic input in order to accommodate 
lexical acquisition of signed languages as well. 

Snow (1977) reports that as many as 49% of the utterances heard by children do 
not refer to the here-and-now. Similarly, Fisher et al. (1994) cites Beckwith et al. 
(1989) claiming that close to a third of verb uses to young children do not refer to 
the here-and-now. To partly deal with this problem, I assume that while the 
perceptual/conceptual faculty primarily produces descriptions of observed objects, 
states, and events, more generally it can hypothesize what a speaker is likely to 
have said in a given situation, even though such utterances might have referred to 
something not directly observable. The perceptual/conceptual faculty need not be 
telepathic to make such hypotheses. Instead, it can incorporate naive psychological 
knowledge and use this knowledge to make inferences about the beliefs, goals, 
desires, and intentions of other agents. For example, the perceptual/conceptual 
faculty might produce WANT(mother, bali) when the child observes Mother reach 
for a ball, or NOT-BE(father, AT(home)) when the child looks around crying and 
Mother says that Father isn't home. The model presented here does not require the 
perceptual/conceptual faculty to produce representations of all true statements 
about the world, whether positive or negative. Quine (1960) points out that there 
are an infinite number of true facts about the world that a learner might need to 
entertain as potential meanings of each utterance. Rather, in the model presented 
here, the perceptual/conceptual faculty produces a limited number of hypotheses 
about what was likely to have been said in a given situation, not everything that 
could have been said. Thus, presumably, in the above situation, the hypothesis 
NOT-BE(father, AT(home)) would be more likely than other hypotheses, such as 

-' Throughout this paper, I use italics, bold face, and CAPITALIZED words to represent word and 
sense symbols, conceptual constant symbols, and conceptual function symbols, respectively. 
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NOT-POSSESS(me, giraffe, IN(pocket)), given the child's knowledge of his own 
mental state, his model of the inferences that his mother can make about his 
mental state, and his assumptions about how these inferences would influence 
what his mother might say in that situation. Under such a model, however, it is 
possible that, at times, the perceptual/conceptual faculty might produce only 
incorrect hypotheses. This paper presents techniques for dealing with such noisy 
input data. 

I refer to the output of the perceptual/conceptual faculty as conceptual 
structure. I assume that conceptual structure takes the form of conceptual 
expressions, such as GO(John, TO(school)), that are constructed out of an 
inventory of conceptual symbols, such as GO, John, TO, and school. For 
expository purposes, the examples presented in this paper use conceptual expres- 
sions reminiscent of those proposed by Jackendoff (1983, 1990). The algorithm 
presented in this paper is not particular, however, to the choice of conceptual 
representation. It works for expressions constructed out of any conceptual-symbol 
inventory, including those proposed by Leech (1969), Miller (1972), Schank 
(1973), Borchardt (1985), and Pinker (1989). Furthermore, it works regardless of 
whether word meanings are represented by simple conceptual expressions that 
contain only a single primary conceptual symbol, as has been proposed by Fodor 
(1970), or by more complex conceptual expressions that contain multiple 
conceptual symbols, as has been proposed by Jackendoff and others. Many 
examples in this paper represent the meanings of words such as John, walked, to, 
and school by simple conceptual expressions, such as John, GO(x, y), TO, and 
school, each of which contains a single primary conceptual symbol (namely John, 
GO, TO, and school). Other examples, however, represent the meanings of words, 
such as lift, by complex nested conceptual expressions, such as CAUSE(x, GO(y, 
UP)), that contain several conceptual symbols. This paper presents computer 
simulations that illustrate the operation of the algorithm on a variety of different 
input sets, each containing conceptual expressions of varying depths and branching 
factors, constructed out of different conceptual-symbol inventories of different 
sizes. 

Many languages have words that play a purely syntactic role. Examples of such 
words are case markers, such as the English word of, and complementizers, such 
as the English word that. Such words might not contribute any conceptual symbols 
to the representations of the meanings of utterances that contain those words. To 
indicate this, I represent the meanings of such words via the conceptual expression 
±. For expedience, I also use _t_ to represent the meanings of words that fall 
outside the semantic space of the chosen conceptual-symbol inventory. Thus, since 
the Jackendovian notation adopted in this paper does not represent definite and 
indefinite reference, determiners, such as the English word the, will take on _1_ as 
their meaning. This is simply an expository issue and not an inherent limitation of 
the lexical-acquisition algorithm presented here. Adopting a richer conceptual- 
symbol inventory would allow the algorithm to represent and learn the meanings 
of determiners. 

The learning algorithm presented here makes no use of the phonology of the 
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word symbols or the semantic truth conditions of the conceptual expressions 
themselves. As far as it is concerned, these expressions are simply strings of 
uninterpreted symbols. Symbols such as apple and apple have no inherent 
semantic or phonological content. In this view, texical acquisition is simply a 
process of learning the mapping between two pre-existing mental representation 
languages (Fodor, 1975). It is conceivable that children's mental processes might 
not adopt such a strict partitioning between the speech perception and perceptual/ 
conceptual faculties on one hand and the lexical-acquisition faculty on the other. 
The word and conceptual symbols that pass between the two might not be totally 
devoid of phonological and semantic content. The lexical-acquisition faculty might 
use limited phonological content, say, to distinguish nouns from verbs (Kelly, 
1992), and, accordingly, bias words to map to objects versus events. Similarly, the 
lexical-acquisition faculty might use limited semantic content, say, to distinguish 
between basic-level and sub- or super-ordinate categories to prefer mappings to 
conceptual symbols that represent basic-level categories (Horton and Markman, 
1980). The work presented here does not question whether children use phonologi- 
cal or semantic information during lexical acquisition or the extent to which they 
do so. Instead, it makes a weak, worst-case assumption, in that additional sources 
of information or constraint can only help, not hinder, the lexical-acquisition 
process. 

It is likely that many of the utterances heard by children conform to the 
syntactic constraints of the language heard. Similarly, the conceptual expressions 
produced by the perceptual/conceptual faculty might conform to some well- 
formedness constraints imposed by the "syntax" of conceptual structure, whatever 
that may be. It is conceivable that children make use of either or both sources of 
constraint to guide lexical acquisition (Gleitman, 1990; Fisher et al., 1994). The 
algorithm presented in this paper, however, does not use any syntactic properties 
of the language heard, or any well-formedness properties of the underlying 
conceptual structure, beyond the semantic-interpretation rule to be discussed. This 
again is a weak, worst-case assumption, in that use of such properties can only 
help, not hinder, the lexical-acquisition process. 

4. Why lexical acquisition is difficult 

Lexical acquisition is difficult for at least five reasons. First, children hear 
multi-word utterances; they must figure out which words in an utterance map to 
which parts of the utterance meaning. Second, children hear utterances in contexts 
where more than one thing could have been said (Gleitman, 1990); they must 
figure out which of those things is, in fact, the meaning of the utterance just heard. 
Third, children must start this task without any prior knowledge that is specific to 
the language being learned; this is sometimes referred to as the bootstrapping 

problem (Pinker, 1984; Gleitman, 1990). Fourth, the input is noisy; it may contain 
utterances paired with only incorrect hypothesized meanings. Children must 
determine which parts of the input to ignore. Finally, many words are homonym- 
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ous; they can have several different senses. Children must determine which sense 
of each word is being used at a given time. Each of these difficulties is examined 
in greater detail below. 

4.1. Multi-word utterances 

A common conjecture, that dates as far back as St. Augustine (Bruner, 1983) 
and Locke (1690), is that children hear single-word utterances in a context where 
the meanings of those words are made clear by ostention. If this were true, lexical 
acquisition would be trivial to explain. Children would simply be presented with 
the lexicon as input. An examination of the Nina corpus (Suppes, 1974) in the 
CHILDES database (MacWhinney and Snow, 1985) that contains a transcript of 
adult speech to Nina when she was between the ages of 1 year 11 months and 3 
years 3 months, however, gives evidence that children receive insufficient input 
data in the form of single-word utterances to account for lexical acquisition using 
the above strategy. Only 1913 (5.6%) out of the 34,438 utterances in the corpus 
are single-word utterances, while only 276 (8.5%) out of the 3246 word types that 
appear in the corpus appear in single-word utterances. Furthermore, Aslin et al. 
(1995) report that even when parents were given explicit instructions to teach 
words to their children, in the data gathered for 13 out of 19 parent-child pairs, 
fewer than 30% of the parental utterances consisted of isolated words. Even if 
these cursory estimates are atypically low, there are still whole classes of words, 
such as obligatorily-transitive verbs, prepositions, quantifiers, and determiners, that 
would rarely, if ever, appear in isolated-word utterances. 

The following question then arises: Given multi-word input, how do children 
figure out which words map to which parts of the utterance meaning ? Presumably, 
children could consider all possible mappings, examine multiple situations, and 
accept only those mappings consistent with all, or at least many, of the different 
situations encountered. This basic strategy has been suggested by numerous 
authors, including Pinker (1989), who called it "event category labeling," and 
Fisher et al. (1994), who called it "cross-situational learning." This paper attempts 
to formalize and extend this notion, and to explore its efficacy by way of 
computational simulations. The algorithm described in this paper also performs an 
additional form of inference, similar to that proposed by Tishby and Gorin (1994), 
allowing known meanings of some words in an utterance to constrain the 
hypotheses about the meanings of other words in that utterance. This paper shows 
how these techniques can be effective in the presence of multi-word input. 

4.2. Referential uncertainty 

As discussed in the Introduction, it is likely that children face a learning task 
that is more complex than the one just described. Not only must they break an 
utterance meaning into its parts and assign those parts correctly to the individual 
words in the utterance, they must also figure out the correct utterance meaning 
from the myriad possible things that could have been said in a given situation. In 
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this paper, such referential uncertainty is modeled by allowing the learner to 
hypothesize a set of possible meanings for each utterance heard. I assume that this 
set is produced by the perceptual/conceptual faculty. The learner then faces the 
two-fold task of (a) figuring out which of the meanings hypothesized for a given 
utterance is correct and (b) figuring out how to break the correct utterance meaning 
apart and assign fragments of that meaning to the words in the utterance. I refer to 
the average number of meanings hypothesized for each input utterance as the 
degree of referential uncertainty. This paper presents computer simulations that 
illustrate that the lexical-acquisition algorithm described in this paper has the same 
performance across a wide range of degrees of referential uncertainty. 

4.3. Bootstrapping 

During later stages of lexical acquisition, children might possess information, 
specific to the language being learned, that can simplify the learning task. For 
example, a child who hears the utterance I woke up yesterday, turned off my alarm 
clock, took a shower, and cooked myself two grimps for breakfast (Granger, 1977) 
might infer a lot about the meaning of the word grimp, if she already knows the 
grammar and morphology of English as well as the meanings and lexical 
categories of the other words in the utterance. She might determine that grimp is 
likely to be a common noun that names a type of food that one might cook and 
consume two of for breakfast. Furthermore, she might know where in the world to 
look for likely meanings of the word grimp, namely those food items that she saw 
the speaker cook and consume two of for breakfast the previous day. Granger 
(1977), Jacobs and Zernik (1988), and Berwick (1983), among others, describe 
implemented systems that perform just this kind of inference. Such inference, 
however, can be performed by children only during later stages of lexical 
acquisition when they already possess substantial information specific to the 
language being learned. Children must start the lexical-acquisition process without 
such knowledge. They hear utterances that might initially sound to them like Foo 
bar baz quux. The following question then arises: How do children start the 
lexical-acquisition process without any seed information? This problem has 
become known as the bootstrapping problem (Pinker, 1984; Gleitman, 1990). 

The algorithm that I present consists of a collection of inference rules. While all 
of these inference rules can make use of partial information in the lexicon, only 
some of them require such partial information to operate. For example, inference 
rules that implement principles of exclusivity require partial information in order 
to operate, while those that implement cross-situational learning do not. Thus, 
under certain assumptions, a learner hearing the word shirt in the absence of red 
things might infer, using cross-situational techniques, that shirt could not mean 
RED. Such inference could be performed without any prior lexical knowledge. If 
the same learner later heard the phrase red shirt, and somehow could determine 
that the phrase must refer to a red shirt, the learner could use principles of 
exclusivity to infer that red must mean RED and shirt must mean shirt. This later 
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inference can be performed only in light of the lexical knowledge obtained by the 
earlier observation and inference. 

The algorithm that I present opportunistically applies whatever inference rules it 
can to the current observation in the context of the current partial lexicon. Thus 
learning is slow during the early stages and becomes faster as more information is 
acquired. This paper presents computer simulations that demonstrate this effect. 
Ultimately, the algorithm is able to acquire new words with only one or two 
occurrences. Thus this single algorithm exhibits a range of different behaviors, 
with bootstrapping at one extreme, and context-based single-occurrence acquisi- 
tion at the other, purely as a result of data exposure, without any maturational 
parameter shift. 

4.4. Noise 

A cross-situational strategy implies that when children hear a word in multiple 
situations, they choose, as its meaning, something common across those situations. 
Presumably, hearing a word in enough different situations would reduce the set of 
possibilities to a single meaning consistent with all observed situations. This 
strategy, however, breaks down in the presence of noisy input and homonymy. 
Suppose that a learner heard the word ball in many situations, some of which did 
not contain a ball. In this case, there would be no meaning that is consistent across 
all of the observed situations. It seems likely that many words are eventually heard 
in some counterfactual situation. How, then, could the learner determine the 
meanings of such words? 

In this paper, I offer two different solutions to this problem. First, recall that the 
model that I propose does not require hypothesized utterance meanings to reflect 
visual observations of the here-and-now. Rather, it assumes that these are the 
product of a general perceptual/conceptual faculty that has some capacity to 
model what might be said in each situation. Second, a key feature of the algorithm 
presented in this paper is that it can learn despite the presence of noise in the input. 
Noise arises for the following reason: Since there are infinitely many things that 
could be said in every situation, the perceptual/conceptual faculty must necessari- 
ly enumerate only a finite subset of the possible utterance meanings for each 
situation. Sometimes, this subset will lack the correct utterance meaning. Such 
cases constitute noise. A simple strategy might be to ignore noisy utterances. This 
is not as easy as it sounds since noisy utterances are not marked in the input. 

It is instructive to look at the noise problem in a different light. Another strategy 
sometimes proposed as a model of lexical acquisition is that children somehow 
estimate the statistical correlation between words and observations. Thus, a child 
would learn that open means OPEN by seeing numerous situations where open 
and OPEN co-occur. The difficulty with this approach, as pointed out by Gleitman 
(1990), is that there may be many situations where open and OPEN do not 
co-occur. Since the non-co-occurrence situations might outnumber the co-occur- 
rence situations, the correlation could be low. In keeping with the general strategy 
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adopted in this paper of investigating weak, worst-case assumptions, it is useful to 
explore how a child might learn despite low correlation between word and 
observation. 

Low correlation itself need not be a problem. Presumably, a learner could adopt 
a relative metric and decide to pair a word with a meaning when no word 
correlates better with that meaning and no meaning correlates better with that 
word. Tishby and Gorin (1994) point out, however, that acquisition techniques 
based solely on correlations can be unfocused. To paraphrase and extend their 
example, suppose that the learner received many instances of red shirt, paired 
correctly with RED(shirt), and even more instances of shirt, paired correctly with 
shirt. Furthermore, suppose that the learner also received a few noisy instances of 
red paired with shirt. In this case, the correlation between red and shirt would be 
higher than between red and RED(x). Yet, given that there is more evidence for 
associating shirt with shirt than for any other association, the learner should be 
able to apply a principle of exclusivity or contrast to determine that red means 
RED(x). Clark (1987) and Markman (1989) suggest an application of exclusivity 
at the level of the lexicon. In their models, different words should have different 
meanings. Tishby and Gorin suggest that exclusivity be applied individually to 
each utterance. In their model, the meaning of an utterance must be equivalent to 
the sum of its parts. Thus, while in general, nothing prevents two words from 
having the same meaning, a learner that knows that shirt must mean shirt could 
infer that red could not also mean shirt by hearing red shirt paired with 
RED(shirt). Like the algorithm proposed by Tishby and Gorin (1994), the 
algorithm presented here also applies exclusivity to individual utterances, though it 
does so in a very different fashion, without computing statistical correlations. 

The learner may face other kinds of noise in addition to utterances that do not 
refer to the here-and-now. Some utterances may be ungrammatical, while others 
may require, for their comprehension, a theory of compositional semantics that is 
more elaborate than the simple semantic-interpretation rule embodied in the 
lexical-acquisition algorithm described in this paper. A single strategy can deal 
with all such sources of noise. The learner must simply ignore some portion of the 
input. This paper presents a method for deciding which portion of the input to 
ignore. 

4.5. Homonymy 

The fact that words can have multiple senses, either related or unrelated, poses a 
difficult problem for the learner. The learner must determine which sense is being 
used at a given time since the input data is not marked with such information. For 
example, when hearing Did you remove the band from around the box ? and Did 
you hear the band play our song ?, the learner must somehow determine that band 
refers to a fastening device in the former and a group of musicians in the latter. 
Applying cross-situational techniques, the learner would fail to find a single 
meaning for band that is consistent with all of the observed situations. The 
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algorithm described in this paper treats homonymy and noise with a single 
mechanism. When cross-situational techniques discover an inconsistency, the 
algorithm hypothesizes a split in possible word senses. If this split is corroborated 
by further evidence, the split is adopted as legitimate homonymy. If not, the 
spurious sense is rejected as noise. 

5. The mapping problem 

The algorithm presented in this paper solves a precisely specified formal 
problem that I call the mapping problem. While this formal problem is simplified 
and abstract, I believe that it provides a reasonable model of many aspects of the 
lexical-acquisition task faced by children. In this problem, the learner is presented 
with a sequence of utterances, each being an unordered collection of word 
symbols. The collection is unordered to keep the lexical-acquisition process 
independent of word order and allow a pure study of cross-situational learning 
techniques without the use of syntactic knowledge. Each utterance is paired with a 
set of conceptual expressions that represent hypothesized meanings for that whole 
utterance. Sometimes this set will include the correct meaning; at other times it 
will not. An utterance is considered to be noisy if it is paired with only incorrect 
meaning hypotheses. 

Before proceeding, let me reiterate the representation that is used for meanings. 
Meaning representations are constructed out of conceptual symbols such as GO 
and bali. Such conceptual symbols are formed into conceptual expressions such as 
CAUSE(John, GO(ball, TO(Mary))). Conceptual expressions are used to repre- 
sent the meanings of both words and utterances. Such conceptual expressions can 
contain variables to denote unfilled argument positions, as in CAUSE(x, GO(y, 
TO(z))). Those conceptual expressions that represent utterance meanings will not 
contain variables, since in the model given here, utterances are taken to be 
sentences and sentences do not contain unfilled argument positions. Those 
conceptual expressions that represent the meanings of argument-taking words, 
such as verbs, will contain variables while those that represent the meanings of 
non-argument-taking words, such as many nouns, will not. Conceptual expressions 
that represent the meanings of words can contain more than one conceptual 
symbol, as in CAUSE(x, GO(y, TO(z))), though nothing precludes the degenerate 
case of representing the meaning of a word with a conceptual expression that 
consists of a single conceptual symbol, as suggested by Fodor (1970). Finally, an 
ambiguous word will have several senses. The meaning of each sense will be 
represented by a distinct conceptual expression. 

In order to fully specify the mapping problem, one must specify the process by 
which the meanings of words combine to form the meanings of utterances that 
contain those words. This paper makes as few assumptions as possible about this 
semantic-interpretation process. First, it assumes that the lexicon for a given 



J.M. Siskind / Cognition 61 (1996) 39-91 53 

language maps each word to a set of conceptual expressions that represent the 
meanings of different senses for that word. Thus, the lexical entry for hft might be 
{CAUSE(x, GO(y, UP)), elevator}. Then it assumes that the meaning of an 
utterance is derived from the meanings of its constituent words by first selecting a 
sense for each word in the utterance, then finding the conceptual expressions that 
represent the meaning of that sense, and finally passing the resulting collection of 
conceptual expressions, one for each word in the utterance, to a semantic- 
interpretation function. I refer to this semantic-interpretation function as COMPOSE. 
The input to COMPOSE is an unordered collection of conceptual expressions. The 
input is unordered to keep the semantic-interpretation process independent of word 
order. No claim that the actual human semantic-interpretation process ignores 
word order is intended. This is simply a weak, worst-case assumption, in that 
allowing the semantic-interpretation process to make use of word order can only 
help, not hinder, the texical-acquisition process. 

The output of Co~POSE is a set of conceptual expressions that denote possible 
ways of combining the given word-sense meanings into utterance meanings. For 
example, the output of 

CoMPOSE({John, GO(x, y), TO (x), school}) 

might be the set 

I 
GO(John, TO(school)), GO(school, TO(John)), ] 

GO(TO(John), school), GO(TO(school), John),~ 
TO(GO(John, school)), TO(GO(school, John)) J 

Given a lexicon, a conceptual expression m is a possible interpretation of an 
utterance if one can select, from the lexicon, a sense for each occurrence of each 
word in the utterance, such that m is contained in the output of COMPOSE applied to 
the conceptual expressions that represent the meanings of those senses. This 
semantic-interpretation rule allows for both lexical and interpretive ambiguity. 
Lexical ambiguity is modeled by allowing words to have multiple senses. 
Interpretive ambiguity is modeled by having the function COM~SE return a set of 
interpretations rather than a single interpretation. The lexical-acquisition algorithm 
described in this paper can successfully learn a lexicon despite such ambiguity. 

The function COMr'OSE is left unspecified, except for two conditions. First, each 
conceptual symbol that appears in the conceptual expression that represents the 
meaning of a whole utterance must appear in the conceptual expression that 
represents the meaning of at least one word in that utterance. This states that the 
semantic content of an utterance must be derived from the words in that utterance. 
Variance in the structure of an utterance can affect only the process of combining 
those word meanings. Second, a conceptual symbol must appear in the conceptual 
expression that represents the meaning of the whole utterance at least as many 
times as the sum of the number of times it appears in the conceptual expressions 
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that represent meanings of  words in that utterance. 3 This states that the semantic- 

interpretation rule cannot delete any symbols when producing utterance-meaning 
representations. When applying the above two conditions, the distinguished 
conceptual expression ± is viewed as not containing any conceptual symbols. 
Apart from explicit  use of  the above two conditions, and the RECONSTRUCT 
procedure, to be described later, the lexical-acquisition process treats COMPOSE as a 
"black box."  That is, it does not use any knowledge of  the semantic-interpretation 
process other than what can be obtained by examining the results of  presenting 
sample inputs to COMPOSE. 

Taken together, these two conditions imply that the semantic-interpretation rule 

must be more-or-less compositional.  As with all composit ional semantic-interpre- 
tation rules, this precludes idioms and metaphor. While  the algorithm discussed in 
this paper can learn in the presence of  input that contains some idioms and 
metaphor, treating such input as noise, it is not able to learn idiomatic or 
metaphoric meaning. 

The mapping problem can now be stated formally as follows. The learner is 
presented with a corpus of  utterances, each paired with a set of  conceptual 
expressions that represent hypothesized utterance meanings. The learner assumes 
that the corpus was generated by some unknown lexicon shared collectively by the 
speakers of  the language heard by the learner. Each utterance is viewed as an 
unordered collection of  word symbols. The lexicon maps each word symbol that 
appears in the corpus to a set of  conceptual expressions that represent the 
meanings of  different senses of that word. Some of  the utterances in the corpus, 
the non-noisy ones, have the property that at least one of  the hypothesized 
meanings for that utterance is a possible interpretation of  that utterance given the 
unknown lexicon used to generate the corpus. The learner must find that lexicon. 

6. The  noise-free m o n o s e m o u s  case 

Before presenting the full lexical-acquisition algorithm, which is capable of  
dealing with noise and homonymy,  I will first present a simplified algorithm that 
handles only noise-free input under the assumption that all words are monosem- 
ous. This algorithm receives, as input; a sequence of utterances, each paired with a 
set of  conceptual expressions that represent hypothesized meanings for that 
utterance. Each utterance is an unordered collection of  word symbols. The 

The second condition does not state that a conceptual symbol must appear exactly as many times as 
the sum of the number of times that it appears in the conceptual expressions that represent meanings of 
words in that utterance. This stricter condition would make the semantic-interpretation rule "'linear" in 
the sense of linear logic (Girard, 1987). Tishby and Gorin (1994) adopt such a linear semantic- 
interpretation rule. A linear semantic-interpretation rule cannot copy information from a word or phrase 
so that the information appears more than once in the resulting utterance meaning. By adopting a 
weaker constraint, the algorithm presented here can successfully learn a lexicon even when the 
interpretation of utterances in the corpus requires copying. 
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algorithm produces, as output, a lexicon that maps word symbols to conceptual 
expressions. 

The algorithm learns word-to-meaning mappings in two stages. Stage one learns 
the set of conceptual symbols used to construct the conceptual expression that 
represents the meaning of a given word symbol, but does not learn how to 
assemble those conceptual symbols into a conceptual expression. I refer to such a 
set as the actual conceptual-symbol set. For example, when learning the meaning 
of the word symbol raise, the algorithm would first learn the actual conceptual- 
symbol set {CAUSE, GO, UP} during stage one, and subsequently learn how to 
compose these conceptual symbols into the conceptual expression CAUSE(x, 
GO(y, UP)) during stage two. The state of the algorithm's knowledge at the end of 
stage one is only partial, since many different conceptual expressions could be 
formed out of the actual conceptual-symbol set {CAUSE, GO, UP}, among them 
CAUSE(x, GO(y, UP)), GO(CAUSE, UP), and UP(CAUSE(x), GO(x, y)). The 
algorithm does not determine which of these is, in fact, correct until stage two. 
These two stages are interleaved. At a given point in the learning process, some of 
the words in the lexicon might be progressing through stage one, while others are 
progressing through stage two. 

To perform stage one, the algorithm maintains two sets of conceptual symbols 
for each word symbol. One set, the necessary conceptual-symbol set, contains 
conceptual symbols that the algorithm has determined must be part of a word's 
meaning representation. The other set, the possible conceptual-symbol set, contains 
conceptual symbols that the algorithm has determined can be part of a word's 
meaning representation. The necessary and possible conceptual-symbol sets for a 
word symbol act as lower and upper bounds, respectively, on the actual 
conceptual-symbol set for that word symbol. In the absence of noise, the necessary 
conceptual-symbol set for a word symbol will be a subset of the actual conceptual- 
symbol set for that word symbol, and the possible conceptual-symbol set will be a 
superset of the actual conceptual-symbol set. For example, the necessary con- 
ceptual-symbol set might be {CAUSE} and the possible conceptual-symbol set 
{CAUSE, GO, UP}, leaving uncertainty as to whether the actual conceptual- 
symbol set was {CAUSE}, {CAUSE, GO}, {CAUSE, UP}, or {CAUSE, GO, UP}. 
At the commencement of stage one for a given word symbol, the necessary 
conceptual-symbol set for that word symbol is initialized to the empty set, while 
the possible conceptual-symbol set for that word symbol is initialized to the 
universal set, thus leaving the actual conceptual-symbol set totally unconstrained 4 

4 The initial universal possible conceptual-symbol set need not be instantiated extensionally. It 
would clearly be impossible to do so if the conceptual-symbol inventory were infinite. Even with an 
infinite conceptual-symbol inventory, the set of conceptual symbols in any given finite conceptual 
expression will be finite. Possible conceptual-symbol sets are computed as intersections of such finite 
sets and are thus always finite, except when they are initialized to the universal set. The universal set 
can be represented with a finite token, namely T. The initial value of Y is simply a cue to perform the 
first update (see Rule 2 in the appendix) as P(s)<---U,,,E M F(m) instead of as P(s)~---P(s) A U,,,E M F(m). 
The token T can be treated similarly in the remaining rules to allow finite computations with universal 
sets. 
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Stage one provides four inference rules, to be described momentarily, that modify 
the necessary and possible conceptual-symbol set for word symbols that appear in 
utterances as they are processed. These rules add conceptual symbols to the 
necessary conceptual-symbol sets and remove conceptual symbols from the 
possible conceptual-symbol sets, until these two sets become equal. When this 
happens, the algorithm is said to have converged on the actual conceptual-symbol 
set for the given word symbol. At this point, that word symbol progresses to stage 
two of the algorithm. 

To perform stage two, the algorithm maintains a set of conceptual expressions, 
called the possible conceptual-expression set, for each word symbol. At the 
commencement of stage two for a given word symbol, this set is initialized to the 
set of all conceptual expressions that can be formed out of precisely the conceptual 
symbols that appear in the actual conceptual-symbol set that stage one has 
converged on for that word symbol. Stage two provides two inference rules, to be 
described momentarily, that remove conceptual expressions from the possible 
conceptual-expression set for word symbols that appear in utterances as they are 
processed, until this set contains only a single conceptual expression. When this 
happens, the algorithm is said to have converged on the conceptual expression that 
represents the meaning of the given word symbol. 

The algorithm is on line in the sense that it makes a single pass through the 
input corpus, processing each utterance in turn, and discarding that utterance 
before processing the next utterance. The algorithm retains only a small amount of 
inter-utterance information. This information takes the form of three tables: 

1. a possible conceptual-symbol table, P(w), that maps each word symbol w to its 
possible conceptual-symbol set; 

2. a necessary conceptual-symbol table, N(w), that maps each word symbol w to 
its necessary conceptual-symbol set; and 

3. a possible conceptual-expression table, D(w), that maps each word symbol w to 
its possible conceptual-expression set. 

These three tables constitute a model of the mental lexicon. I refer to the collection 
of P(w), N(w), and D(w), as the lexical entry, for the word symbol w. 

The operation of the algorithm is best illustrated by way of example. The 
following example was chosen to succinctly illustrate all facets of the algorithm 
while processing only a single utterance. To do so, it starts out midway through 
the acquisition process where the algorithm has partial information about the 
necessary and possible conceptual-symbol sets for the word symbols in the 
utterance. Given this partial information, the algorithm will converge on the 
conceptual expression for each word symbol in the example utterance, solely by 
processing this utterance. In practice, however, the algorithm starts out without 
any partial information and takes considerably longer to reach convergence. Early 
on, the algorithm typically converges on the actual conceptual-symbol set for a 
word symbol, only after several occurrences of that word symbol, and then 
converges on its conceptual expression, only after several more occurrences. As 
acquisition progresses, the speed of convergence increases until the algorithm 
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typically converges on the actual conceptual-symbol set and the conceptual 
expression for a new word symbol from a single word-symbol occurrence. This 
will be illustrated later in this paper. 

Let us proceed with the example, Suppose that the algorithm is part-way 
through the lexical-acquisition process and already possesses the following 
lexicon: 

John 
took 
the 
ball 

N P 

{John} {John, ball} 
{CAUSE} {CAUSE, WANT, GO, TO, arm} 
{} {WANT, arm} 
{ball} {ball, arm} 

This lexicon constitutes partial information about the meanings of the word 
symbols John, took, the, and ball. The algorithm has not yet converged on the 
actual conceptual-symbol sets for any of the word symbols John, took, the, or ball, 
since N(John), N(took), N(the), and N(ball) are all proper subsets of P(John), 
P(took), P(the), and P(ball), respectively. 

Now suppose that the algorithm receives the utterance 

(1) John took the ball. 

along with the following three hypothesized meanings for this utterance: 

(2) CAUSE(John, GO(ball, TO(John))) 
(3) WANT(John, ball) 
(4) CAUSE(John, GO(PART-OF (LEFT(arm), John), TO (ball))) 

Recall that the second condition on the semantic-interpretation rule requires that it 
cannot delete any conceptual symbols when producing utterance-meaning repre- 
sentations. Since the word symbol took must contribute the conceptual symbol 
CAUSE, because N(took) contains CAUSE, and since (3) is missing that 
conceptual symbol, the algorithm could rule out (3) as a possible meaning of (1). 
Similarly, given the first condition on the semantic-interpretation rule, that the 
semantic content of an utterance must be derived from the words in that utterance, 
the algorithm could rule out (4) as a possible meaning of (1), since (4) contains 
the conceptual symbols LEFT and PART-OF and none of the word symbols in ( 1 ) 
can possibly contribute those conceptual symbols, because neither P(John), 
P(took), P(the), nor P(ball) contain LEFT or PART-OF. This inference process can 
be stated more precisely as follows: 

Rule 1 Ignore those utterance meanings that contain a conceptual symbol that 
is not a member of  P(w) for some word symbol w in the utterance. Also ignore 
those that are missing a conceptual symbol that is a member of  N(w) for some 
word symbol w in the utterance. 
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While, in this case, by applying Rule 1, the algorithm has eliminated the referential 
uncertainty from this utterance, this will not always be the case. Nonetheless, the 
remaining inference rules are formulated to tolerate residual referential uncertain- 
ty. 

At this point, given the second condition on the semantic-interpretation rule, 
namely, that it cannot delete any conceptual symbols when producing utterance- 
meaning representations, the algorithm can make the following inference: Since 
(2), the remaining hypothesized meaning for (1), does not contain the conceptual 
symbols WANT and arm, the word symbols took, the, and ball cannot possibly 
contain those conceptual symbols as part of their meaning. This inference allows 
the algorithm to remove the conceptual symbols WANT and arm from P(took), 
P(the), and P(ball), yielding the following lexicon: 

John 
took 
the 
ball 

N P 

{John} {John, ball} 
{CAUSE} {CAUSE, GO, TO} 
{} {} 
{ball} {ball} 

This inference process can be stated more precisely as follows: 

Rule 2 For each word symbol w in the utterance, remove from P(w) any 
conceptual symbols that do not appear in some remaining utterance meaning. 

By applying Rule 2, the algorithm has converged on the actual conceptual-symbol 
set for the word symbols the and ball. 

At this point, given the first condition on the semantic-interpretation rule, 
namely, that the semantic content of an utterance must be derived from the word 
symbols in that utterance, the algorithm can make the following inference: Since 
(2) contains the conceptual symbols GO and TO, and these conceptual symbols 
are not possibly part of the meaning of the word symbols John, the, and ball, the 
algorithm can infer that they must be part of the meaning of the word symbol took. 
This inference allows the algorithm to add the conceptual symbols GO and TO to 
N(took), yielding the following lexicon: 

John 
took 
the 
ball 

N P 

{John} {John, ball} 
{CAUSE, GO, TO} {CAUSE, GO, TO} 
{} {} 
{ball} {ball} 

This inference process can be stated more precisely as follows: 

Rule 3 For each word symbol w in the utterance, add to N(w) any conceptual 
symbols that appear in every remaining utterance meaning but that are missing 
from P(w ")for every other word symbol w" in the utterance. 
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By applying Rule 3, the algorithm has converged on the actual conceptual-symbol 
set for the word symbol took. 

At this point, given the second condition on the semantic-interpretation rule, 
namely, that it cannot delete any symbols when producing utterance-meaning 
representations, the algorithm can make the following inference: Since the 
conceptual symbol ball appears only once in (2), and the word symbol ball 
necessarily contributes this conceptual symbol, the word symbol John cannot also 
contain ball as part of its meaning. This inference allows the algorithm to remove 
the conceptual symbol ball from P(John), yielding the following lexicon: 

John 
took 
the 
ball 

N P 

{John} {John} 
{CAUSE, GO, TO} {CAUSE, GO, TO} 
{} {} 
{ball} {ball} 

This inference process can be stated more precisely as follows: 

Rule 4 For each word symbol w in the utterance, remove from P(w) any 
conceptual symbols that appear only once in every remaining utterance 
meaning if they are in N(w')  for some other word symbol w '  in the utterance. 

By applying Rule 4, the algorithm has converged on the actual conceptual-symbol 
set for the word symbol John. 

At this point, the algorithm has converged on the actual conceptual-symbol set 
for all of the word symbols that appear in (1). It can thus move from stage one, 
discovering the actual conceptual-symbol set of each word symbol, to stage two, 
discovering the conceptual expression of each word symbol. The algorithm can 
first initialize the possible conceptual-expression set for each of the word symbols 
in (1) to the universal set. Then it can remove from this set any conceptual 
expression not composed from the actual conceptual-symbol sets that have been 
inferred for those word symbols, in a way consistent with (2). 5 For example, the 
only conceptual expression that matches some subexpression of (2), and contains 
precisely the single conceptual symbol John, is, in fact, the conceptual expression 

Like before, the initial universal possible conceptual-expression set need not be instantiated 
extensionally. It would clearly be impossible to do so, since there are infinitely many conceptual 
expressions. Even so, possible conceptual-expression sets are computed as intersections of sets of 
fragments of the conceptual expressions that represent hypothesized utterance meanings. With a finite 
degree of referential uncertainty, these sets of fragments will always be finite, and thus the possible 
conceptual-expression sets will always be finite, except when initialized to the universal set. Like 
before, the universal set can be represented with a finite token, namely T. The initial value of 7- is 
simply a cue to perform the first update (see Rule 5 in the Appendix) as D(s)~--U ,,,eM RECONSTRUCT(m, 

N(s)) instead of as D(s)~--D(s) n U ,,,EM RECONSTRUCT(m, N(s)). The token 7- can be treated similarly in 
the remaining rules to allow finite computations with universal sets. 
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John. Therefore, the word symbol John must mean John. 6 Similarly, the only 
conceptual expression that matches some subexpression of (2), and contains 
precisely the single conceptual symbol ball, is the conceptual expression bail. 
Therefore, the word symbol ball must mean bail. Likewise, since the meaning of 
the word symbol the does not contain any conceptual symbols, it must mean ±. 
There are, however, two conceptual expressions that contain precisely the 
conceptual symbols CAUSE, GO, and TO, and can match some subexpression of 
(2), namely CAUSE(x, GO(y, TO(z))) and CAUSE(x, GO(y, TO(x))). Therefore, 
the best the algorithm can do, at this point, is to infer that the word symbol took 
must take on one of these two conceptual expressions as a representation of its 
meaning. In other words, by examining (2), the algorithm can determine that the 
first argument of CAUSE in the meaning of the word symbol took must be 
different from the remaining arguments. In contrast, the algorithm cannot 
determine whether the remaining arguments are necessarily, or just incidentally, 
the same. Thus, this technique will allow the algorithm to converge on the 
conceptual expressions that represent the meanings of the word symbols John, the, 
and ball, but leave some uncertainty as to the argument structure of the word 
symbol took. 

Sometimes, this uncertainty can be resolved by intersecting the possible 
conceptual-expression sets derived in this manner from several different utterances 
that contain the same word symbol. Thus, the possible conceptual-expression sets 
can be updated in a manner analogous to the way Rule 2 updates the possible 
conceptual-symbol sets. This inference process can be stated more precisely as 
follows: 

Rule $ Let RECONSTRUCT(m, N(w)) be the set of  all conceptual expressions that 
unify (Robinson, 1965) with m, or with some subexpression of m, and that 
contain precisely the set N(w) of non-variable conceptual symbols. For each 
word symbol w in the utterance that has converged on its actual conceptual- 
symbol set, remove from D(w) any conceptual expressions not contained in 
RECONSTRUCT(m, N(w)), for some remaining utterance meaning m. 

By applying Rule 5, the algorithm has converged on the conceptual expressions 
that represent the meanings of the word symbols John, the, and ball. 

In our example, Rule 5 alone cannot resolve all of the uncertainty. To remove 
the remaining uncertainty, the algorithm can observe that there is no way to take 
the word symbol took to mean CAUSE(x, GO(y, TO(z))) and consistently produce 
(2) as the meaning of ( 1 ), given the meanings that have been inferred so far for the 
word symbols John, the, and ball. Thus, the algorithm can rule out CAUSE(x, 

This is not as trivial as it appears. The fact that P(John)=N(John)={John} does not, in itself, 
constrain the meaning of John to be John. Since the algorithm is not given conceptual-symbol arity as 
explicit input, were it not for applying this inference rule to the hypothesized meaning representations, 
the algorithm could not rule out John(x), John(x, y), John(x, x), John(x, y, z), John(x, y, x) . . . .  as 
potential meanings for John. 
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GO(y, TO(z))) as a possible meaning of the word symbol took, leaving CAUSE(x, 
GO(y, TO(x))) as the sole remaining alternative. This inference process can be 
stated more precisely as follows: 

Rule 6 I f  all word symbols in the utterance have converged on their actual 
conceptual-symbol sets, for each word symbol w in the utterance, remove from 
D(w) any conceptual expressions t, for which there do not exist possible 
conceptual expressions for the other word symbols in the utterance that can be 
given, as input, to COMPOSE, along with t, to yield, as its output, one of the 
remaining utterance meanings. This is a generalized form of  arc consistency 
(Mackworth, 1992). 

By applying Rule 6, the algorithm has converged on the conceptual expression that 
represents the meaning of the word symbol took. 

Appendix A contains formal statements of Rules 1-6. The noise-free 
monosemous algorithm essentially applies these rules repeatedly to each utterance, 
as it is received, until no change is made to the lexical entries of the word symbols 
that appear in the utterance. Then the utterance is discarded and the algorithm 
proceeds to the next utterance. While Rules 1-4 always terminate quickly, Rules 5 
and 6 can potentially take a long time. Thus, a time limit is enforced whereby 
Rules 5 and 6 are aborted if they take too long. In practice, this time limit is 
exceeded only on a small fraction of the utterances, usually the long ones, and 
does not appear to adversely affect the convergence properties of the algorithm. 

Nominally, the algorithm is not affected by utterance length. It can acquire 
partial information from utterances of any length, both during early stages of 
acquisition, when there is little or no partial information in the lexicon, as well as 
during later stages, when there is a more complete lexicon. The time limit on 
Rules 5 and 6 typically comes into play only during intermediate stages of 
acquisition. During the early stage of acquisition, most of the lexical entries are in 
stage one where Rules 5 and 6 do not yet apply. During the later stage of 
acquisition, the lexicon already possesses the meanings of most words in most 
utterances, so Rules 5 and 6 do not become combinatorially explosive and the time 
limit does not apply. The time limit only affects utterances that contain many 
words in stage two of the convergence path that have large possible conceptual- 
expression sets. Thus, the algorithm need not start learning with particularly short 
utterances. This paper presents computer simulations that demonstrate this 
capability of the algorithm. 

7. Extensions to handle noise and homonymy 

The algorithm described in the previous section runs into difficulty with noise 
and homonymy. This is illustrated by the following two simple examples. First, 
suppose that the learner heard the utterance John lifted the ball and paired this 
utterance with the single (correct) hypothesized utterance-meaning representation 
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CAUSE(John, GO(ball, UP)). Applying Rule 2, the learner would form the 
possible conceptual-symbol set {CAUSE, John, GO, ball, UP} for the word 
symbol lifted. Now suppose that the learner heard a second utterance Mary lifted 
the ball, but this time paired this utterance with the single incorrect hypothesized 
utterance meaning WANT(Mary, ball). This second utterance constitutes noise. 
Applying Rule 2, the learner would incorrectly update the possible conceptual- 
symbol set for the word symbol lifted to the set {ball}. Processing this utterance 
corrupts the possible conceptual-symbol set for the word symbol lifted, since it 
now lacks the conceptual symbols CAUSE, GO, and UP needed to represent the 
correct meaning of that word symbol. Second, suppose that the learner heard the 
utterance Mary left school and paired this utterance with the single hypothesis 
GO(Mary, FROM(school)). Now suppose that the learner heard a second 
utterance, John hit Mary's left arm, and paired this utterance with the single 
hypothesis HIT(John, PART-OF(LEFT(arm), Mary)). In this case, neither 
utterance is noisy, but the word symbol left is used in a different sense in the first 
utterance than in the second. Thus, applying Rule 2, the learner would form the 
possible conceptual-symbol set {GO, Mary, FROM, school} for the word symbol 
left after processing the first utterance and incorrectly update this possible 
conceptual-symbol set to {Mary} after processing the second utterance. The 
possible conceptual-symbol set for the word symbol left is now corrupted, since it 
lacks the conceptual symbols needed to represent the meanings of either of the two 
senses. 

All of the rules described in the previous section are monotonic. They always 
add elements to the necessary conceptual-symbol sets and remove elements from 
the possible conceptual-symbol sets and possible conceptual-expression sets. When 
an impossible conceptual symbol is added to a necessary conceptual-symbol set, a 
necessary conceptual symbol is removed from a possible conceptual-symbol set, or 
a necessary conceptual expression is removed from a possible conceptual-expres- 
sion set, I say that the resulting lexical entry is corrupted. So far, there is no way 
to recover from corruption due to noise and homonymy. Furthermore, corruption 
tends to spread through the lexicon, since Rules 3, 4, and 6 allow the lexical 
entries of words to be affected by the lexical entries of other words in the same 
utterance. Thus, a single noisy utterance or a single homonymous word can wreak 
havoc in the lexicon. 

There is no simple way for the learner to determine when a lexical entry has 
been corrupted. It is possible, however, to determine a weaker property. In the 
absence of noise and homonymy, the algorithm described in the previous section 
maintains two invariants for each lexical entry: The necessary conceptual-symbol 
set will be a subset of the possible conceptual-symbol set and the possible 
conceptual-expression set will be non-empty. When either of these invariants is 
violated, I will say that a lexical entry is inconsistent. An inconsistent lexical entry 
is necessarily corrupted though the inverse might not be true. In practice, however, 
corrupted lexical entries tend to become inconsistent fairly quickly. This allows 
inconsistency to be used as an indicator of corruption, and ultimately of noise and 
homonymy. 
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There is an additional form of inconsistency that the algorithm can discover. In 
the absence of  noise and homonymy, the set of  hypothesized meanings associated 
with an utterance must contain the correct meaning. That meaning should not be 
eliminated by Rule 1. Thus, an inconsistency is detected whenever Rule 1 
eliminates all of  the hypothesized meanings associated with some utterance as it is 
processed. 

Detecting an inconsistency when processing an utterance is indicative of  one or 
more of the following situations: 

• the current utterance is noisy; 
• a word in the current utterance is homonymous; or 
• the lexical entry for some word in the current utterance has been corrupted by 

processing a previous utterance. 

I will now describe an extended algorithm for learning in the presence of  noise and 
homonymy that provides a uniform method for dealing with each of  these 
situations. 

The extended algorithm represents the lexicon as a two-level structure that first 
maps word symbols to sense symbols, and then maps sense symbols to conceptual 
expressions. Sense symbols are simply atomic tokens, such as s,, s 2 . . . .  , that are 
used to name senses. For example, the lexicon might map the word symbol ball to 
the two sense symbols ball~ and ball 2, and then map these sense symbols to the 
conceptual expressions spherical-toy and formal-dance-par ty ,  respectively. I 
refer to the set of  sense symbols associated with a word symbol as the sense- 
symbol set of that word symbol. The lexicon has the property that no two word 
symbols can map to sense-symbol sets that contain the same sense symbol. Thus, 
sense symbols can be viewed as homonymous sense indices created on-the-fly 
when a new sense is hypothesized. 

In the extended algorithm, the possible conceptual-symbol table P(s), the 
necessary conceptual-symbol table N(s), and the possible conceptual-expression 
table D(s) all map sense symbols, rather than word symbols, to lexical entries. The 
extended algorithm makes use of two additional tables as part of  its model of the 
mental lexicon: 

1. a sense-symbol table, L(w), that maps each word symbol w to its sense-symbol 
set; and 

2. a confidence-factor table, C(s), that maps each sense symbol s to a confidence 
factor, a non-negative integer. 

The sense-symbol table L(w) and the possible conceptual-expression table D(s) 
constitute the two-level output lexicon produced by the extended algorithm. I refer 
to the collection of  P(s), N(s), D(s), and C(s) as the lexical entry for the sense 
symbol s and to the collection of  lexical entries for all of  the sense symbols in 
L(w) as the lexical entry for the word symbol w. The confidence-factor table is 
used to handle noise and homonymy and will be described momentarily. Briefly, 
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the confidence factor of each sense is initially zero and increases as the algorithm 
gathers more evidence that it has not mistakenly hypothesized that sense to explain 
a noisy utterance. 

The extended algorithm is best described as the combination of several general 
principles. First, let us momentarily make the simplifying assumption, as before, 
that all word symbols map to a single sense symbol, i.e. that there is no 
homonymy in the lexicon. In this case, one can determine whether processing an 
utterance would result in an inconsistency, without actually letting such an 
inconsistency corrupt the lexicon, simply by saving the state of the lexical entries 
under consideration before processing an utterance and restoring them should an 
inconsistency arise during processing. Second, let us now relax the monosemy 
constraint and allow the lexicon to contain multiple senses per word. In this case, 
one can decide whether an utterance is inconsistent by testing the consistency of 
each element in the cross product of the sense-symbol sets of the word symbols in 
the utterance. Each element in such a cross product is termed a sense assignment.  

If no sense assignment in the cross product is consistent, then treat the utterance as 
inconsistent. I will explain how to deal with such inconsistent utterances 
momentarily. If exactly one sense assignment in the cross product can be 
processed without inconsistency, then assume that the sense symbols contained in 
that sense assignment denote, in fact, the intended senses for each word symbol 
and permanently update the lexical entries of those sense symbols using Rules 
1-6. If more than one sense assignment in the cross product can be processed 
without inconsistency, then some metric is used to select the best sense assignment 
and that sense assignment is processed as before. The sum of the confidence 
factors for each sense symbol in a sense assignment is currently used as the 
selection metric, though presumably other selection metrics could be used as well. 

The above strategy has two objectives: to perform sense disambiguation on the 
words of incoming utterances and to prevent corruption. This strategy meets these 
objectives only partially. It is possible, particularly during early stages of learning, 
for a noisy utterance to corrupt the lexicon without being detected as an 
inconsistency. It is also possible for the selection metric to incorrectly dis- 
ambiguate word senses and cause the wrong lexical entries for some word symbol 
to be processed and thus corrupted. Nonetheless, such situations occur much less 
frequently than would otherwise be the case if consistency were to be ignored. 
Techniques that I will describe momentarily can handle such residual cases of 
incorrect sense disambiguation and corruption. 

The question then remains as to what to do when processing an inconsistent 
utterance. The strategy adopted here is to incrementally add newly created sense 
symbols to the sense-symbol sets of the word symbols that appear in the utterance, 
until the utterance is no longer inconsistent, and then process that utterance as 
usual. The lexical entries of the newly added sense symbols are initially 
unconstrained, that is, they have empty necessary conceptual-symbol sets, univer- 
sal possible conceptual-symbol sets, and universal possible conceptual-expression 
sets. Clearly, it is always possible to render an utterance consistent simply by 
adding a single new sense symbol to the sense-symbol set for each word-symbol 
occurrence in the utterance. The algorithm finds the smallest number of new sense 
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symbols that need to be added, in order to process the utterance without detecting 
an inconsistency, and adds only those new sense symbols. 

New sense symbols can be added in this fashion for several reasons: 

1. The current utterance is noise. In this case, the new sense symbols are spurious. 
They are only created to explain a noisy utterance. It is unlikely that the lexical 
entries of  such sense symbols will converge and be selected to explain a future 
utterance. Such sense symbols will be filtered out by a sense-pruning process to 
be described momentarily.  

2. The newly created sense symbols do indeed represent new senses (potentially 
for words that already posses other senses) that have not been heard before. The 
lexical entries of  these new sense symbols will begin traversing the conver- 
gence path and will hopefully converge to the correct meaning representation. 

3. The lexical entries for some of  the word symbols in the current utterance have 
previously been corrupted and thus can no longer account for the current 
utterance. The lexical entries of these new sense symbols are intended to 
replace and repair the corrupted lexical entries of  the old sense symbols. The 
lexical entries of  these new sense symbols will begin traversing the conver- 
gence path and will hopefully converge to the correct meaning representation. It 
is unlikely that the corrupted lexical entries of  the old sense symbols will 
converge and be selected to explain a future utterance. Such sense symbols will 
be filtered out by a sense-pruning process to be described momentarily. 

This strategy for handling noise and homonymy is best illustrated by the 
following example. Like before, suppose that the algorithm is part-way through the 
lexical-acquisition process and already possesses the following lexicon: 7 

J o h n  

s a w  i 

s a w  2 

h a d  l 

h a d  z 

M a r y  I 

a r r i v e  

a t  t 

t he  t 

a l  
b a l l  j 

b a l l  2 

p a r t y  j 

S u s a n  

w i t h  i 

D ={John} ,  C = 1000 
N = {}, P = {wood-cutting-tool ,  hammer} 
N = {}, P = {SEE, GO} 
N = {}, P = {POSSESS, WANT} 
N = {}, n = {CONDUCT, CAUSE} 
D = {Mary}, C = 1000 

D={GO(x ,  TO(BE(x, y)))}, C = 10 
D ={AT(x)}, C =  1000 
O={_l_}, C = lO 000 
D = { ± } ,  C =  10 000 
D = {formal-dance-party},  C = 10 
D = {spherical-toy}, C = 1000 
D = {political-organization}, C = 10 
N={ } ,  P = { D A N C E ,  Mary, Betty, Susan} 
D = {WITH(x)}, C = 1000 

7 In this example, the confidence factor for a sense symbol is incremented each time that sense 
symbol is contained in a preferred sense assignment. The actual procedure used for updating the 
confidence factors is somewhat more complex and is presented in the Appendix A. 
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This lexicon is homonymous and contains two senses for each of the word 
symbols saw, had, and ball. 

Now suppose that the algorithm receives the utterance 

(5) John saw Mary arrive at the ball. 

in a context where John saw Mary arrive at a formal dance party. The algorithm 
would thus obtain the following hypothesized meaning for this utterance: 

SEE(John, GO(Mary, TO (BE(Mary, AT(formal-dance-party))))) 

Since this utterance contains two homonymous word symbols, each with two 
senses in the current lexicon, the algorithm would examine four possible sense 
assignments. Of these, only one is consistent with the lexicon. 

John] saw 2 Mary] arrive] at] the I ballj. 

Note that the algorithm can determine this, even though it has yet to converge on 
the conceptual expressions, or even the actual conceptual-symbol sets, for the two 
senses of the word symbol saw. In this case, the algorithm assumes that the above 
sense assignment is the intended one and updates the lexical entries for the sense 
symbols in this sense assignment using Rules 1-6. This allows the algorithm to 
converge on the conceptual expression SEE(x, y) for the sense symbol saw 2, 
yielding the following modified lexical entry: 

saw 2 [ D={SEE(x, y)}, C =  1 

The confidence factors of the sense symbols John~, Mary,,  arrive], at], the~, and 
ball~ are incremented as well. 

Processing (5) illustrates how the set of hypothesized utterance meanings can 
often be used to disambiguate lexical ambiguity. This is handled by Step 2a of the 
algorithm that will be described momentarily. Using the set of hypothesized 
utterance meanings to disambiguate lexical ambiguity is only a heuristic, however. 
While not shown in this example, it is possible for this heuristic to select an 
incorrect disambiguation. This might corrupt some lexical entries. An example that 
illustrates recovery from such corruption will be shown momentarily. 

Now suppose that the algorithm receives the utterance 

(6) John had a ball. 

in a context where this could refer either to the fact that John owned a spherical 
toy or to the fact that John had conducted a formal dance party. The algorithm 
would thus obtain the following two hypothesized meanings for this utterance: 
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POSSESS(John, spherical-toy) 
CONDUCT(John, formal-dance-party)  

Again, there are two homonymous word symbols in this utterance, each with two 
senses in the current lexicon. Thus, the algorithm would examine four possible 
sense assignments. This time, however, there are two sense assignments that are 
consistent with the current lexicon. 

John I had I a,  ball  2. 
John I had 2 a I bal l j .  

In this case, the algorithm computes a selection metr ic  for each consistent sense 
assignment and prefers the one with the highest selection metric. The algorithm 
maintains a confidence f a c t o r  for each sense in the lexicon that counts the number 
of times that that sense was used to process an utterance. The confidence factor 
takes on a zero value until a sense has converged on the conceptual expression that 
represents the meaning of that sense. The selection metric is taken to be the sum of 
the confidence factors of the sense symbols in a sense assignment. Thus, the 
algorithm computes the following selection-metric values: 

C(Johnj  ) + C(had I ) + C(a ~ ) + C(ball 2) = 12 O01 

C(John l )  + C(had z) + C(a l )  + C(bal l l )  = 11 012 

and prefers the first sense assignment since it has the highest selection-metric 
value. It then updates the lexical entries for the sense symbols in this sense 
assignment using Rules 1-6. This allows the algorithm to converge on the 
conceptual expression POSSESS(x, y) for the sense symbol had, ,  yielding the 
following modified lexical entry: 

had, I D={POSSESS(x, y)}, C = 1 

The confidence factors of the sense symbols John , ,  a , ,  and ball 2 are incremented 
as well. 

Processing (6) illustrates how the set of hypothesized utterance meanings might 
not fully disambiguate the lexical ambiguity and how a selection metric based on 
confidence factors can be used to further disambiguate the lexical ambiguity. This 
is handled by Step 2b of the algorithm that will be described momentarily. 
Confidence factors are a reasonable selection metric since they are a rough 
measure of the relative frequency of occurrence of different word senses. Using 
this selection metric to disambiguate lexical ambiguity is only a heuristic, 
however. While not shown in this example, it is possible for this heuristic to select 
an incorrect disambiguation and corrupt some lexical entries. An example that 
illustrates recovery from such corruption will be shown momentarily. 

Now suppose that the algorithm receives the utterance 
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(7) Mary had a party. 

in a context where Mary conducts a celebration. The algorithm would thus obtain 
the following hypothesized meaning for this utterance: 

CONDUCT(Mary,  celebration) 

There is one homonymous word symbol, had, in this utterance, with two senses in 
the current lexicon. Notice that the current lexicon has only one sense for the word 
symbol party, namely, the sense that denotes a political organization. Thus, there 
are two possible sense assignments. Neither of these, however, is consistent with 
the current lexicon. Thus, the algorithm tries to find the smallest set of word 
symbols from the current utterance for which it can add a new sense to alleviate 
the inconsistency. In this case, it is possible to add a new sense, party 2, for the 
word symbol party and alleviate the inconsistency. Initially, the necessary 
conceptual-symbol set for this sense is set to the empty set and the possible 
conceptual-symbol set for this sense is set to the universal set. Application of 
Rules 1-6, however, to the sense assignment 

Mary I had 2 aj party 2. 

allow this new sense party: to converge on the conceptual expression celebration, 
and also allow the existing sense had 2 to converge on the conceptual expression 
CONDUCT(x, y), yielding the following new and modified lexical entries: 

had 2 

party2 

D ={CONDUCT(x, y)}, C = 1 
D={celebration}, C= I 

The confidence factors of the sense symbols Mary~ and a~ are incremented as 
well. 

Processing (7) illustrates how the algorithm can learn new senses for words that 
are already in the lexicon. This is handled by Step 2c of the algorithm that will be 
described momentarily. In this case, the new senses correspond to legitimate 
homonymy. As the next example will show, this is not always the case. 

Now suppose that the algorithm receives the utterance 

(8) John had a ball at the party. 

in a context where John dances with lots of different women at the celebration. 
The algorithm might thus obtain the following three hypothesized meanings for 
this utterance: 

DANCE(John, WITH(Mary),  AT(celebration)) 
DANCE(John, WITH(Betty), AT(celebration)) 
DANCE(John, WITH(Susan), AT(celebration)) 
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This utterance contains three homonymous word symbols, had,  ball ,  and par ty ,  

each with two senses in the current lexicon. Thus, there are eight possible sense 
assignments. None of these, however, are consistent with the current lexicon and 
set of hypothesized utterance meanings. Here again, the algorithm tries to find the 
smallest set of word symbols from the current utterance for which it can add a new 
sense to each word symbol in that set to alleviate the inconsistency. In this case, 
there is no single word symbol for which the addition of a new sense would 
alleviate the inconsistency. It is possible, however, to alleviate the inconsistency 
by adding new senses for the two word symbols had  and par ty .  Initially, the 
necessary and possible conceptual-symbol sets for the new sense symbols h a d  3 

and par t y  3 are set to the empty set and universal set, respectively. Application of 
Rules 1-6, however, to the sense assignment 

John  I had  3 a I bal l  3 at  I the~ par t y  2. 

yields the following new lexical entries: 

h a d  3 

bal l  3 

N={DANCE, WITH}, P ={DANCE, WITH, Mary,  Betty, Susan} 
N={DANCE, WITH}, P={DANCE, WITH, Mary,  Betty, Susan} 

The confidence factors of the sense symbols JOhnl, at  t, the~, a~, and par t y  2 are 
incremented as well. 

Processing (8) illustrates how the algorithm can learn in the presence of noise. 
This is also handled by Step 2c of the algorithm that will be described 
momentarily. In this case, the new senses are spurious. They are postulated solely 
to account for a noisy utterance. It is unlikely, however, that the algorithm will 
receive sufficient further evidence to allow the sense symbols had  3 and bal l  3 to 
converge. They will ultimately be removed from the lexicon by a periodic pruning 
process. 

Now suppose that the algorithm receives the utterance 

(9) John  d a n c e d  with Susan  at  the par ty .  

in a context where John danced with Betty at the celebration. The algorithm would 
thus obtain the following hypothesized meaning for this utterance: 

DANCE(John, WITH(Betty), AT(celebration)) 

This utterance contains the homonymous word symbol par ty ,  as well as a new 
word symbol, danced ,  that is not currently in the lexicon. Because of the new word 
symbol, this utterance is, by definition, inconsistent. The algorithm must, at least, 
create the new sense danced~.  In this case, it turns out that creating just this one 
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new sense is sufficient to alleviate the inconsistency. Doing so leaves two possible 
sense assignments. Of these, only one is consistent. 

Johnj  danced I withj  Susan I atj the I par ty  2. 

The algorithm thus assumes that this sense assignment is the intended one and 
updates the lexical entries for the sense symbols in this sense assignment using 
Rules 1-6, yielding the following new and modified lexical entries: 

dancedj  

Susan j 

N = {}, P = {DANCE, Betty} 
N = {}, P :  {DANCE, Betty} 

The confidence factors of the sense symbols John~, a t j ,  the~, par ty  2, and with j are 
incremented as well. 

Processing (9) illustrates how the disambiguation strategies might incorrectly 
choose a word sense, might fail to notice the need to postulate a new word sense, 
or might fail to notice a noisy utterance. Such mistakes can corrupt a lexical entry 
such as the entry for the sense symbol Susan~. The next example will show how to 
recover from such corruption. Processing (9) also illustrates how the algorithm can 
begin learning new words like dance, even from a noisy utterance. 

Now suppose that the algorithm receives the utterance 

(10) John k issed Susan at the party.  

in a context where John kisses Susan at the celebration. The algorithm would thus 
obtain the following hypothesized meaning for this utterance: 

KISS(John, Susan, AT(celebration)) 

This utterance contains the homonymous word symbol party ,  as well as a new 
word symbol, kissed, that is not currently in the lexicon. Because of  the new word 
symbol, this utterance is, by definition, inconsistent. The algorithm must, at least, 
create the new sense kissed~. In this case, it turns out that creating just this one 
new sense is not sufficient to alleviate the inconsistency. Both of  the following 
possible sense assignments are still inconsistent: 

Johnj  k issed I Susan I at  I thej  par ty , .  

Johnj  k issed I Susanj  at I the I par ty  2. 

Thus, the algorithm must create additional new senses to alleviate the inconsis- 
tency. In this case, this can be done be creating a new sense symbol Susan z for the 
word symbol Susan. After doing so, the algorithm must then examine four possible 
sense assignments. Of these, only one is consistent. 
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John 1 kissed t Susan 2 at I the~ par~2.  

The algorithm thus assumes that this sense assignment is the intended one and 
updates the lexical entries for the sense symbols in this sense assignment using 
Rules 1-6, yielding the following new lexical entries: 

Susan 2 ] N={}, P={KISS, Susan} 
kissedl I N =  {}, P = {KISS, Susan} 

The confidence factors of the sense symbols .lohn~, ate, the j, and party 2 are 
incremented as well. 

Processing (10) illustrates how the algorithm can recover from a corrupt lexicon 
by creating a new sense Susan 2 to supersede a previously corrupted lexical entry 
Susan l. It is unlikely that corrupted lexical entries like Susan~ will progress far 
along the convergence path and thus they will ultimately be pruned. 

The strategy illustrated in the above series of examples can be stated more 
precisely as the following algorithm: 

The input to the algorithm consists of a sequence of utterances, each being an 
unordered collection w ~ ..... w,, of word symbols. Each utterance is paired with a 
set of conceptual expressions that represent hypothesized meanings of that 
utterance. The sense-symbol table L(w) initially maps each word symbol w to 
the empty set of sense symbols. Apply the following steps to each utterance as 
it is processed: 

1. Consider all unordered collections s~ ..... s,, of sense symbols in the cross 
product L ( w l ) × . . ' × L ( w , ) .  Each such unordered collection is taken to be a 
sense assignment. Apply Rules 1-6 to each sense assignment to determine 
which ones lead to inconsistencies. Save the lexical entries of s~ ..... s,, before 
applying Rules 1-6 and restore these saved lexical entries after the rule 
applications. 

2. One of the following three situations will now exist: 
2.1. Exactly one sense assignment in the cross product  is consistent. In this 

case, apply Rules 1-6 permanently to this sense assignment and proceed 
to the next utterance. 

2.2. More than one sense assignment  in the cross product  is consistent. In this 
case, choose the sense assignment that maximizes the selection metric 
C(s j ) + . . .  + C(s,,), apply Rules 1-6 permanently to this sense assignment, 
and proceed to the next utterance. 

2.3. No sense assignment  in the cross product  is consistent. In this case, find 
the smallest subset of word symbols in the current utterance such that if a 
new sense symbol would be added to the sense-symbol set for each word 
symbol in that subset, Step (1) would not lead to an inconsistency. Add a 
new sense symbol to each of the sense-symbol sets of the word symbols in 
that minimal subset and reprocess this utterance starting with Step (1). 
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This algorithm will not enter an infinite loop, since once control passes through 
Step (2c), it must pass through either Step (2a) or Step (2b) on the second pass. 

The above strategy makes use of a number of heuristics, among them, using 
consistency to approximate corruption, and the selection metric used to perform 
sense disambiguation. These heuristics are imperfect. At times, they let consistent 
but corrupt lexical entries pass unnoticed. It is unlikely, however, that such lexical 
entries would be used to explain an utterance, that is, to account for how one of 
the hypothesized meanings for that utterance is derived from the meanings of the 
words in that utterance. This leads to the following simple sense-pruning strategy: 
Every so often, discard sense symbols that have not been used to explain many 
utterances. This is implemented by means of the confidence factor. Roughly 
speaking, the confidence factor is the number of utterances that a given sense 
symbol has been used to explain. It is an approximate measure of the relative 
frequency of occurrence of a sense and is used both to govern the sense-pruning 
strategy as well as to compute the selection metric for word-sense disambiguation. 
Senses with sufficiently high confidence factors are immune from pruning and are 
said to be frozen.  A more precise definition of the pruning strategy and the method 
for determining confidence factors is included in Appendix A. 

Parts of this extended algorithm can be time-consuming to compute, particularly 
analyzing all sense assignments in a cross product or finding the minimal number 
of new senses to add. Thus, a time limit is enforced whereby an utterance is 
discarded if it takes too long to process. Like the earlier time limit on Rules 5 and 
6, this time limit is exceeded only on a small fraction of the utterances, usually the 
long ones. Again, it does not appear to adversely affect the convergence properties 
of the algorithm. 

8. Simulations 

An attempt was made to assess the efficacy of the learning algorithm presented 
here. Four studies were performed. 8 First, an attempt was made to determine how 
well the algorithm scales as the complexity of the learning task varied along five 
independent axes. This is important because there are many parameters of the 
learning task, such as the degree of referential uncertainty, the noise rate, the 
conceptual-symbol inventory size, and the homonymy rate, that depend on the 
form of mental representations about which we currently know very little. This 
first series of studies attempted to determine which of these parameters materially 
affect the efficacy of the learning algorithm and which do not. Second, the growth 
in size of the vocabulary attained by the algorithm was measured as a function of 
its exposure to a simulated training corpus. It is commonly believed that lexical 
acquisition in children starts off slowly, for the first 50 or so words, then proceeds 
at a rapid pace, and ultimately tapers off as the child attains fluency. This second 
series of simulations was performed to see if the algorithm exhibits the same 

The programs and data used in these studies are available from http://www.emba.uvm.edu/'qobi. 
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behavior. Third, the number of exposures to a new word that is required to learn 
that word was measured as a function of the amount of the corpus already 
processed at the time of the new word occurrence. Carey (1978) has observed that 
older children learn at least part of the meaning of many words from a single 
exposure. This third series of simulations was performed to see if the algorithm 
exhibits this same behavior. Finally, a fourth simulation was performed to 
determine whether the algorithm could solve a very large learning task whose 
complexity approaches the complexity of the task faced by children. Before 
presenting the results of each of these studies, I will first present the experimental 
method used to conduct the simulations. 

8. I. Method 

The algorithm presented here learns from utterances paired with hypothesized 
utterance meanings, but there are no corpora of naturally-occurring utterances 
paired with such meaning representations. As a consequence, the algorithm has 
been tested on synthetic corpora generated randomly according to controllable 
distributional parameters. The simulations were conducted according to the 
following general strategy. For each simulation, a random lexicon was constructed 
that maps simulated words to simulated meanings. This original lexicon was then 
fed into a process that generates a potentially unlimited stream of random 
utterances paired with sets of meaning hypotheses. The lexical-acquisition 
algorithm was then applied in an on-line fashion to this stream to produce a 
reconstructed lexicon without benefit of access to the original lexicon. During the 
simulation, however, the reconstructed lexicon was continually compared with the 
original lexicon by a mechanism distinct from the acquisition algorithm. Each 
simulation was terminated when the reconstructed lexicon contained a target 
fraction of the correct word-to-meaning mappings from the original lexicon. A 
target convergence goal of 95% was used for all of the simulations reported in this 
paper. The reason that the simulations were terminated prior to achieving total 
convergence is that, as will be discussed shortly, a lexical-choice rule based on 
Zipf's Law was used to generate the stream of random utterances. Because Zipf's 
Law implies that many words occur very infrequently, convergence on the last 5% 
of the lexicon proceeds very slowly. Computer resource limitations prevented 
running the simulations with a higher convergence goal. 

The following procedure was used to generate the lexicon for each simulation. 
This procedure was driven by three independent parameters: the vocabulary size, 
the homonymy rate, and the conceptual-symbol inventory size. Given a vocabulary 
size of n and a homonymy rate of r, the generated lexicon would map n words to 
rn senses. The "words" in this lexicon were simply the symbols w~ ..... w n. Given 
a conceptual-symbol inventory size of m, the "meanings" of the senses in this 
lexicon were represented with randomly-constructed conceptual expressions over 
the conceptual symbols f] ..... fro" A uniform distribution was used to select the 
conceptual symbols when constructing the random conceptual expressions. The 
meanings of 47.5% of the senses were represented with variable-free conceptual 
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expressions. These had a maximal depth of 2 and a maximal branching factor of 3 
and were intended to model noun-like meanings. A typical conceptual expression 
of maximal depth 2 and maximal branching factor 3 used to model a noun-like 
meaning would look likefj (f6, f2 (f4, f3), f2 (fT, fs)). The conceptual expressions 
used to represent the meanings of another 47.5% of the senses contained from 1 to 
3 variables to denote open argument positions. These were intended to model 
verb-like meanings and had the same maximal depth and branching factor. A 
typical 2-variable conceptual expression of maximal depth 2 and maximal 
branching factor 3 used to model a verb-like sense would look like f5 (x, f9 (x, y, 
fJ0)). A uniform distribution was used to control the choice of depth and branching 
factor when constructing the random conceptual expressions. 9 The meaning 
representations of the final 5% of the senses were taken to be 3_ to model function 
words. All of these senses were distributed uniformly among the words. Some 
words contained only a single sense while others contained several. A given word 
could have a mixture of senses with noun-like, verb-like, and function-word-like 
meanings. 

Given a lexicon, random utterance-meaning pairs were constructed by applying 
the following grammar in a top-down fashion, starting with category S: 

S --~XP 
XP --~ NP]VP 

NP---~ {F}N 

VP ~ {F}V XP + 

In other words, each utterance is a phrase, a phrase is either a noun phrase or a 
verb phrase, a noun phrase consists of a noun and an optional function word, and a 
verb phrase consists of a verb, an optional function word, and a complement 
phrase to fill each argument position. Since the word order of each utterance was 
randomized before being presented to the acquisition algorithm, the order of the 
categories in the right-hand sides of the above rules is unimportant. Furthermore, 
single-word utterances, utterances that contained more than 30 words, and 
utterances paired with meaning expressions that contained more than 30 con- 
ceptual symbols were discarded. 

When generating random utterance-meaning pairs, all rules in the above 
grammar were taken to be equiprobable. The terminal categories N, V, and F were 
filled randomly with noun-like, verb-like, and function-word-like entries from the 
lexicon, respectively. The number of XP complements associated with each V node 
was chosen to match the number of arguments required by the meaning of the 
verb-like lexical entry selected to fill that V node. The entries used to fill the 

Since we know very little about the actual shape and size of human conceptual representations, it is 
not possible to justify the choice of maximum depth or branching factor made here. The maximal depth 
of 2 and maximal branching factor of 3 were chosen simply to allow the use of representations like 
AND(round, COLOR(surface, RED), COLOR(inside, WHITE)) and CAUSE(x, GO(x, y, rollingly)) 
for words like apple and roll, respectively. Representations of similar complexity have been proposed 
by many authors including Leech (1969), Miller (1972), Schank (1973), Jackendoff (1983, 1990), 
Borchardt (1985), and Pinker (1989). 
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terminal categories were selected using a distribution based on Zipf's Law. Under 
Zipf's Law, the occurrence frequency of a word is inversely proportional to its 
rank. Zipf (1949) argues that such a relationship fits empirical word-frequency 
measurements. A lexical-choice rule based on Zipf's Law should make learning 
word-to-meaning mappings difficult since many words will occur very infrequent- 
ly. 

The above procedure pairs each utterance with its correct meaning representa- 
tion. The following extended procedure was used to generate utterances paired 
with sets of hypothesized meaning representations to model referential uncertainty. 
This extended procedure was driven by four independent parameters: the noise 
rate, the degree of referential uncertainty, the cluster size, and the similarity 
probability. The noise rate p specified the probability of generating a noisy 
utterance. The degree of referential uncertainty 1 specified the number of meaning 
hypotheses paired with each utterance. Noisy utterances were paired with l 
semantic representations corresponding to l other randomly-generated utterances. 
Non-noisy utterances were paired with their correct semantic representation, along 
with the semantic representations of l -  1 other randomly-generated utterances. 

It is unlikely that the meaning hypotheses that children formulate for utterances 
are distributed uniformly in semantic space. They are likely to be divided into 
clusters, where each cluster differs significantly in meaning from each other 
cluster, but where the hypotheses in each cluster are relatively similar. To model 
this possibility, the following procedure was used to generate the alternate 
meaning hypotheses associated with each utterance. A cluster size of k specified 
that the l hypotheses associated with each utterance were grouped into l/k clusters, 
each containing k hypotheses. Given a similarity probability q, each cluster was 
generated in the following fashion. First, an initial seed semantic representation 
was generated randomly by the aforementioned grammar. Then, additional 
semantic representations were generated using the same parse tree, but where 
lexical entries at the leaf nodes in the parse tree were randomly replaced, with 
probability 1 - q ,  with alternate lexical entries. Noun-like entries were used to 
replace noun-like entries and verb-like entries were used to replace verb-like 
entries that shared the same number of unfilled argument positions. When 
generating a noisy utterance, the l hypotheses were associated with a randomly- 
generated utterance. When generating a non-noisy utterance, the l hypotheses were 
associated with the utterance used to generate one of the seed semantic representa- 
tions for one of the clusters. Thus, non-noisy utterances were associated with a 
correct meaning hypothesis, a cluster of near misses, and several clusters of 
incorrect hypotheses, while noisy utterances were associated only with clusters of 
incorrect hypotheses. A cluster size of 5 and a similarity probability of 0.75 was 
used for all of the simulations reported in this paper. 

8.2. Sensitivity analysis 

A number of simulations were performed to determine the sensitivity of the 
algorithm to the various corpus-construction parameters. For these simulations, a 
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baseline run was performed with the following parameters: a vocabulary size of 
1000 words, a degree of referential uncertainty of 10, a noise-rate of 0%, a 
conceptual-symbol inventory size of 250, and a homonymy rate of 1.0 (no 
homonymy). Then, three additional runs were performed for each of the five 
parameters, varying that parameter independently while keeping the remaining 
parameters at their baseline values. The varying corpus-construction parameters 
for the different simulation runs are summarized in the following table: 

Parameter Baseline 

Vocabulary size 1000 2500 5000 10,000 
Degree of referential uncertainty 10 25 50 100 
Noise rate 0% 5% 10% 20% 
Conceptual-symbol inventory size 250 500 1000 2000 
Homonymy rate 1.00 1.25 1.50 2.00 

For each simulation, the number of utterances needed to achieve the target 95% 
convergence goal was measured. The results of these simulations are summarized 
in Figs. 2-6. The algorithm appears to scale linearly in the vocabulary size and 

200,'000 , , , , , , , , 

150,000 j 

o 100,000 

50,000 

I I I I I I I I 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 
vocabulary size (in words) 

Fig. 2. Corpus size needed for 95,% convergence as a function of the vocabulary size. 
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Fig. 3. Corpus size needed for 95% convergence as a function of the degree of referential uncertainty. 

appears to be insensitive to the degree of referential uncertainty and the 
conceptual-symbol inventory size. The problem grows more difficult with increas- 
ing noise and homonymy. 

The length of utterances processed during each of these simulations ranged from 
2 to 29 words. The mean utterance length (MLU) varied from simulation run to 
simulation run and ranged from 4.99 to 6.29. Since all of these simulations were 
performed with a convergence goal of 95%, each of the reconstructed lexicons was 
missing 5% of the word-to-meaning mappings contained in the corresponding 
original lexicon. These constitute false negatives. In the absence of noise or 
homonymy, the reconstructed lexicon never contained false positives, that is, 
word-to-meaning mappings not contained in the original lexicon. The number of 
false positives produced in the presence of noise or homonymy is summarized by 
the following table: 

Noise rate 0% 5% 10% 20 
False positives 0 9 32 49 

Homonymy rate 1.00 1.25 1.50 2.00 
False positives 0 11 10 20 
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Fig. 4. Corpus size needed for 95% convergence as a function of the noise rate. 

25 

8.3. Vocabulary growth 

Fig. 7 shows the vocabulary growth as a function of  the number of  utterances 
processed during the baseline run. Since convergence on actual conceptual-symbol 
sets was very nearly identical to convergence on conceptual expressions, only the 
latter is plotted. Furthermore, since the baseline run did not contain any noise or 
homonymy,  no spurious senses were hypothesized. Thus, the sense convergence 
rate was identical to the word convergence rate and only the latter is plotted. Note 
that the simulation exhibits behavior similar to children. The learning rate is slow 
for the first 25 words or so, then proceeds rapidly, and ultimately tapers off as the 
algorithm nears convergence. 

8.4. Learning rate 

Fig. 8 .shows the number of  occurrences needed to learn a word meaning 
(measured as convergence on conceptual expression) as a function of  the number 
of  utterances that have been processed so far. Each data point in this scatter plot 
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Fig. 5. Corpus size needed for 95% convergence as a function of the conceptual-symbol inventory size. 

depicts the number of occurrences of a single word that are needed for 
convergence as a function of the number of utterances that have already been 
heard when the first occurrence of that word is heard. As expected, the average 
number of occurrences needed for convergence on a new word decreases with 
corpus exposure. In fact, after about 4000 utterances, most words are acquired 
after being exposed to only one or two occurrences. This concords with the 
observation made by Carey (1978) that older children learn at least part of the 
meaning of many words from a single exposure. 

8.5. Stressing all parameters simultaneously 

Each of the above simulations independently stresses a single corpus-construc- 
tion parameter. One additional simulation was performed to simultaneously stress 
the three sensitive parameters, namely vocabulary size, noise rate, and homonymy 
rate. For this simulation, the baseline parameter values were used for the degree of 
referential uncertainty and the conceptual-symbol inventory size, while the 
vocabulary size was set to 10,000, the noise rate was set to 5%, and the 
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Fig. 6. Corpus size needed for 95% convergence as a function of the homonymy rate. 

homonymy rate was set to 1.68. For these corpus-construction parameters, after 
processing 1,440,945 utterances, the algorithm had correctly converged on 13,560 
(80.7%) of the 16,800 senses, producing only 2052 (12.2%) false positives and 
leaving only 3240 (19.2%) false negatives) ° Computer resource limitations 
precluded running this simulation to 95% convergence. 

No claim is intended that these simulations reflect all of the complexities that 
children face when learning their native language. First of all, it is unclear how to 
select appropriate values for some of the corpus-construction parameters such as 
noise rate, homonymy rate, and degree of referential uncertainty. In the final 
simulation, the noise rate of 5% and the value of 10 for the degree of referential 
uncertainty were chosen arbitrarily, purely to test the acquisition algorithm. Our 
current impoverished level of understanding of how conceptual representations are 
constructed from perceptual input, either by adults or by infants, makes it difficult 
to select a more motivated noise rate or degree of referential uncertainty. It is also 
difficult to accurately assess the homonymy rate in a given language, as that 

~o This simulation differed from all of the other simulations reported in this paper in that the lexicon 
was constrained to contain at most one non-frozen sense for each word at a given time. This modified 
strategy was used for this large simulation as it appears to converge more quickly. Computer resource 
limitations precluded rerunning all of the remaining simulations with this new strategy. 
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depends on how one decides when two senses differ. The homonymy rate of  1.68 
senses per word was chosen for the final simulation since the WoRDNET database 
(Beckwith et al., 1991) exhibits a homonymy rate of  1.68. 

9. General discussion 

9.1. Cross-situational learning 

The intuitive notion of  cross-situational learning has been around for a long 
time. Many authors (e.g., Pinker, 1989; Fisher et al., 1994) either implicit ly or 
explicit ly propose a learning strategy of  finding word meanings that are consistent 
across multiple situations. Roughly speaking, this strategy can be stated as follows: 
Find a set of  possible, meanings in each situation and intersect those sets across all 
situations in which a word occurs to determine the meaning for that word. But the 
intuitive notion is underspecified. Not only does it ignore problems of  referential 
uncertainty, noise, and homonymy,  it leaves a more basic question unanswered: 
What  are the entities to be intersected? As this paper shows, the cross-situational 
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strategy can be applied to at least two different kinds of  entities: conceptual- 
symbol sets, as is done by Rule 2, and conceptual-expression sets, as is done by 
Rule 5. Both of  these forms of  inference can be useful for a learner. But the 
comprehensive learning strategy described in this paper includes more than these 
two rules. Rules 3, 4, and 6 allow an additional form of inference. Using principles 
of exclusivity, partial knowledge about the meanings of  s o m e  words in an 
utterance can be used to infer knowledge about the meanings of  other words in 
that utterance. The strategy presented here, like that of  Tishby and Gorin (1994), 
incorporates such inference mechanisms. 

9.2. Cognit ive plausibi l i ty  

In order for the algorithm presented here to be a plausible model of  lexical 
acquisition in children, one must show that the information needed by the 
algorithm is available to children and the information inferred by children is 
produced by the algorithm. Much of  the information, however, is in the form of  
mental representations, about which we currently can say very little. Thus, we 
cannot reasonably compare the lexicon attained by children with the lexicon 
produced by the algorithm presented here, nor can we realistically assess whether 
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the assumptions made about the nature of conceptual structure are plausible. 
Nonetheless, the linguistic data used for lexical acquisition are, in fact, observable. 
One can ask whether the quantity and length of utterances used by the algorithm to 
learn a given-sized lexicon are compatible with what is known about the linguistic 
input to children. In order for the algorithm to be a plausible model of lexical 
acquisition in children, it must operate on utterances that are no simpler than those 
available to children and must require the same or fewer utterances for conver- 
gence. 

Numerous researchers have measured the mean utterance length (MLU) of 
speech to children and the quantity of speech heard by children per unit time. (See, 
for example, Schachter et al., 1976, Snow, 1977, Kaye, 1980, Moerk, 1983, and 
Wells, 1986.) Furthermore, Bernstein-Ratner (personal communication) provided 
me with an unpublished analysis of her corpus in the CHILDES database 
(MacWhinney and Snow, 1985). These studies measured mostly short sample 
periods. Table 1 normalizes these results to utterances per hour. 

Children attain basic fluency by age three Carey (1978) reports that children 
learn approximately 10 words per day during that period. This corresponds to a 
lexicon of approximately 10,000 words, acquired in approximately 1000 days. If 
we conservatively take a child's waking day to consist of 10 hours, the data in 
Table 1 imply that children learn 10,000 words by hearing between 800,000 and 
12,600,000 utterances, assuming that throughout this period children hear utter- 
ances at this average rate. Thus,the input needs of the algorithm presented here, as 
illustrated by Figs. 2-6, and the final large simulation, appear to be within the data 
available to children when acquiring a similar-sized lexicon. Furthermore, the 
MLU and range of utterance lengths on which the algorithm has been tested 
indicate that these utterances are of approximately the same complexity as those 
heard by children. 

9.3. Worst-case assumptions 

Our current level of understanding of the internal workings of the various 
faculties is very limited. We have only weak hypotheses as to what form 

Table 1 
Various measurements of the quantity of speech to children normalized to utterances per hour 

Source Minimum Average Maximum 

Schachter et al. (1976) Toddlers 239 
3-year-olds 245 
4-year-olds 219 

Snow (1977) 
Kaye (1980) 

Moerk (1983) 
Wells (1986) 
Bernstein-Ratner (pers. comm.) 

504 1197 
Infants 1260 
2-year-olds 870 

283 
80 800 

1089 
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conceptual structure takes, what the conceptual-symbol inventory is, what the size 
of that inventory is, what the size and shape of conceptual expressions might be, 
and what mechanisms are used to compose word-level conceptual representations 
to form utterance-level conceptual representations. Similarly, we have no way to 
estimate the degree of referential uncertainty, the noise rate, or the homonymy rate 
faced by children, as these are properties of internal representations to which we 
have no access at the present time. Furthermore, we have only rudimentary 
evidence of the kinds of information that children use when acquiring language, 
including, inter alia, the degree to which they employ syntactic constraints, 
principles of exclusivity, part/whole distinctions, and distinctions between basic- 
level and sub- or super-ordinate categories to determine word-to-meaning map- 
pings. This paper suggests that acquisition of word-to-meaning mappings might be 
possible despite weak, worst-case assumptions along several fronts: 

• Acquisition of word-to-meaning mappings might be possible with a modular 
language faculty that is separated into speech perception, perceptual/con- 
ceptual, and lexical-acquisition components, with information flowing uni- 
directionally from the former two to the latter, without any feedback in the 
learning process. 

• Acquisition of word-to-meaning mappings might be possible without using the 
phonological content of word symbols or the semantic content of conceptual 
symbols, solely by a process of learning the mapping between two internal 
mental representations, without reference to properties of those representations 
other than co-occurrence. 

• Acquisition of word-to-meaning mappings might be possible without using 
knowledge of syntax, word order, or well-formedness constraints on conceptual 
expressions. 

• Acquisition of word-to-meaning mappings might be possible without requiring 
high co-occurrence correlation between words and their contingencies of use. 

• Acquisition of word-to-meaning mappings might be possible without using any 
information about the semantic-interpretation rule except for two relatively 
weak properties of compositionality. 

9.4. L imi ta t ions  

The abstract model of language acquisition adopted in this paper makes a 
number of assumptions that might not be worst case. First, the model assumes that, 
with sufficient regularity, children can include the correct utterance meaning 
among the set of referentially uncertain meaning hypotheses. This might not be 
possible for abstract terms. In the model presented here, utterances that contain 
such terms are likely to be more noisy than utterances that do not. Since the 
simulations presented assume a uniform distribution of noise, and do not model 
differential noise rates based on the classes of words contained in an utterance, 
they might make optimistic assumptions about the noise rate for utterances that 
contain abstract terms. Second, the model assumes that homonymy can be 
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modeled by pairing words with small sets of distinct unrelated semantic repre- 
sentations. The acquisition algorithm learns each distinct word sense independent- 
ly. Human languages, however, exhibit polysemy in addition to homonymy. In 
other words, words can have multiple distinct senses where each sense is, in turn, a 
cluster of multiple related subsenses. Treating such polysemy as homonymy would 
suffer from two problems: (a) the homonymy rate would be too large for the 
current algorithm to handle and (b) the current algorithm would not use knowledge 
of one subsense to guide the acquisition of a related subsense. Third, while the 
model can learn in the presence of idioms and metaphorical meaning, treating such 
utterances as noise, it cannot learn the meanings of idioms and metaphors 
themselves. Since a large portion of language use is idiomatic or metaphorical 
(Lakoff and Johnson, 1980; Lakoff, 1987), some method must be devised for 
learning the meanings of such expressions. Fourth, the model assumes a simple 
linking rule that treats compositional semantics purely as argument substitution. 
The inference rules used by the algorithm, in their strict form, are sound only with 
this linking rule. Adopting a more complex and realistic linking rule would require 
a reformulation of the inference rules. Finally, the inference rules assume a strict 
correspondence between the semantic content of an utterance and the meaning 
hypothesized for that utterance. Sententiai utterances must be paired with 
sentential meaning hypotheses while phrasal utterance fragments must be paired 
with fragmentary meaning hypotheses. Since much language use is fragmentary, 
some method must be devised for associating a fragmentary utterance with only a 
portion of a hypothesized semantic representation. Because of these limitations, 
the precise algorithm as presented in this paper cannot be a full account of lexical 
acquisition in children. The hope is, however, that it can be the basis for additional 
research to find ways of addressing these limitations. 

9.5. Relation to syntactic and semantic bootstrapping 

When learning their native language, children must acquire all of the knowledge 
that is specific to that language. This includes, inter alia, components of both its 
syntax and its lexicon. It is conceivable that children use information about one to 
help acquire the other. This raises a central question: Does the acquisition strategy 
used by children rely on a particular ordering and flow of information ? There is a 
range of possibilities with three distinct extremes: 

• The process of syntactic acquisition relies on prior lexical knowledge obtained 
without the use of syntactic knowledge. 

• The process of lexical acquisition relies on prior syntactic knowledge obtained 
without the use of lexical knowledge. 

• The processes of syntactic and lexical acquisition are interleaved, each using 
partial information provided by the other. 

The first alternative has been proposed by Grimshaw (1979, 1981) and Pinker 
(1984, 1989), among others, and has become known as the "semantic bootstrap- 
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ping hypothesis." The second alternative has been proposed by Gleitman (1990) 
and Fisher et al. (1994), among others, and has become known as the "syntactic 
bootstrapping hypothesis." In prior work (Siskind, 1990, 1991, 1992), I discussed 
how the third alternative, interleaving the processes of syntactic and lexical 
acquisition, can allow a learner to acquire language faster than either the semantic 
or syntactic bootstrapping approaches. Using an interleaved strategy, the learner 
can acquire a given amount of information with less input data than a more 
sequential strategy would require. The particular interleaved strategies explored in 
this prior work, however, were computationally intensive. They could not scale to 
process the amount of input available to children and produce a lexicon of the size 
learned by children. Thus, in more recent work (Siskind, 1993a,b), I have adopted 
a sequential approach that is more aligned with the semantic bootstrapping 
hypothesis. This is the approach taken in this paper. To date, only this sequential 
approach has been shown to scale to larger problems. More research needs to be 
done to determine whether the other alternatives can be made to scale as well. 

I0. Conclusion 

In this paper, I have presented a precise, implemented algorithm for solving an 
approximation of the lexical-acquisition task faced by children. Unlike prior 
theories of lexical acquisition, the fact that this theory has a precise formulation 
allows it to be tested and its efficacy to be measured. The algorithm makes 
reasonable assumptions about the length and quantity of utterances needed to 
successfully acquire a lexicon of word-to-meaning mappings. Furthermore, it 
addresses five central problems in lexical acquisition that were previously 
considered difficult: (a) learning from multi-word input, (b) disambiguating 
referential uncertainty, (c) bootstrapping without prior knowledge that is specific to 
the language being learned, (d) noisy input, and (e) homonymy. 

Until we can gain a better understanding of the size and contents of the 
conceptual-symbol inventory, the size and shape of conceptual expressions, the 
semantic-interpretation rule used to compose word meanings to form utterance 
meanings, and the perceptual/conceptual processes used to hypothesize utterance 
meanings from observational input, it will not be possible to get realistic estimates 
of the remaining parameters of the input to lexical acquisition, namely, the degree 
of referential uncertainty, the noise rate, and the homonymy rate. Thus, serious 
understanding of conceptual representation, and how it is grounded in perception, 
lies on the critical path to understanding language acquisition. This realization has 
motivated my own research (Siskind, 1992, 1995), as well as that of others such as 
Feldman et al. (1990), Suppes et al. (1991), and Torrance (1994), to study 
language acquisition computationaUy in the context of perception and action, and 
to focus on the requisite conceptual representations involved. Such a holistic 
computational approach should lead to a better understanding of the language 
acquisition process. 
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Appendix A 

In the following description, S denotes a set of sense symbols, one for each 
word symbol in an utterance, M denotes the set of conceptual expressions that 
represent hypothesized meanings of that utterance, F(m) denotes the set of all 
conceptual symbols that appear in the conceptual expression m, and F~ (m) denotes 
the set of all conceptual symbols that appear only once in m. Both F(_L) and 
F j (Z )  yield the empty set. 

Rule 1 

M+--{m E M I U N(s)C F(m) ^ F(m)C U P(s)} 
s E S  s ~ S  

Rule 2 

fo~ s E S do P(s)~---P(s) n U F(m)do 
m E M  
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Rule 3 
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for s E SdoN(s)~---N(s)U [ (  n F(m)~\ U P(s')]do 
L \ m E M  / s'ES,.',"~:~ J 

Rule 4 

fo r s  E SdoP(s )~- -P(s ) \ [ (m~MF,(m))n ,esUN(s ' ) ]do  

Rule 5 

for s E S  
do if N(s) = P(s) 
then D(s)e-D(s) n 

Rule 6 

U 
m E M  

RECONSTRUCT(m, N(s)) fi od 

if (Vs ES)N(s) = P(s) 
then for s E S 

do if  (Vs'ES)[s '~s--->D(s')~l] 
then D(s)~-{tED(s) I 

,(qtl e D(sl))"" (3t. e D(s.)) 
{,,,~,..:,,}=s 

(3mEM)mECoMPOSE({t,t I ..... t,,})} fi od fi 

Procedure for incrementing the confidence factors 

If  all of  the sense symbols that have been selected for all of  the word symbols in 
the utterance have converged on a conceptual expression, then increment the 
confidence factor of  those sense symbols that mean _L, if all of  the sense symbols 
that do not mean _L are frozen, and likewise increment the confidence factor of  
those sense symbols that do not mean _L, if all of  the sense symbols that do mean 
_1_ are frozen. 

if  (Vs~S) [D(s)[ = 1 

then for s E S 
do if  [D(s)={±} ^ (Vs ES)(D(s)~{±}-->C(s)>--tx)]v 

[D(s)¢{_l_} ^ (Vs E S)(D(s)={_L}--->C(s)>--ix)] 
then C(s)~C(s) + 1 fi od fi 

The integer constant/z denotes a freezing point. A sense symbol s is frozen if it 
has converged on a conceptual expression and C(s)>--! x. Discard senses, unless 
they are frozen, after processing every k utterances. For the simulations in this 
paper, /x = 2 and k = 500. 
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