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The science of linguistics has fully as many facets
and fields as biology, and like biology, what may
be called its ‘modern era’ can be traced to the
1950s1. The decade that unveiled the structure of
DNA also witnessed a revolution in linguistics

led by Noam Chomsky, whose work radically diversified
the field beyond its then-current focus on simply
cataloguing the actual utterances of a language, to
exploring the mechanisms by which they are produced.
Seeking to identify the universals at the core of all
languages, he posited a new, generative form of grammar,
or set of syntactic rules, that would help to account for the
immense creativity in the production of language that
emerges so rapidly as individuals develop2.

In pursuit of his ‘universal grammar’, Chomsky created
waves that washed up on many scientific shores. Besides his
profound influence on theoretical linguistics, his mathemati-
cal approach to the description of languages prompted a burst
of development in formal language theory. This produced
methods with widespread utility in computer science, from the
specification and interpretation of computer languages to the
fields of syntactic pattern recognition, natural language pro-
cessing and speech understanding3. The Chomsky hierarchy of
language classes has proven especially durable as a means of
stratifying formal languages according to their expressive
power and resulting computational and mathematical 
complexity (Box 1). Chomsky’s influence has also extended to
cognitive science, analytic philosophy and even literary 
criticism. The common experience in a number of fields is that
it is not only analytic techniques derived from linguistics, but
also what might be called a linguistic sensibility, that can 
illuminate and inform other similarly complex domains.

Mathematical linguistics and macromolecules
In the 1980s, several workers began to follow various threads
of Chomsky’s legacy in applying linguistic methods to 
molecular biology. Early results included the fundamental
observation that formal representations could be applied to
biological sequences4 — the extension of linguistic 
formalisms in new, biologically inspired directions5 — and
the demonstration of the utility of grammars in capturing
not only informational but also structural aspects of macro-
molecules6.

Nucleic acid linguistics
From this work there followed a series of mathematical results
concerning the linguistics of nucleic acid structure7–9. These
results derive from the fact that a folded RNA secondary 

structure entails pairing between nucleotide bases that are at a
distance from each other in the primary sequence, establish-
ing relationships that in linguistics are called dependencies.
The most basic secondary-structure element is the stem-loop,
in which the stem creates a succession of nested dependencies
that can be captured in idealized form by the following 
context-free base-pairing grammar7 (Box 1):

S →gSc S →cSg S →aSu S →uSa S →;

(The ; in the last rule indicates that an S is simply erased.)
This grammar affords any and every derivation of ‘hairpin’
sequences of a form such as the following: 

S ⇒ gSc ⇒ gaSuc ⇒ gauSauc ⇒ …
… ⇒ gaucgaSucgauc ⇒ gaucgaucgauc

Derivations from this grammar grow outward from the
central S, creating the nested dependencies of the stem 
(Fig. 1a), analogous to such phenomena as nested relative
clauses in natural language (for example, “The gene that the
scientist whom our grant supported discovered encoded a
kinase”). In a realistic stem-loop, the derivation would ter-
minate in an unpaired loop of at least several bases and might
also contain, for example, non-Watson–Crick base pairs and
‘bulges’. But such features are easily added to the grammar
without affecting the fundamental result that any language
consisting of RNA sequences that fold into these basic 
structures requires context-free expression10.

In addition to stem-loop structures, arbitrarily branched
folded structures may be captured by simply adding to the
grammar above a rule S→SS, whose application creates
bifurcations in the derivation tree7 (Fig. 1b). The base-
pairing dependencies remain non-crossing, although more
complicated. The resulting grammar is formally ambiguous,
meaning that there are guaranteed to be sequences in the 
language for which more than one derivation tree is possi-
ble10. Thus, the string gaucgaucgauc can be derived as a single
hairpin or as a branched structure (Fig. 1a, b). This linguistic
property of ambiguity, reflected in natural languages in 
sentences that can be syntactically parsed in more than one
way (for example, “She saw the man with the telescope”),
directly models the biological phenomenon of alternative
secondary structure7. Although these models are only
abstractions of a thermodynamically determined process,
ambiguity allows them to embody the ensemble of potential
secondary structures, and more specific grammars can 
specify particular forms, such as transfer RNA cloverleafs9.
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Finding that the language of RNA is at least context-free has 
mathematical and computational consequences, for example, for the
nature and inherent performance bounds of any algorithm dealing
with secondary structure (Box 1). For instance, the fast, regular-
expression search tools used commonly in bioinformatics (such as
those in the popular Perl scripting language) are ruled out, as in 
their standard form they specify only regular languages. These 
consequences show the importance of characterizing linguistic
domains in the common terminology and methodology of formal
language theory, so as to connect them immediately to the wealth of
tools and understanding already available. For this reason, recent
bioinformatics textbooks have devoted whole chapters to the 
relationship of biological sequences to the Chomsky hierarchy11,12.

In light of these practical consequences of linguistic complexity, a
significant finding is that there exist phenomena in RNA that in fact
raise the language even beyond context-free. The most obvious of

these are so-called non-orthodox secondary structures such as
pseudoknots, which are pairs of stem-loop elements in which part of
one stem resides within the loop of the other (Fig. 1c). This configu-
ration induces cross-serial dependencies in the resulting base 
pairings, requiring context-sensitive expression (Box 1). Predictably,
given this further promotion in the Chomsky hierarchy, the need to
encompass pseudoknots within secondary-structure recognition
and prediction programs has significantly complicated algorithm
design13. Another non-context-free phenomenon that occurs in
RNA is a consequence of alternative secondary structure, such as that
seen in bacterial attenuators, which are regulatory elements that
depend on switching between conformations in nascent mRNA 
molecules. For any grammar required to simultaneously represent
both conformations, these mutually exclusive options create 
overlapping (and thus cross-serial) dependencies in the alternate
base-pairing schemes7 (Fig. 1d).

Formal language theory defines languages to be nothing more than
sets of strings of symbols drawn from some alphabet. A grammar is a
rule-based approach to specifying a language, consisting of a set of
rewriting rules that take forms such as A→xB. Here, upper-case
letters denote temporary or nonterminal symbols, which do not occur
in the alphabet, whereas lower-case letters are terminal symbols that
do. The example rule specifies that any occurrence of the nonterminal
A may be replaced by an x followed by a B.

Beginning with a starting nonterminal S, a derivation from a
grammar consists of a series of rewriting steps that ends when the
last nonterminal is eliminated. Consider the simple grammar with an
alphabet x and y, and containing the rules S→xS and S→y. This
grammar generates all strings beginning with any number of x’s and
ending in a single y. It produces derivations such as
S⇒ xS⇒ xxS⇒ xxxS⇒ xxxy, where each double arrow signifies the
application of a single-arrow rule. In this case there are three
applications of the first rule followed by a single application of the
second to produce a terminal string, one of the infinite number of
such strings in this language.

Any grammar whose rules rewrite a nonterminal as a terminal
followed by at most one nonterminal is called regular, and is said to
generate a regular language. An equivalent means of generating such
languages is a finite-state automaton (FSA), a notional machine used
to reason about computation, built out of states (circles; see figure
opposite) which are interconnected by transitions (arrows) that emit
symbols from the alphabet as they are traversed.

Grammars that allow any arrangement of terminals and
nonterminals on the right-hand sides of rules have greater expressive
power. They are called context-free grammars, and can generate not
only all regular languages, but also non-regular languages such as
strings of x’s followed by the same number of y’s (for example,
xxxxyyyy). Such languages cannot be specified by a regular grammar
or FSA because these devices have no mechanism for
‘remembering’ how many x’s were generated when the time comes
to derive the y’s. This shortcoming is remedied by means of context-
free rules such as S→xSy, which always generate an x and a y at the
same time. Alternatively, an automaton augmented with a push-down
store, a memory device that pushes or pops symbols to or from a
stack during transitions, also provides such a counting capability. In
either case, context-free languages allow strings that embody
dependencies between terminals, such as the relationship matching
x’s and y’s in the example, provided that those dependencies can be
drawn as nested, either strictly within or independent of each other,
but never crossing.

Even context-free grammars are inadequate for some languages,
for instance strings of consecutive x’s, y’s and z’s in equal number (for

example, xxxyyyzzz). This entails dependencies that necessarily cross
one another, called cross-serial dependencies, and to capture these
with a grammar requires rules that have additional symbols on their
left-hand side (though never more than on their right-hand side). Such
context-sensitive rules correspond to automata with a more
sophisticated memory device, a tape whose length is bounded in a
certain way, upon which the machine can read and write symbols.
Context-sensitive languages include all context-free languages and
many more, yet theoretically there exist languages outside even this
set, called recursively enumerable languages, generated by
grammars of completely unrestricted form or by machines with
unbounded tapes best known as Turing machines.

In the figure above, the language classes in the left column
contain exactly those languages that can be generated by the
automata and grammar types indicated in the next two columns.
Each level contains all of those below it. The right-hand column
illustrates the computational complexity, in the general case, of
recognizing whether a string belongs in a given language, showing
how the time required grows as a function of the length of the input
string. At the highest level of the hierarchy, one is not even
guaranteed to be able to arrive at an answer by computational
means. This is just one indication of the trade-off between the
increase in expressive power afforded by ascending the Chomsky
hierarchy, and the mathematical and algorithmic limitations that
invariably result24.

Box 1
The Chomsky hierarchy and formal language theory
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Using formalisms called tree-adjoining grammars and their 
variants14, which are considered to be mildly context-sensitive and 
relatively tractable, it is possible to encompass a wide range of RNA 
secondary structures15. Additionally, new types of grammars have been
invented to deal with such biological examples16,17. Natural languages
seem to be beyond context-free as well, based on linguistic phenomena
entailing cross-serial dependencies18, although in both domains such
phenomena seem to be less common than nested dependencies. Thus,
by one measure at least, nucleic acids may be said to be at about the
same level of linguistic complexity as natural human languages.

Protein linguistics
There has been less activity in modelling proteins with linguistic
methods, perhaps because they are viewed as having a richer basic
repertoire of interactions and conformations than nucleic acids, and
perhaps also more of a sense of emergent properties. Yet grammars
can be extraordinarily detailed and nuanced (while remaining 
manageable because of their inherently modular and hierarchical
design), and moreover need not capture every aspect of a structure to
be useful. In fact, the comprehensiveness and proper role of gram-
mars remains as much an issue for natural language as it might prove
to be for proteins, as does the question of whether exemplars of either
language are susceptible of a compositional semantics (that is, one
for which the meaning or function of the whole can be built up in
rule-based fashion from that associated with its parts)3. In any case
there is a decidedly linguistic flavour to certain abstracted depictions
of protein structure, such as domain schematics (for example, the
SMART system, which portrays the highly variable arrangements of
‘mobile’ domains19) or topology ‘cartoons’ (for example, the TOPS
system, which annotates dependencies between secondary structural
elements, including positional and chiral relationships20).

Specific aspects of protein structure have been modelled explicitly
with grammars. Secondary structural elements, and in particular the
hydrogen bonding between strands in a b-sheet, may be arrayed in
antiparallel fashion, creating nested dependencies by analogy with
stem-loop structures in RNA, or in parallel fashion, which creates
cross-serial dependencies. Such arrangements have been represented
using stochastic tree grammars21, which are related to tree-adjoining
grammars and which have also been shown to generate a range of
configurations of b-sheets that corresponds well to that seen in
nature (A. Joshi, personal communication). Another grammar-

based approach, using tools from graph theory, was shown recently
to be capable of generating a preponderance of the class of all-b-folds
from just four basic rules22.

Mathematicians are concerned with closure properties of lan-
guages, that is, whether they remain at the same level of the Chomsky
hierarchy when various operations are performed on their contents9.
Simple concatenation of strings is a so-called regular operation,
whereas insertion of one string in another is a context-free operation,
insofar as it never causes dependencies to cross, but only further nests
them. Neither operation raises a context-free language beyond con-
text-free, nor (it can be shown) do a series of biological operations
such as replication and recombination10. However, translocation of
segments of a string may create cross-serial dependencies where none
existed before, and thus the block movements typical of genomic
rearrangements may constitute an upward force in the Chomsky
hierarchy that is inherent in evolution10. 

Nevertheless, within proteins we see evidence that at the level of
domains (if not supersecondary structure) there is again a relative
scarcity of non-context-free forms (Fig. 2). This is perhaps attribut-
able not only to the greater complexity of the genomic changes
required, but also to the energetic barriers that might be anticipated
in folding knot-like cross-serial dependencies, by analogy with 
difficulties they pose in linguistic analysis. In light of this, it is 
interesting that the special case of circular permutations (that is,
head-to-tail rearrangements), to which protein domains seem more
prone23, do in fact preserve context-free status from a mathematical
perspective24.

Computational linguistics and genes
The results summarized above all relate to structural aspects of
macromolecules, that is, factors inherent in their biophysical 
behaviour and independent of any information they contain. Yet
genes do convey information, and furthermore this information is
organized in a hierarchical structure whose features are ordered, con-
strained and related in a manner analogous to the syntactic structure
of sentences in a natural language. It is thus not surprising that a
number of themes, both explicit and implicit, have found their way
from computational linguistics to computational biology.

One implicit theme is a convergence between organizational
schemes in the two fields. Language processing is often conceived as
proceeding from (1) the lexical level, at which individual words from
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Figure 1 Grammar-style derivations of idealized versions of RNA structures. a, A stem; b, a branched structure; c, a pseudoknot; and d, alternative secondary structures of an
attenuator. The trees for a and b are graphical depictions of derivations from grammars given in the text. By convention, a starting nonterminal S is at the root of the tree and gives
rise to branches for each symbol to which it rewrites in the course of the derivation. The string derived can be read by tracing the frontier or leaf nodes of the tree, left to right
(dashed blue lines). For c and d, derivation trees are not explicitly indicated because of the complexity of the context-sensitive grammars required7. The same strings are also
shown in linear fashion, with dependencies indicated between terminals derived at the same steps.
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a linear input stream (of, for example, phonemes or characters) are
recognized and characterized; to (2) the syntactic level, at which
words are grouped and related hierarchically according to grammar
rules to form a structural description; to (3) the semantic level, at
which some representation of meaning is assigned to the resulting
structure, derived from that of its individual lexical elements; and
finally to (4) the pragmatic level, at which language is viewed in a 
larger context encompassing the roles and interrelationships of 
sentences (and certain references within them such as pronouns) in
an overall discourse or dialogue3. This progression maps neatly and
meaningfully onto one used widely in biology, of sequence to 
structure to function to role25.

In particular, the distinction between syntax and semantics
(famously exemplified by Chomsky with his grammatical yet 
meaningless “Colourless green ideas sleep furiously”2) is pertinent to
biology. Consider two types of sequence: a string of words, and a seg-
ment of a genome. A parsing step may be seen as determining
whether the words form a grammatical sentence, or, notionally,
whether the genomic sequence will support the production of a
polypeptide according to rules implicit in the transcriptional and
translational machinery of the cell; in both cases the processes are
mechanical, in fact largely processive. Then, an interpretative step
determines whether the resulting sentence is meaningful, according
to laws of logic and experience, or whether the polypeptide will fold
into a compact core and orient its side chains so as to do useful work, a
process governed by laws of thermodynamics and biochemistry.
Mutated genes that are expressed but do not allow for a functional
fold may be said to pass the first test but not the second.

The natural history of gene-finding algorithms offers another
illustration. In the 1980s, detecting genes (in what genomic sequence
was then extant) was strictly a lexical affair. Algorithms simply
scanned an input sequence and within a moving window assessed its
‘coding potential’ on the basis of statistical measures such as oligonu-
cleotide frequencies and periodicities. It was also possible to detect
signals such as putative splice sites, again as individual lexical 
elements. Then, in the early 1990s, programs began to appear that

assembled lexical elements hierarchically and imposed constraints of
a distinctly syntactic cast. (Thus, just as sentence constituents must
agree as to number, gender, tense, and so on, so had putative exons to
maintain a reading frame across whole genes.) Indeed, one program
that performed creditably at the time was based explicitly on a gene
grammar and a general-purpose parser (a program that determines if
an input is a valid instance of any given grammar and, if so, produces a
tree-structured description of the parse)26.

One advantage of linguistic gene recognition was the natural
accommodation of ambiguity in the form of multiple transcripts
attributable, for example, to alternative splicing. Another advantage
was versatility: the same parser, but with different grammars substi-
tuted, was effective in recognizing such features as tRNA genes and
group I introns, including secondary structure extending to pseudo-
knots27. Yet another area in which grammars have proven apt is in the
specification of gene regulatory elements, with their highly variable
distribution of disparate features. This use, in fact, was one of the first
suggested biological applications of Chomsky-style grammars28 and
remains an active area of research29,30.

Although having the advantage of flexibility, general-purpose
parsers cannot compete in efficiency with programming that is cus-
tomized to a particular domain, especially one that does not greatly
benefit from the capacity of grammars to specify variations on a
theme with ease. (English grammar would be superfluous if every
sentence were patterned on the same basic declarative template.)
Consequently, latter-day gene-finding algorithms, which have the
‘standard model’ gene structure hard-wired, do not make use of
grammars per se. However, what has instead become a dominant
technique in the analysis of biological sequences, the hidden Markov
model (HMM), also traces its pedigree to linguistic roots and inherits
a different set of advantages.

An HMM is a variety of automaton annotated with probability
values that govern its behaviour3. They were first widely deployed 
in the field of speech recognition and more recently have found 
their way into a number of applications for the analysis of 
biological sequences, beginning with protein family profiles11. HMM

InterleavingConcatenationInsertion

a b
Figure 2 Protein domain arrangements and the Chomsky hierarchy.
Shown are backbone structures for a, cat muscle pyruvate kinase
(1pkm in Protein Data Bank; minus a short amino-terminal domain) and
b, Escherichia coli D-maltodextrin binding protein (1omp in Protein Data
Bank). At the bottom are schemas of the domain relationships, with
double arrows connecting segments participating in the same domain.
The upper, carboxy-terminal (blue) domain of 1pkm attaches by way of
a simple concatenation, which is a regular operation commonly seen in
proteins. The central red-and-green a/b-barrel, however, is interrupted
in the middle by an insertion of the lower (orange) domain, a context-
free operation insofar as it thus creates a strictly nested dependency
between the divided domain segments (as would any number of domain
insertions at any point). Insertions are less common than
concatenations, but still fairly frequent. The two main domains of 1omp,
on the other hand, seem to be interleaved, thus creating cross-serial
dependencies that are necessarily context-sensitive. Whether the 
C-terminal (blue) segment is involved fully in the lower domain’s core,
however, is open to question; in any case, true interleaved structural
domains seem to be very rare. The dashed ellipses in the backbone
diagrams illustrate that the number of crossovers between domains 
(1, 2 and 3, respectively) is indicative of the level in the Chomsky
hierarchy of the resulting domain arrangement.
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architectures embody what amounts to a syntax and use an associat-
ed set of algorithms to refine and employ the model. HMMs with
sophisticated domain models form the basis for several leading gene
finders, including GenScan31 and Genie32, and the gene-finding
application has driven further refinement of the method as well. The
recent marked trend in computational biology towards probabilistic
methods such as HMMs has mirrored a similar turn in natural lan-
guage processing, which has been invigorated by a shift towards
finite-state and stochastic approaches3. The use of HMMs in the two
fields has been compared directly in a recent review33.

The automata associated with HMMs are at the lowest rung of the
Chomsky hierarchy and are thus inadequate for such non-regular
features as the secondary structure in tRNA. This shortcoming has
been addressed by adding probabilities to context-free grammars to
create stochastic context-free grammars and then adapting the
HMM algorithms to work with the resulting data structures34. Such
systems have proven useful not only in tRNA detection35, but also in a
variety of related biological applications36–39, and have even been
extended to non-context-free structures40.

Historical linguistics and evolution
Long before Chomsky’s revolution, historical linguistics was the
dominant discipline in the field41, driven largely by an increasingly
systematic attempt to account for the descent of modern languages
from a hypothesized proto-Indo-European language first proposed
in 17861. Of this work Darwin himself noted that “the formation of
different languages and of distinct species, and the proofs that both
have been developed through a gradual process, are curiously 
parallel”42. These parallels have since inspired many authors.
Dawkins’ concept of ‘memes’ as replicating cultural fragments
undergoing darwinian selection encompasses language change43, as
does a recent synthesis of formal language theory, learning theory
and evolutionary dynamics44. Strong analogies between the evolu-
tion of languages and of species have even formed the basis for serious
scientific arguments against creationism45. Cavalli-Sforza has 
comprehensively explored how population genetics can aid under-
standing of language evolution from a demographic perspective46,
and biological phylogenetic-reconstruction techniques have also
been applied to languages47.

Among the methods linguists themselves have used to draw 
‘family trees’ of languages has been the statistical comparison of
vocabularies, or lexicostatistics41. This approach posits that, across
many languages, there is a basic, core set of cognates (essentially,
word ‘orthologues’) relating to universal human experience and 
relatively resistant to change. In the 1950s, Swadesh established 200
such concepts (for example, I, this, not, person, fish, blood, egg, knee,
cloud, mountain and good) and, based on similarity of corresponding
words in different languages, derived quantitative measures of 
overall language relatedness48. He further proposed that language
divergences could be dated in this manner by assuming a constant
rate of lexical change, a technique called glottochronology. Although
controversial, this is clearly echoed in the notion of the evolutionary
‘molecular clock’. Indeed, the need to account for varying rates of
change in different words and proteins has been recognized indepen-
dently in each field49.

The compilation of core vocabularies from multiple languages
resembles efforts to assemble ‘minimal gene sets’ presumed sufficient
to support life (by one estimate, numbering about 300) by taking
intersections of multiple genomes, and similar cautions have been
noted in their use and interpretation50. For instance, from the fact
that French has no word for ‘shallow’ one could not conclude that the
language is impoverished, any more than the apparent absence of a
given enzyme necessarily rules out a certain metabolic capacity.
Comparisons of gene contents across phylogeny have been used in
ways that might have been drawn directly from the lexicostatistical
literature. Examples include the collection of clusters of orthologous
groups51 and the use of degree of overlap of gene complements (as
opposed to individual sequence similarities) as a basis for phylogeny
construction52–54 as well as a predictor of protein function55. Both
fields contend with complications introduced by synonyms and false
cognates (‘faux amis’) on the one hand, and on the other, non-orthol-
ogous gene displacement and functional shifts, while recent theory
concerning reticulate evolution harkens back to well-studied 
phenomena of language mixture such as creolization56.

Words themselves arise and evolve by mechanisms that have been
compared to biological drivers of diversity, such as mutation and
recombination (called blending by linguists)57. One mechanism they
clearly have in common is compounding. The atomic units of lin-
guistic meaning are morphemes, typically stems and affixes that
combine to form words, whereas lexical units are lexemes, which may
be single words or compounds and certain unitary phrases3. In like
manner, proteins are considered to comprise one or more functional
domains, and a recent study hypothesizes ancient ‘antecedent
domain segments’, relating these explicitly to linguistic variation58.

There is more than a surface similarity to such conventions, 
insofar as these are all elements that are surmised to combine and 
re-assort in the course of evolution, affording combinatorial diversi-
ty, and some of the same techniques have been applied in their 
analysis. For instance, a quantitative approach to the association of
words is collocation analysis. Here, the frequency of co-occurrence of
words in text is not only a useful heuristic in stochastic parsing3, but
also provides clues in lexical semantic studies, for which compounds
have been classified into such categories as noun+noun constituents,
idioms, and so forth59. This technique has been ‘reinvented’ in the
counting of gene fusions across many genomes as a predictor, for
example, for protein–protein interactions or participation of 
proteins in common pathways60. In both cases, practical implemen-
tations call for such steps as filtering of ‘promiscuous’ elements that
are less predictive of common function or meaning61.

Literary linguistics and the genome
What might be called ‘literary linguistics’ includes pursuits ranging
from stylistics to textual analysis to literary criticism. Although 
seemingly at opposite poles from the ‘hard science’ of molecular 
biology, these activities are at some level not so different from the
increasingly hermeneutic role of the bioinformatician, insofar as
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both are concerned with comparing texts, detecting subtle patterns
and relationships, and elucidating theme and variation25. Nor is tex-
tual criticism devoid of quantitative methods; concern with issues
such as authorship attribution and authenticity has engendered an
active discipline of statistical literary studies aided by computing62,63.

The most pervasive theme in all such work is the study of word 
frequencies in texts, the mathematical analysis of which originates
with the linguist G. K. Zipf, who first observed a power-law distribu-
tion relating a word’s frequency of occurrence to the inverse of its
position in the rank ordering of those frequencies64 (Fig. 3). Mandel-
brot elaborated on this insight, proposing a relationship between
what has come to be known as Zipf ’s law and a presumed fractal
nature of languages65. Apparent instances of power-law behaviour
have now been observed in many facets of molecular biology, includ-
ing oligonucleotide frequencies66, sizes of gene families67 (including
pseudogenes68),distributions of protein69 and RNA70 folds, and even
levels of gene expression71. As in the linguistic case, several explana-
tions for these power-law behaviours have been proposed, including
their mathematical relationship to scale-free networks72 such as
might be expected in metabolic pathways73 and protein interaction
maps74, and models for how they might arise in the evolution of pro-
tein families69, all of which evince comparison to properties of words.

Textual criticism shares both goals and methods with bioinfor-
matics. Species-specific distributions of oligonucleotides are among
the signals (called style markers by linguists62) that have been used in
‘authorship attribution’ of genome segments thought to arise by 
horizontal transmission between species (for example, pathogenici-
ty islands in bacteria75), and in checking the ‘authenticity’ of cloned
sequences possibly contaminated by foreign material76. Word 
frequencies and many other style markers have been analysed in 
literature using such tools as clustering77, principal components
analysis78, neural networks79, support vector machines80 and genetic
algorithms81, all of which are now being applied as well to ‘transcript
frequencies’ inferred from microarray experiments. A recent review
of these methods applied to gene expression comes full circle by using
a clustering algorithm to group and classify articles on the topic based
on word frequencies82, a foray into what has been termed 
bibliomics33,83.

The complexity of human and biological-sequence languages at a
lexical level has been compared explicitly by Trifonov and co-work-
ers84. Using metrics designed to detect the extent of ‘overlapping
codes’, they suggest that sequence languages are more layered, with
multiple signals reflecting, for example, different cellular processes,
and thus more ‘complex’ insofar as the codes may constrain or 
interfere with one another85. (Extreme examples are viral genomes
with overlapping, frameshifted coding regions.) It should be noted,
however, that human language is not ‘single code’ as suggested by 
Trifonov, but involves layering at multiple levels. An obvious illustra-
tion is poetry, where lexical and syntactic accommodations are often
made for such overlaid constraints as rhyme scheme, metre and verse
form, and even higher orders of metaphor, mood and theme — 
witness the virus-like economy of a haiku. Such superposition in 
languages is even treated formally, insofar as context-free languages
are not closed under intersection and thus may be driven higher in
the Chomsky hierarchy by layering10; a specific instance is the view of
a pseudoknot as the intersection of two stem-loop structures40.

A branch of textual criticism called stemmatics is concerned with
the accuracy of texts, possibly ancient, that exist in multiple forms for
reasons ranging from printers’ errors to authorial revisions to 
fragmentary sources. For manuscripts copied many times by scribes,
there has even been mathematical modelling of copying errors for
purposes of estimating pairwise distances along a path from a com-
mon ancestor86; biologically motivated algorithms have been enlisted
in this cause to elucidate the provenance of Chaucer’s Canterbury
Tales87. However, the very foundation of these algorithms in biologi-
cal cladistics recapitulates older, similar methods from stemmatics
and linguistics, as was already recognized a quarter-century ago88.

One post-modern (and thus antiauthoritarian) school of textual
criticism promotes the idea of a genetic text, a dynamic concept that
encompasses all versions and even sources of a text through time89,
largely abandoning the concept of a ‘main’ version and thereby
requiring new organizational paradigms and computational aids90.
The genetic text that is the genome surely presents similar challenges,
and the many commonalities (as well as the instructive differences)
between natural and biological languages may thus form the basis for
sharing tools, techniques and ways of thinking about complex 
systems, on many different levels. ■■
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