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We present a framework and first set of simulations for evolving a language for 
communicating about space. The framework comprises two components: (1) An 
established mobile robot platform, RatSLAM, which has a "brain" architecture based on 
rodent hippocampus with the ability to integrate visual and odometric cues to create 
internal maps of its environment. (2) A language learning system based on a neural 
network architecture that has been designed and implemented with the ability to evolve 
generalizable languages which can be learned by naive learners. A study using visual 
scenes and internal maps streamed from the simulated world of the robots to evolve 
languages is presented. This study investigated the  structure of the evolved languages 
showing that with these inputs, expressive languages can effectively categorize the world. 
Ongoing studies are extending these investigations to evolve languages that use the full 
power of the robots representations in populations of agents . 

1. Introduction 

While all human languages can describe spatial representations, people 
speaking different languages will use different frames of reference: intrinsic 
(from the point of view of the object), relative (from the point of view of the 
speaker or some other viewer) or absolute (e.g. North, South, East and West) 
(Levinson, 1996). These frames of reference can be used to construct or 
describe spatial relationships in the world. The use of different frames of 
reference in different languages indicates that language may restructure the 
spatial representations of the language speaker, rather than the existence of 
innate and universal  spatial concepts (Majid, Bowerman, Kita, Haun, & 
Levinson, 2004). 

Computational modeling of language evolution provides a means of 
investigating ontology, grounding, learnability, and generalization in languages 
that evolve in populations of agents (See Steels, 2005 for an outline of the 
major stages in the evolution of language using computational models). The use 
of simulation techniques can add to the debate on the origins and evolution of 
language by determining factors that are important for evolving communication 
systems. Language games are a possible framework for language models in 
which agents engage in tasks requiring communication. These games have been 



  

used to evolve  lexicons (Hutchins & Hazlehurst, 1995), categories (Cangelosi 
& Harnad, 2001), and grammars (Batali, 2002) in populations of agents. 

The symbol grounding problem (Harnad, 1990) is a major issue for 
computational models of language. Without the grounding of meanings in the 
world, symbols refer only to other symbols with no association between the 
symbols and the world. One way to address the symbol grounding problem in 
computational models of language is to conduct language research with real or 
simulated robots (Marocco, Cangelosi, & Nolfi, 2003; Roy, 2001; Steels, 
1999; Vogt, 2000). 

In robot language research, the environments are often simplified and 
idealized compared to the real world. In the Talking Heads Experiment (Steels, 
1999) geometric shapes were used rather than ‘real world’ objects such as 
tables and chairs. The languages evolved in the Talking Heads Experiment used 
a relative frame of reference to talk about the different shapes in the scene 
using meanings such as ‘left’ and ‘right’. 

One way to extend robot language research is to use mobile robots that 
interact with a real world environment, using navigation systems to build up 
internal maps of the world. The use of mobile autonomous agents that move in 
a real environment enables the evolution of spatial languages using both relative  
and absolute frames of reference. The visual input of the robot would be used in 
a relative frame of reference, where the scenes can be categorized with respect 
to what the world looks like from the perspective of the robot. The internal 
maps would be used in an absolute frame of reference. The languages evolved 
could provide a methodology to investigate the structure of languages that 
describe space. 

This paper introduces RatChat, a project that uses RatSLAM, an established 
mobile robot platform, to develop a framework for the robots to evolve a 
language describing their environment. The RatChat and RatSLAM projects are 
described in Section 2. A study using this platform to evolve spatial languages 
is presented in Section 3, followed by a general discussion and conclusion. 

2. RatChat 

Simultaneous Localisation and Mapping (SLAM) is a methodology for robot 
map building and navigation. RatSLAM is a model of SLAM, based on the 
hippocampal complex in rodents, that uses a combination of the properties of 
grid based, topological, and landmark representations to keep a sense of space 
while adding robustness and adaptability (Milford, Wyeth, & Prasser, 2004).  



 

The inputs to the RatSLAM system include odometry and vision with the 
resulting map represented by pose cells. Active pose cells represent the current 
location and orientation of the robot, and are arranged in (x,y,?) for ease of 
visualization. With RatSLAM, robots use the appearance of an image to aid 
localization by learning to associate the appearance of a scene and its position 
estimate (Prasser, Wyeth, & Milford, 2004).  

RatChat aims to evolve a shared lexicon between robots grounded in 
perceptions, local views, and behaviors using a language game framework (see 
Figure 1). The evolution of languages for locations  will be explored, later 
extending the vocabulary of the robots to include objects. The challenge is for 
the robots to categorize their internal representations and label these with 
appropriate generalization and variability. The shared lexicon should allow the 
robots to agree on words for categories whi le including sufficient diversity for 
different categories to have different labels. As the language is expanded to 
include objects, more emphasis will be on the visual inputs of the robots (see 
Figure 2). 

 

 
Figure 1 The framework for a language game. Each language agent obtains visual and pose cell data 
from the RatSLAM system. A communication channel is set up between the agents, allowing the 
speaker for each agent to produce utterances, and the listener for each agent to receive utterances for 
comprehension. 

 



  

 
Figure 2 The robot's world comprises halls and open plan offices. A simulated world has been built to 
mirror the real world. The features of the environment shown in the visual images seen by the robot 
include the floor, walls, desks, chairs , and filing cabinets. The left image is  from the robot’s camera 
and the right image is  the same location in the simulated world. 

 
The RatChat language agents consist of a speaker and a listener based on 

simple recurrent neural networks (Elman, 1990; Tonkes, Blair, & Wiles, 
2000). Speaker networks are extended to include the output of the network in 
the context for the next time step. Preliminary simulations showed that 
languages are easier to learn when the meaning space patterns are non-
orthogonal and that distributed representations in signal space enable 
expressive languages to be found more easily than if localist representations 
are used. 

3. A Spatial Language 

This study investigated the evolution of spatial languages using the visual and 
pose cell representations of the robot, looking at the expressivity of the 
languages evolved, and how the languages categorized the world of the robot.  
 
Methods: The visual input for this study was every 100 th scene in a series of 
10000 visual scenes of 12x8 gray scale arrays  obtained from a run of the robot 
in the simulated world. The pose cell input for the study was every 100th pattern 
in a series of 10000 pose cell patterns from the same run. The number of cells 
was reduced from 440640 to 610 by reducing the resolution of the pose cells 
(4x4x4 pose cells to 1 pose cell), and by discarding cells that are inactive in 
every pattern. For a third representation, the pose cells were processed using a 
hybrid system based on Self Organizing Maps (SOMs) (Kohonen, 1995). In the 
processing system, a SOM was trained on the input series for 1000 epochs . The 
output of the SOM was a 12x8 set of competitive units organized in a 



 

hexagonal pattern. To construct a distributed activation the actual output values 
of the units were converted to values between 0 and 1. 

For the signal representation, utterances consisted of a sequence of three 
syllables. Each syllable was represented by a ten unit binary vector in which the 
two most active units were set to one , with all other units set to zero. 

One way to measure understanding is to test how well an agent has 
categorized the world. The representations of the world are presented to the 
speaker, resulting in words associated with each pattern. Listeners produce a 
prototype for each unique utterance. If the original input pattern presented to 
the speaker is closest to the prototype for the utterance used by the speaker, 
this pattern has been correctly categorized. When many of the patterns are 
associated with one word, the agents will categorize more patterns correctly, 
but the language does not divide the meaning space effectively. A more 
appropriate measure of understanding is the number of patterns correctly 
categorized divided by the largest category size, indicating how well the 
language divides up the meaning space, and how well the agent understands the 
language. 

In this study, ten agents were evolved individually for 100 generations to 
produce languages based on each set of inputs (vision, pose cells and processed 
pose cells). A simple (1+1)-evolutionary strategy (Beyer & Schwefel, 2002) 
was used to evolve the agent ’s speaker, introducing variability in the language. 
At each step, the agent’s speaker was evolved and the agent ’s listener was 
trained on the language from the speaker for 500 epochs using the Back 
Propagation Through Time algorithm (Rumelhart, Widrow, & Lehr, 1994). The 
agents were evaluated with a fitness function based on the measure of 
understanding described above. If the listener trained on the mutant languages 
were better at categorizing the input patterns than the listener trained on the 
current champion language, then the mutant became the champion. The 
languages produced by the agents for each set of inputs were compared for 
expressiveness, categorization and how the meaning space was divided. 
 
Results: The agents evolved with visual scenes as inputs produced languages 
with an average of 24.2 words  (see Table 1). The average number of scenes 
correctly categorized by the agents was 53.4 out of 100. One highly expressive 
language had 67 unique words of which 47 were associated with single scenes. 
Words often appeared to group several different types of images together, with 
the resulting prototype visual scene for the word a combination of these 
scenes. One set of similar scenes were those in which the robot faced a white 



  

wall with a strip of black next to the floor. All of the languages other than the 
most expressive language grouped together some of these scenes (see Figure 
3). 

 
Table 1 Properties of the languages evolved with different sets of input 

 Number of Unique 
Words (avg (std)) 

Number of Patterns Correctly 
Categorized (avg (std)) 

Vision 24.2 (17.3) 53.4 (13.5) 
Pose Cells  23.2 (12.4) 22.6 (10.4) 

Processed Pose Cells 10.9 (6.4) 58.7 (10.4) 

 
The agents evolved with pose cells as inputs produced languages with an 

average of 23.2 words. The average number of scenes correctly categorized by 
the agents was 22.6 out of 100. The majority of the words were associated with 
single input patterns or a small number of input patterns, scattered across the 
space. Some words group together input patterns that are close together in 
space, but these words are also generally associated with a small number of 
input patterns from other areas. 

 
Figure 3 The prototype for the word ‘kufufu’ (top left) and the five scenes that are associated with 
this word in a language with 27 unique words. Most of the scenes associated with ‘kufufu’ show a 
white wall with a black strip, although the bottom middle scene has different features. 

 
The agents evolved with processed pose cells as inputs produced languages 

with an average of 10.9 words. The average number of scenes correctly 
categorized by the agents was 58.7 out of 100. These languages had less words 
associated with single input patterns and more words associated with many 
input patterns spread across the entire space. The larger languages had more 
words associated with groups of input patterns that were close toge ther in 
space. 

 
Discussion: Expressivity is an important feature of language, where unique 
words are used for unique meanings. In this simulation, expressivity is 



 

indicated by the number of unique words. The vision and pose cell 
representations resulted in languages with an average of over 20 unique words 
for the 100 input patterns, while the processed pose cell representation 
resulted in languages with an average of 10.9 unique words. This reduction in 
expressivity for the processed pose cell representation indicates that the 
unique information in the input patterns may be lost when the pose cell 
representation is processed. 

The number of categories correct indicates how well the language 
categorizes the world. The processed pose cell languages were most successful 
at clustering input patterns that were close together in space, with distinct 
clusters associated with single words. The unprocessed pose cell languages 
were not as successful  at categorizing the patterns , which may be due to the 
size and sparseness of the pose cell representation, and can be addressed by 
processing the pose cell representation. 

Some of the agents using languages evolved with vision were successful in 
grouping together similar scenes, however many of the words  in the vision 
languages grouped together images that were dissimilar as well as similar, or 
were associated with single images. In this study, raw vision as an input 
provided a structure that allowed some languages to evolve  to successfully 
categorize the world. Processing the scenes prior to the language agent may 
extract the important information from each scene that is necessary for 
languages to consistently evolve with expressivity and categorization. 

4. General discussion and conclusion 

The RatChat project aims to explore the  structure of languages that 
describe space using mobile robots. The simulations presented in this paper 
represent agents developing their internal representations of the world prior to 
playing naming games in populations of agents, and have provided insight into 
the expressivity, categorization, and structure of languages that can evolve from 
visual and pose cell representations.  

There is a tradeoff between expressivity, with unique words for unique 
meanings, and categorization, with the use of one word for a group of similar 
meanings. The degree of expressivity and categorization can be altered by 
processing the inputs, as can be seen with the pose cell representation: the 
unprocessed languages are more expressive, while the processed languages are 
better at categorizing the world. 



  

We are currently running simulations to scale up these results with further 
studies into processing the robot representations prior to the language 
networks and evolving languages in populations of agents.  
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