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Abstract 
A set of simulations are presented that investigate 
generalization in languages evolved for mobile robots. The 
mobile robot platform is RatSLAM, a model for 
Simultaneous Localization and Mapping based on rodent 
hippocampus that uses visual and odometric information to 
build up a map of the explored environment. The language 
agents use information from this system as inputs and are 
based on simple recurrent neural networks. This paper 
describes two sets of experiments exploring the nature of 
generalization in evolved languages. The first study 
investigated languages evolved from visual inputs and the 
second study investigated languages evolved from position 
representations. These studies showed that processing the 
input prior to the language agent affects the expressivity of 
the languages and the performance of the agents. Some 
generalization occurs in these languages. Studies are 
ongoing to extend these simulations using the simulated 
world of the robots.  

Introduction 

Human languages are able to generalize from one situation 
to another with an infinite number of meanings described 
using a finite number of words. The most basic type of 
information exchange, signaling, does not have this 
capability. All possible terms and structures in signaling 
must be predefined and known by both listener and speaker 
(Kirby, 2002; Oliphant & Batali, 1997). Simulations on the 
evolution of language suggest that languages can adapt to 
become more learnable and to enable generalization 
(Elman et al., 1996; Tonkes et al., 2000). In fact, the 
recursive patterns that evolve in languages providing the 
ability to generalize also result in languages that are easier 
to learn (Batali, 2002).  

When humans first start to learn language, they are only 
exposed to a limited subset of the language, an effect 
known as the bottleneck of linguistic transmission (Kirby, 
2000; Tonkes & Wiles, 2002). Even with minimal 
feedback, they almost universally are able to master 
language by an early age (Brown & Hanlon, 1970).  

To be able to learn and produce a potentially infinite 
number of expressions from a finite set of examples, the 
structure of a language must be regular and predictable. If 
the learners must generalize, then the language itself must 
be able to generalize (Tonkes, 2001). 

Simulations have investigated this bottleneck of 
linguistic transmission by forcing the language through the 
bottleneck of the agent’s limited exposure (Tonkes, 2001). 

In these simulations, the regular structure of the language 
facilitates generalizing to the rest of the language without 
the need to be exposed to all possible combinations.  

A feature of learnable simulated language is its stability 
through multiple generations; even though languages adapt, 
they still retain regularity in their structure (Kirby, 2001). 
Artificial language needs to be generalizable to become 
more learnable and able to adapt over time. 

Experiments have studied the evolution of language 
when grounded in the environment using automated agents, 
however generalization was not the main focus (Marocco et 
al., 2003). Other research has been specifically interested in 
generalization but was not concerned with the effect of 
environmental influences (Tonkes, 2001). 

In this paper, we present studies that investigate how 
different input representations affect the ability of language 
agents to generalize. Two types of input have been tested: 
vision and position representations. The purpose of the 
study was to investigate the nature of generalization and the 
relation between types of input, pre-processing and 
generalization.  

The next section describes the RatChat project that these 
studies are part of. This is followed by the studies using 
vision and position representations, and a general 
discussion and conclusion. Further studies for the RatChat 
project are also presented. 

RatChat 

This research is part of the RatChat project (Schulz et al., 
in press) that builds on RatSLAM, a model of Simultaneous 
Localization And Mapping (SLAM) for mobile robots. 
SLAM is a methodology for robot map building and 
navigation.  

The RatSLAM system is a model of SLAM based on 
rodent hippocampus that integrates information from 
external vision and internal odometry to update activity in 
pose cells (Milford et al., 2004). Pose cell activity 
represents the position and orientation of the robot. Robots 
using RatSLAM (see Figure 1) can use this information to 
navigate to places that have been visited. 

RatChat uses the pose cell representation and visual 
input as complex representations suitable for investigating 
the evolution of language in mobile robots. These 
representations are obtained from real or simulated robots 
exploring an environment (see Figure 2), and are used by 
language agents to evolve languages. 



 
 

Figure 1 The Pioneer robots used in the RatSLAM and 
RatChat projects have cameras, laser sensors, sonar 
sensors, and odometer sensors with which to explore the 
world. In simulations with RatSLAM, the robots have a 
wandering behavior to build up a map of the world.  

 

 
 

Figure 2 The robot's world comprises halls and open plan 
offices. A simulation world has been built to mirror the real 
world, with images from the real world used in constructing 
the views of the robot. 

 
The languages that evolve are spatial languages, with the 

agents communicating about location, represented by the 
pose cells, and the appearance of the world, shown by the 
visual input. The pose cell representations refer to an 
absolute frame of reference that uses the internal map that 
is built up to refer to specific places in the world, while the 
visual representations, or scenes, refer to a relative frame of 
reference in which the robot talks about the world based on 
the view of the robot. 

The language agents used in these simulations comprises 
speaker and listener agents based on simple recurrent 
neural networks (Elman, 1990; Tonkes, 2001). The inputs 
for these agents are obtained from the RatSLAM system. In 
this study, the language agents are simulated offline.  

In previous studies (Schulz et al., in press), we found that 
the input and output representations for the language agents 
make a large difference for whether expressive languages 
are easy for the networks to evolve and to learn. In 
particular, languages are easier to learn when the input 
patterns are non-orthogonal. Also, agents are able to trade 
expressiveness and categorization, with processing of the 
inputs altering how expressive the languages were, and how 
well they could categorize inputs. 

Expressive languages that categorized the world using 
unique words to group together input patterns were evolved 

using vision and pose cell representations. The studies 
presented in this paper aim to test whether languages can be 
evolved that are able to generalize. 

Study 1 Vision 

The different forms of input available from the RatSLAM 
system are vision and pose cells. In this study, vision is 
used. The nature of this input is such that pre-processing 
may be preferable to the raw visual input. This first study 
aimed to test whether generalization occurs in languages 
evolved using visual input. The generalization that may 
occur is the use of novel words for novel meanings, and 
also the ability to use these words in a consistent way that 
allows the world to be categorized effectively. 

Methods 
The input for this study was a series of 10000 visual scenes 
of 12x8 gray scale viewed by the robot exploring the 
simulation world. Every tenth scene of this series was 
chosen, forming a series of 1000 scenes for input to the 
language system. This series was analyzed using 
hierarchical clustering to determine 30 clusters of similar 
images (see Figure 3a). The image closest to the mean for 
each of the 30 clusters was chosen for evolving and training 
the language networks. A visual inspection of the images 
showed that they were dissimilar scenes (see Figure 3b) and 
spread throughout the robot’s world (see Figure 3c).  

Three techniques were used for processing the visual 
information for the language agents. The first technique 
was using the raw image. The second technique involved 
categorizing the input with a self organizing map (SOM) 
(Kohonen, 1995). In this hybrid system, a SOM was trained 
on the visual scenes for 1000 epochs. The output of the 
SOM was an array of competitive units organized in a 
hexagonal pattern. To give a distributed activation pattern 
for the language agents, the actual values of the units were 
scaled to values between 0 and 1. The third technique used 
Principal Component Analysis (PCA). The 1000 scenes 
were analyzed for their principal components, and the 
component scores were scaled to values between 0 and 1. 

Language agents were evolved for 1000 generations with 
inputs of different sizes of processed images to find the 
smallest size for which expressive languages could evolve. 
For the raw image, an input scene of 12x8 pixels was used, 
for the SOM-based input, a SOM of size 24x16 was used, 
and for the PCA-based input, the first 48 components were 
used. 

One way of testing whether a language captures the 
underlying structure of a set of visual scenes is to test how 
well the concepts are mapped to the language terms. 
Listeners produce a prototype for each unique word. If the 
original scene presented to the speakers is closest to the 
prototype for the word used by the speaker, the scene has 
been correctly categorized. The measure of similarity 
between images and prototypes used in this analysis was 
sum squared error. 



a) 

 
b) 

 
c) 

 
 

Figure 3 a) An analysis of the meaning space of 1000 
scenes using hierarchical clustering. The diagram shows the 
30 clusters used to choose 30 dissimilar images for 
evolving the language agents. b) The 12x8 images closest 
to the mean for the four labeled clusters. These were four of 
the images used to evolve the language agents. c) The 
position of the robot for each of the 30 images, shown over 
the path of the robot. Most of the images are located at 
times when the robot was turning. 

For each pre-processing technique, ten agents were 
evolved for 500 generations with a selection strategy based 
on how well the agents categorized the world. The winner 
of the current champion and mutant language was the one 
in which the trained listener and speaker networks were 
able to associate the highest number of images with words 
correctly. The evolved languages were analyzed for 
generalization by testing how many words were uttered and 
the performance of the agents for the set of 1000 scenes. 

Results 
The agents with the raw image input evolved languages 
with an average of 22.4 unique words. With the SOM-
based input they averaged 17.2 unique words, and with the 
PCA input they averaged 22.8 unique words (see Table 1). 
 
Table 1 Language Sizes for Pre-Processing Techniques 
 Image  

unique words 
average (std) 

SOM-based  
unique words 
average (std) 

PCA    
unique words 
average (std) 

30 
images 

22.4 (8.3) 17.2 (5.3) 22.8 (3.3) 

1000 
images 

99.9 (65.2) 43.5 (17.5) 111.2 (46.8) 

 
A feature of generalization is the ability to produce new 

utterances for novel meanings. In this study, the ability to 
produce new utterances can be measured by comparing the 
number of words used for the original 30 scenes with the 
number used for the larger set of 1000 scenes. 

When the speakers were presented with 1000 images, the 
raw vision speakers produced an average of 99.9 unique 
utterances, the SOM-based speakers averaged 43.5 unique 
utterances, and the PCA speakers averaged 111.2 unique 
utterances. These results are remarkable in the number of 
new words for novel images, with more than twice the 
number of words than for the initial 30 images. 

To measure the performance of the agents, the number of 
visual scenes close to the prototypes used for the scenes 
was found. The distance between the visual scene and the 
prototype used was determined by treating them as vectors 
and calculating one minus the cosine of the included angle 
between them. This distance was then normalized by the 
standard deviation of the distances between each of the 30 
scenes. The number of scenes within 0.25, 0.5, and 1.0 
standard deviations of the prototype were calculated for 
each of the techniques for the 30 and 1000 scenes. 

For the 30 scenes used for evolving the agents, the image 
agents averaged 14.8 scenes within 0.25 standard 
deviations of the prototype used, 21.9 within 0.5 standard 
deviations, and 28.0 within one standard deviation; the 
SOM-based agents averaged 21.7 within 0.25 standard 
deviations, 27.2 within 0.5 standard deviations, and 29.8 
within one standard deviation; and the PCA based agents 
averaged 8.0 within 0.25 standard deviations, 11.4 within 
0.5 standard deviations, and 17.7 within one standard 
deviation (see Table 2). 



Table 2 Images Similar to Prototypes for Pre-Processing 
Techniques (30 Images) 

Standard 
Deviations 

Image 
images  
close to 
prototype 
average 
(std) 

SOM-based 
images  
close to 
prototype  
average 
(std) 

PCA  
images  
close to 
prototype 
average 
(std) 

0.25 14.8 (9.3) 21.7 (6.4) 8.0 (7.3) 
0.5 21.9 (8.0) 27.2 (6.1) 11.4 (7.9) 
1.0 28.0 (4.7) 29.8 (5.3) 17.7 (9.8) 

 
When the agents were presented with 1000 images, the 

image agents averaged 26.1 scenes within 0.25 standard 
deviations of the prototypes used, 81.2 within 0.5 standard 
deviations, and 399.0 within one standard deviation. The 
SOM-based agents averaged 334.9 within 0.25 standard 
deviations, 689.6 within 0.5 standard deviations, and 920.9 
within one standard deviation. The PCA-based agents 
averaged 8.3 within 0.25 standard deviations, 13.2 within 
0.5 standard deviations, and 29.2 within one standard 
deviation (see Table 3). 

 
Table 3 Images Similar to Prototypes for Pre-Processing 
Techniques (1000 Images) 

Standard 
Deviations 

Image 
images 
close to 
prototype 
average 
(std) 

SOM-based 
images     
close to 
prototype 
average     
(std) 

PCA 
images 
close to 
prototype 
average 
(std) 

0.25 26.1 (15.8) 334.9 (123.5) 8.3 (8.5) 
0.5 81.2 (38.8) 689.6 (194.3) 13.2 (11.1) 
1.0 399.0 

(111.0) 
920.9 (205.0) 29.2 (19.7) 

Discussion 
Agents can trade expressiveness and categorization or 
generalization, so for a comparison of generalization 
between different techniques, languages must be of a 
similar size. The expressiveness of the image, SOM-based 
and PCA agents is similar, with an average of 22.4, 17.2 
and 22.8 unique words for the 30 images. 

One feature of generalization is the ability of agents to 
utter new words when presented with new meanings. In this 
study, the agents were able to produce between 2.5 (agents 
with SOM-based inputs) and 4.9 (agents with PCA inputs) 
times the number of words for 30 images when presented 
with the larger set of 1000 images.  

The performance of the agent is the next feature to 
consider. For this, the similarity of an image to the 
prototype for the word associated with the image was used. 
For the 30 images, the image and SOM-based agents 
performed well, with almost all images within one standard 
deviation of the prototypes. The PCA agents had an 
average of just fewer than 18 of the 30 images within one 
standard deviation of the prototype. 

When generalizing to the 1000 images, the SOM-based 
agents performed better than both other techniques, with 
almost all images within one standard deviation. The image 
agents performed moderately well, with just under 400 
within one standard deviation, while the PCA had only 29.2 
within one standard deviation.  

These generalization results are skewed by the input 
representations. The SOM-based representations have 
many patterns within one standard deviation of the average 
SOM-based pattern; the image representations have more 
patterns between one and two standard deviations from the 
average image; and PCA based representations have more 
patterns between 1.5 and 2.5 standard deviations from the 
average PCA pattern.  

When the majority of patterns are less similar to the 
average pattern, languages that effectively cover the space 
are more difficult to find. This is in part due to the 
difficulty in constructing appropriate prototypes for a group 
of diverse input patterns 

Study 2 Pose Cells 

The second study aimed to test whether generalization 
occurs in languages evolved using pose cells, again looking 
at whether new words were used for new input patterns, and 
at the performance of the agents. 

Methods 
The input for this study was a series of 10000 pose cell 
representations, obtained from the run of the robot used in 
the previous study. Again, every tenth pattern was included 
for input to the language agents.  

The number of pose cells was reduced from 440640 to 
947 by reducing the resolution of the pose cells 
(180x68x36 cells to 45x17x9 cells) and by discarding cells 
that were inactive for the entire run (6885 cells to 947 
cells). 

These inputs were analyzed using hierarchical clustering 
to find 30 pose cell representations for presenting to the 
language agents (see Figure 4a). The position of the robot 
for each of the 30 pose cell patterns is shown in Figure 4b. 

 Again, three techniques were used for processing the 
input. The raw pose cell representation, a SOM-based 
technique, and PCA were used. 

To determine appropriate sizes for the inputs, language 
agents were evolved for 1000 generations with variability 
as the fitness function to find the smallest size that allowed 
expressive languages to evolve. For the pose cells, 947 
input units were used, for the SOM-based input, a SOM of 
size 12x8 was used, and for the PCA-based input, the first 
120 components were used. 

For each pre-processing technique, ten language agents 
were evolved for 500 generations with a selection strategy 
based on how well the language categorizes the world. The 
languages were then analyzed for generalization by testing 
how many words were uttered and the performance of the 
agents for the larger set of 1000 patterns. 



a) 

 
b) 

 
 
Figure 4 a) An analysis of the meaning space of 1000 pose 
cell patterns using hierarchical clustering. The diagram 
shows the 30 clusters used to choose 30 pose cell patterns 
spread across the space for evolving the language agents. b) 
The 30 positions chosen for the pose cell patterns, shown 
over the path of the robot. In this figure, some of the 
crosses are very close to each other. These are pose cell 
patterns that have a similar position, but different 
orientation. 

Results 
The speakers presented with the raw pose cell 
representation evolved languages with an average of 18.9 
unique words. With the SOM-based input they averaged 
18.5 unique words and with the PCA input they averaged 
21.7 unique words (see Table 4). 

 
Table 4 Language Sizes Generated for Pre-Processing 
Techniques 
 Pose Cell 

words 
spoken  
average (std) 

SOM-based 
words    
spoken 
average (std) 

PCA 
words 
spoken 
average (std) 

30 
patterns 

18.9 (7.7) 18.5 (6.1) 21.7 (5.3) 

1000 
patterns 

112.6 (86.7) 34.4 (19.2) 93.1 (46.5) 

 

When the speakers were presented with 1000 patterns, 
the raw vision speakers produced an average of 112.6 
unique utterances, the SOM-based speakers averaged 34.4 
unique utterances, and the PCA speakers averaged 93.1 
unique words.  

For the 30 patterns used for evolving the agents, the 
agents with pose cell inputs had no input patterns with in 
one standard deviation of the prototype used for that 
pattern. The SOM-based inputs averaged 18.1 patterns 
within 0.25 standard deviations of the prototype, 23.2 
within 0.5 standard deviations and 28.3 within one standard 
deviation; and the PCA based inputs averaged 7.7 patterns 
within 0.25 standard deviations, 8.3 within 0.5 standard 
deviations and 14.5 within one standard deviation (see 
Table 5). 

 
Table 5 Patterns Similar to Prototypes for Pre-Processing 
Techniques (30 Patterns) 

Standard 
Deviations 

Pose Cell 
patterns 
close to 
prototype 
average 
(std) 

SOM-based 
patterns 
close to 
prototype 
average  
(std) 

PCA 
patterns 
close to 
prototype 
average  
(std) 

0.25 0 (0) 18.1 (3.5) 7.7 (7.1) 
0.5 0 (0) 23.2 (2.7) 8.3 (6.8) 
1.0 0 (0) 28.3 (1.3) 14.5 (8.0) 
 
When the agents were presented with 1000 images, the 

pose cell agents again had no input patterns within one 
standard deviation of the prototype. The SOM-based agents 
averaged 558.4 within 0.25 standard deviations, 767.0 
within 0.5 standard deviations, and 915.5 within one 
standard deviation; and the PCA-based agents averaged 
16.6 within 0.25 standard deviations, 42.8 within 0.5 
standard deviations, and 131.6 within one standard 
deviation (see Table 6). 
 
Table 6 Patterns Similar to Prototypes for Pre-Processing 
Techniques (1000 Patterns) 

Standard 
Deviations 

Pose Cell 
patterns 
close to 
prototype 
average 
(std) 

SOM-based 
patterns 
close to 
prototype 
average  
(std) 

PCA 
patterns 
close to 
prototype 
average  
(std) 

0.25 0 (0) 558.4 (40.6) 16.6 (38.5) 
0.5 0 (0) 767.0 (36.1) 42.8 (59.9) 
1.0 0 (0) 915.5 (41.4) 131.6 (74.6) 

Discussion 
The expressiveness of the pose cell, SOM-based and PCA 
agents is similar, with an average of 18.9, 18.5 and 21.7 
unique words for each of the 30 patterns, meaning that 
comparisons can be made for generalization in these 
languages. 



Considering the ability of agents to utter new words 
when presented with new meanings, in this study, the 
agents were able to produce between 1.8 (agents with 
SOM-based inputs) and 6.0 (agents with raw pose cell 
inputs) times the number of words for 30 patterns when 
presented with the larger set of 1000 patterns.  

For the performance of the agents, the closeness of a 
pattern to the prototype for the word associated with the 
pattern was used. For the 30 patterns, the SOM-based 
agents performed well, with almost all patterns within one 
standard deviation of the prototypes. The PCA agents had 
an average of just under half of the patterns within one 
standard deviation of the prototype. 

When generalizing to the 1000 patterns, the SOM-based 
agents performed better than the other techniques, with 
almost all patterns within one standard deviation. The PCA 
averaged 131.6 within one standard deviation.  

The pose cell agents had no patterns within one standard 
deviation of the prototype for the word associated with the 
pattern. This lack of similarity is almost certainly due to the 
sparseness of the input patterns. In the pose cell 
representation, most of the inputs are not active, with an 
average of 11 out of 947 cells active.  This representation 
means that the listeners do not learn to associate the words 
with the pose cell representations, and the prototypes have 
all cells set close to zero. 

These results are skewed by the input representations in 
a similar way to the visual inputs, where the SOM-based 
representations have many patterns within one standard 
deviation of the average SOM-based pattern, and the PCA 
based representations have more patterns between 1.5 and 
2.5 standard deviations from the average PCA pattern.  

General Discussion and Conclusions 

Generalization is an important question for simulations of 
the evolution of language. For generalizable languages, the 
first requirement is that the languages have the potential for 
expressing novelty. In these studies, the language agents 
produced novel words for novel scenes, which can be seen 
as constructing new “words”  by recombining known 
“morphemes”  in different ways. This expressiveness 
occurred in each type of processing for both vision and 
pose cell representations, with an average of between 1.8 
(agents with pose cell SOM-based inputs) and 6.0 (agents 
with pose cell inputs) times the number of words produced 
for 1000 patterns compared to the original 30 patterns. 

The next feature of generalization to consider is whether 
the language agents perform well in producing meaningful 
utterances that they are able to understand. The measure of 
meaningful generalization used in these studies was the 
number of images that were similar to the prototype for the 
word used for the image. This measure was altered by the 
features in the input representation, including the 
sparseness of the input patterns, and how the input patterns 
are grouped. If there are natural clusters of input patterns, 
such as in the SOM-based representations, it is easier for 
the agents to create prototypes that are closer to a cluster of 

input patterns. If, however, there are no natural clusters of 
input patterns, such as with the pose cell representations 
where most of the input patterns are dissimilar to each 
other, it is difficult for the agents to create effective 
prototypes. 

The different pre-processing techniques and sizes of 
inputs to the language speakers affect the expressivity of 
the languages produced and the success of categorization of 
the scenes. Other techniques may be more successful at 
extracting the important information from the raw input for 
evolving expressive, comprehensible languages. 

Further Studies 

The studies presented here provide first steps towards an 
analysis of generalization. Further analysis is required to 
determine whether the agents are able to categorize similar 
scenes together using the evolved languages and how the 
structure of the input space affects the languages that are 
evolved and the ability of the agents to learn the scene-
word associations. 

In addition to the raw visual and pose cell inputs, a 
SOM-based, and a PCA processing technique were the 
types of pre-processing used in this study. Other forms of 
processing may enable the interesting information to be 
extracted from the robot representations while reducing the 
dimensionality of the input. An ideal pre-processing system 
would result in an input structure which provides sufficient 
information for expressive languages to evolve, while also 
allowing the networks to be small enough to provide real 
time language processing. Variations on the SOM and PCA 
based techniques are being investigated. 

With a better understanding of an analysis of 
generalization and techniques more appropriate for 
processing the robots representations, future studies will 
involve language agents implemented online in the 
simulated world of the robots. 
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