Iterated Learning: a framework for the
emergence of language

Kenny Smith!, Simon Kirby!, Henry Brighton!

! Language Evolution and Computation Research Unit, Theoretical and Applied
Linguistics, University of Edinburgh, Adam Ferguson Building, 40 George Square,
Edinburgh, UK. {kenny,simon,henryb}@ling.ed.ac.uk

Language is culturally transmitted. Iterated Learning, the process by which the
output of one individual’s learning becomes the input to other individuals’ learning,
provides a framework for investigating the cultural evolution of linguistic struc-
ture. We present two models, based upon the Iterated Learning framework, which
show that the poverty of the stimulus available to language learners leads to the
emergence of linguistic structure. Compositionality is language’s adaptation to
stimulus poverty.

Linguists traditionally view language as the consequence of an innate “language instinct”
(Pinker 1994). It has been suggested that this language instinct evolved, via natural se-
lection, for some social function — perhaps to aid the communication of socially relevant
information such as possession, beliefs and desires (Pinker & Bloom 1990), or to facilitate
group cohesion (Dunbar 1996). However, the view of language as primarily a biological
trait arises from the treatment of language learners as isolated individuals. We argue
that language should be more properly treated as a culturally transmitted system. Pres-
sures acting on language during its cultural transmission can explain much of linguistic
structure. Aspects of language which appear baffling when viewed from the standpoint of
individual acquisition emerge straightforwardly if we take the cultural context of language
acquisition into account. While we are sympathetic to attempts to explain the biological
evolution of the language faculty, we agree with Jackendoff that “[i]f some aspects of lin-
guistic behaviour can be predicted from more general considerations of the dynamics of
communication [or cultural transmission]| in a community, rather than from the linguistic
capacities of individual speakers, then they should be” (Jackendoff 2002:101).

We present the Iterated Learning Model (ILM) as a tool for investigating the cultural
evolution of language. Iterated Learning is the process by which one individual’s com-
petence is acquired on the basis of observations of another individual’s behaviour, which
is determined by that individual’s competence. This model of cultural transmission has
proved particularly useful in studying the evolution of language. We present two models
here. Both attempt to explain the emergence of compositionality, a fundamental struc-
tural property of language. In the first model, insights gained from the ILM suggest a
mathematical analysis, which predicts when compositional language will be more stable



than non-compositional language. In the second model, techniques adopted from arti-
ficial life are used to investigate the transition, through purely cultural processes, from
non-compositional to compositional language. These models reveal two key determinants
of linguistic structure. Firstly, the poverty of the stimulus available to language learn-
ers during cultural transmission drives the evolution of structured language — without
this stimulus poverty, compositional language will not emerge. Secondly, compositional
language is most likely to evolve when linguistic agents perceive the world as structured
— structured pre-linguistic representation facilitates the cultural evolution of structured
language.

Two views of language

In the dominant paradigm in linguistics (formulated and developed by Noam Chomsky,
for example Chomsky (1965) and Chomsky (1995)), language is viewed as an aspect of
individual psychology. The object of interest is the internal linguistic competence of
the individual, and how this linguistic competence is derived from the data the individ-
ual is exposed to. External linguistic behaviour is considered to be epiphenomenal, the
uninteresting consequence of the application of this linguistic competence to a set of con-
tingent communicative situations. This framework is sketched in Figure 1 (a). From this
standpoint, much of the structure of language is puzzling — how do children, apparently
effortlessly and with virtually universal success, arrive at a sophisticated knowledge of lan-
guage from exposure to sparse and noisy data? In order to explain language acquisition
in the face of this poverty of the linguistic stimulus, the Chomskyan program postulates a
sophisticated, genetically-encoded language organ of the mind, consisting of a Universal
Grammar, which delimits the space of possible languages, and a Language Acquisition
Device, which guides the formation of linguistic competence based on the observed data.

Following ideas developed in Hurford (1990), we view language as an essentially cul-
tural phenomenon. An individual’s linguistic competence is derived from data which is
itself a consequence of the linguistic competence of another individual. This framework
is sketched in Fig. 1 (b). Under this view, the burden of explanation is lifted from the
postulated innate language organ — much of the structure of language can be explained
as a result of pressures acting on language during the repeated expression and induction
of linguistic forms. In this paper we will show how the poverty of the stimulus available
to language learners is the cause of linguistic structure, rather than a problem for it.

The Iterated Learning Model

The Iterated Learning Model (ILM), as introduced in Kirby (2001) and Brighton (2002),
provides a framework for studying the cultural evolution of language. The ILM in its
simplest form is illustrated in Fig. 2. In this model H; corresponds to the linguistic com-
petence of individual ¢, whereas U; corresponds to the linguistic behaviour of individual ¢
and the primary linguistic data for individual ¢ + 1.
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Figure 1: (a) The Chomskyan paradigm. Acquisition procedures, constrained by Universal Grammar
and the Language Acquisition Device, derive linguistic competence from linguistic data. Linguistic
behaviour is considered to be epiphenomenal and has no place. (b) Language as a cultural phe-
nomenon. As in the Chomskyan paradigm, acquisition based on linguistic data leads to linguistic
competence. However, we now close the loop — competence leads to behaviour, which contributes
to the linguistic data for the next generation.
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Figure 2: The ILM. The ith generation of the population consists of a single agent A; who has
hypothesis H;. Agent A; is prompted with a set of meanings M;. For each of these meanings the
agent produces an utterance using H;. This yields a set of utterances U;. Agent A;;; observes U;
and forms a hypothesis H;; to explain the set of observed utterances, and the cycle repeats.



We make the simplifying idealisation that cultural transmission is purely vertical —
there is no horizontal, intra-generational cultural transmission. This simplification has
several consequences. Firstly, we can treat the population at any given generation as
consisting of a single individual. Secondly, we can ignore the intra-generational commu-
nicative function of language. However, the Iterated Learning framework does not rule out
either intra-generational cultural transmission (see Livingstone & Fyfe (1999) for an ILM
with both vertical and horizontal transmission, or Batali (2002) for an ILM where trans-
mission is purely horizontal) or a focus on communicative function (see Smith (2002b) for
an ILM focusing on the evolution of optimal communication within a population).

In most implementations of the ILM, utterances are treated as meaning-signal pairs.
This is obviously an oversimplification of the task facing language learners — if the mean-
ing of every signal were self-evident then the signal itself would be rather pointless. How-
ever, empirical evidence suggests that language learners have a variety of strategies for
deducing the communicative intentions of others during language acquisition (see Bloom
(2000) for review). We will assume for the moment that these strategies are error-free,
while noting that the consequences of weakening this assumption is a current and inter-
esting area of research (see, for example, Steels (1998), Smith (2001) and Steels et al.
(2002)).

This simple model proves to be a powerful tool for investigating the cultural evolution
of language. While we have previously used the ILM to look at the emergence of word-
order universals (Kirby 1999), the regularity-irregularity distinction (Kirby 2001), and
recursive syntax (Kirby 2002), here we will focus on the evolution of compositionality. The
evolution of compositionality provides a test-case to evaluate the suitability of techniques
from mathematics and artificial life in general, and the ILM in particular, to tackling
problems from linguistics.

The cultural evolution of compositionality

In a compositional system the meaning of a signal is a function of the meaning of its parts
and they way they are put together (Krifka 2001). The morphosyntax of language exhibits
a high degree of compositionality. For example, the relationship between the string John
walked and its meaning is not completely arbitrary. It is made up of two components: a
noun (John) and a verb (walked). The verb is also made up of two components: a stem
and a past-tense ending. The meaning of John walked is thus a function of the meaning of
its parts. Compositionality, in combination with recursive syntax, allows language users
to produce and comprehend an infinite range of sentences.

Compositional language can be contrasted with non-compositional, or holistic commu-
nication, where a signal stands for the meaning as a whole, with no subpart of the signal
conveying any part of the meaning in and of itself. Animal communication is typically
viewed as holistic — no subpart of an alarm call or a mating display stands for part of
the meaning “there’s a predator about” or “come and mate with me”.

We view language as a mapping between meanings and signals. A compositional lan-



guage is a mapping which preserves neighbourhood relationships — neighbouring mean-
ings will share structure, and that shared structure in meaning space will map to shared
structure in the signal space. A holistic language is one which does not preserve such
relationships — as the structure of signals does not reflect the structure of the underlying
meaning, shared structure in meaning space will not necessarily result in shared signal
structure.

In order to model such systems we need representations of meanings and signals. For
both models outlined in this paper meanings are represented as points in an F'-dimensional
space where each dimension has V' discrete values, and signals are represented as strings
of characters of length 1 to [,,,;, where the characters are drawn from some alphabet X.
More formally, the meaning space M and signal-space S are given by:

Sz{wlwg...wl:wiEEandlglglmm}

The world, which provides communicatively relevant situations for agents in our mod-
els, consists of a set of N objects, where each object is labelled with a meaning drawn
from M. We will refer to such a set of labelled objects as an environment.

A mathematical model

We will begin by considering, using a mathematical model', how the compositionality of
a language relates to its stability over cultural time. For the sake of simplicity, we will re-
strict ourselves to looking at the two extremes on the scale of compositionality, comparing
the stability of perfectly compositional language and completely holistic language.

Learning holistic and compositional languages

We can construct a holistic language L, by simply assigning a random signal to each mean-
ing. More formally, each m € M is assigned a signal of random length | (1 < < l;44)
where each character is selected at random from . The meaning-signal mapping encoded
in this assignment of meanings to signals will not preserve neighbourhood relations, unless
by chance.

Consider the task facing a learner attempting to learn Lj. There is no structure
underlying the assignment of signals to meanings. The best strategy here is simply to
memorise meaning-signal associations. We can calculate the expected number of meaning-
signal pairs our learner will observe and memorise. After R observations of randomly-
selected objects paired with signals a learner will have a set of O observed meanings. We
can calculate the probability that any arbitrary meaning m € M will be included in O,
Pr(m € 0), with:

!This model is described in greater detail in Brighton (2002).




Probability of observing an
utterance being produced
for at least one of those z
objects after R observations

~ / Probability that
Pr(meO)=> (mis used to label) X
z=1 \ r objects

When called upon to produce utterances, such a learner will only be able to repro-
duce meaning-signal pairs they themselves observed. Given the lack of structure in the
meaning-signal mapping, there is no way to predict the appropriate signal for a meaning
unless that meaning-signal pair has been observed. We can therefore calculate Ej, the
expected number of meanings an individual will be able to express after observing some
subset of a holistic language, which is simply the probability of observing any particular
meaning multiplied by the number of possible meanings:

E,=Pr(me0)-vF

We can perform similar calculations for a leaner attempting to acquire a perfectly
compositional language. As discussed above, a perfectly compositional language pre-
serves neighbourhood relations in the meaning-signal mapping. We can construct such
a language L. for a given set of meanings M using a lookup table of subsignals, where
each subsignal is associated with a particular feature value. For each m € M a signal is
constructed by concatenating the appropriate subsignal for each feature value in m.

How can a learner best acquire such a language? The optimal strategy is to memorise
feature value-signal substring pairs. After observing R randomly selected objects paired
with signals, our learner will have acquired a set of observations of feature values for the
ith feature, Oy,. The probability that an arbitrary feature value v in included in Oy, is
given by Pr (v € Oy,):

Probability of observing an
utterance being produced
for at least one of those z
objects after R observations

~ / Probability that v
Pr(veOy) =) (is used to label :c) X
z=1 \ objects

We will assume the strongest possible generalisation capacity. Our learner will be able
to express a meaning if it has viewed all the feature values that make up that meaning,
paired with signal substrings. The probability of our learner being able to express an
arbitrary meaning made up of F' feature values is then given by the combined probability
of having observed each of those feature values:

Pr(v; €0p A...Avp € 0p,) = Pr(ve O

We can now calculate E,, the number of meanings our learner will be able to express
after viewing some subset of a compositional language, which is simply the probability of



being able to express an arbitrary meaning multiplied by N.q, the number of meanings
used when labelling the NV objects:

E.= Pr (U € Of,)F * Nysed

We therefore have a method for calculating the expected expressivity of a learner pre-
sented with L or L.. This in itself is not terribly useful. However, within the Iterated
Learning framework we can relate expressivity to stability. If an individual is called upon
to express a meaning they have not observed being expressed, they have two options.
Firstly, they could simply not express. Alternatively, they could produce some random
signal. In either case, any association that was present in the previous individual’s hy-
pothesis will now be lost. A shortfall in expressivity therefore results in instability over
cultural time. We can relate the expressivity of a language to the stability of that lan-
guage over time by S, o E,/N and S. « E./N. Stability is simply the proportion of
meaning-signal mappings encoded in an individual’s hypothesis which are also encoded
in the hypotheses of subsequent individuals.

We will be concerned with the relative stability of compositional languages with respect
to holistic languages, S, which is given by:

Se
Se + Sh

When S = 0.5 compositional languages and holistic languages are equally stable and
we therefore expect them to emerge with equal frequency over cultural time. When
S > 0.5 compositional languages are more stable than holistic languages, and we expect
them to emerge more frequently, and persist for longer, than holistic languages. S < 0.5
corresponds to the situation where holistic languages are more stable than compositional
languages.

S =

The impact of meaning space structure and the bottleneck

S depends on the number of dimensions in the meaning space (F'), the number of possible
values for each feature (V7), the number of objects in the environment (V) and the number
of observations each learner makes (R). Unless R is very large, or N is very small, there
is a chance that a an agent will be called upon to express a meaning they themselves have
never observed paired with a signal. This is one aspect of the poverty of the stimuli facing
language learners — the set of utterances of any human language is arbitrarily large, but
a child must acquire their linguistic competence based on a finite number of sentences.
We will refer to this aspect of the poverty of stimulus as the transmission bottleneck.
The severity of the transmission bottleneck depends on R and N. It is convenient to
refer instead to the degree of object coverage (b), which is simply the proportion of all N
objects observed after R observations.

Together F' and V specify the degree of structure in the meaning space. We will vary
this structure, together with the transmission bottleneck b, while holding N constant.
The results of these manipulations are shown in Fig. 3.

There are two key results to draw from these figures:
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Figure 3: Severity of bottleneck and degree of meaning space structure impact on the relative
stability of compositional language. The relative stability advantage of compositional language

increases as the bottleneck tightens, but only when the meaning space exhibits a certain degree
of structure.



1. S is at a maximum for small bottleneck sizes. Holistic languages will not persist
over time when the bottleneck on cultural transmission is tight. In contrast, com-
positional languages are generalisable, due to their structure, and remain relatively
stable even when a learner only observes a small subset of the language of the pre-
vious generation. The poverty of the stimulus “problem” is in fact required for
linguistic structure to emerge.

2. High S only occurs when the meaning space exhibits a certain degree of structure,
suggesting that structure in the conceptual space of language learners is a require-
ment for the evolution of compositionality. However, if the meaning space is too
highly structured S is low, as few distinct meanings will share feature values and
the advantage of generalisation is lost.

A computational model

The mathematical model outlined above, made possible by insights gained from viewing
language as a culturally-transmitted system, predicts that compositional language will
be more stable than holistic language when 1) there is a bottleneck on cultural trans-
mission and 2) linguistic agents have structured representations of objects. However, the
simplifications necessary to the mathematical analysis preclude a more detailed study of
the dynamics arising from Iterated Learning. What happens to languages of intermediate
compositionality during cultural transmission? Can compositional language emerge from
initially holistic language, through a process of cultural evolution? We can investigate
these question using techniques from artificial life, by developing a multi-agent computa-
tional implementation of the ILM.

A neural network model of a linguistic agent

Smith (2002b) presents a neural-network model of the evolution of holistic communication.
We extend this model to allow the study of the cultural evolution of compositionality?.

Agents are modelled using networks consisting of two sets of nodes N and Ng and a
set, of bidirectional connections W connecting every node in AV}, with every node in Ns.
Nodes in NV} represent meanings and partially-specified components of meanings, while
nodes in N represent partial and complete specifications of signals.

As with the mathematical model, meanings are sets of feature values, and signals are
strings of characters. Components of a meaning specify one or more feature values of
that meaning, with unspecified values being marked as a wildcard *. For example, the
meaning (2 1) has three possible components, the fully-specified (2 1) and the partially
specified (2 %) and (% 1). These components can be grouped together into ordered sets,
which constitute an analysis of a meaning. For example, there are three possible analyses
of the meaning (2 1) — the one-component analysis {(2 1)}, and two two component
analyses which differ in order, {(2 %), (x 1)} and {(x 1), (2 *)}. Similarly, components of

2We refer the reader to Smith (2002a) for a more thorough description of this model.



signals can be grouped together to form an analysis of a signal. This representational
scheme allows the networks to exploit the structure of meanings and signals. However,
they are not forced to do so.

Learners observe meaning-signal pairs. During a single learning episode a learner
will store a (m, s) pair in its network. The nodes in N, corresponding to all possible
components of the meaning m have their activations set to 1, while all other nodes in
N have their activations set to 0. Similarly, the nodes in Ng corresponding to the
possible components of s have their activations set to 1. Connection weights in W are
then adjusted according to the rule:

+1 iffag=a,=1
AWy =< —1 iffay # a,
0 otherwise

where W, gives the weight of the connection between nodes z and y and a, gives the
activation of node x. The learning procedure is illustrated in Fig. 4 (a).

In order to produce an utterance, agents are prompted with a meaning m and required
to produce a signal s. All possible analyses of m are considered in turn with all possible
analyses of every s € §. Each meaning analysis-signal analysis pair is evaluated according
to:

c

g (<m’ S)) = Zw (sz) “Wepicsi
i=1
where the sum is over the C' components of the analysis, c,,; is the ¢th component of
m and and w (z) is a weighting function which gives the non-wildcard proportion of x.
This process is illustrated in Figure 4 (b). The meaning analysis-signal analysis pair with
the highest g is returned as the network’s utterance.

Environment structure

In the mathematical model outlined above, the environment consisted of a set of ob-
jects labelled with meanings drawn at random from the space of possible meanings. In
the computational model we can relax this assumption, and investigate how non-random
assignment of meanings to objects impacts on linguistic evolution. As before, an environ-
ment consists of a set of objects labelled with meanings drawn from M. The number of
objects in the environment gives the density of that environment — environments with
few objects will be termed low-density, whereas environments with a large number of ob-
jects will be termed high-density. When meanings are assigned to objects at random we
will say the environment is unstructured. When meanings are assigned to objects in such
a way as to minimise the average inter-meaning hamming distance we will say the envi-
ronment is structured. Sample low- and high-density environments are shown in Fig. 5.
Note the new usage of the term “structured” — while in the mathematical model we were
concerned with structure in the meaning space, given by F and V', we are now concerned
with the degree of structure in the environment. Different levels of environment structure
are possible within a meaning space of a particular structure.
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Figure 4: Nodes with an activation of 1 are represented by large filled circles. Small filled circles
represent weighted connections. (a) Storage of the meaning-signal pair ((2 1),ab). Nodes repre-
senting components of (2 1) and ab have their activations set to 1. Connection weights are then
either incremented (4), decremented (—) or left unchanged. (b) Retrieval of three possible analyses
of ((21),ab). The relevant connection weights are highlighted in grey. g for the one-component
analysis ({(2 1)}, {ab}) depends of the weight of connection i. g for the two-component analysis
({(2%),(x1)},{a*, +b}) depends on the weighted sum of two connections, marked as ii. The g for
the alternative two-component analysis ({(2 %), (x 1)}, {*b,ax}) is given by the weighted sum of
the two connections marked iii.
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Figure 5: We will present results for the case where ' = 3 and V = 5. This defines a three-
dimensional meaning space. We highlight the meanings selected from that space with grey. (a) is a
low-density, unstructured environment. (b) is a low-density, structured environment. (c) and (d) are
unstructured and structured high-density environments.
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Figure 6: The relative frequency of initial and final systems of varying degrees of compositionality,
when there is no bottleneck on cultural transmission. The results shown here are for the low-density
environments given in Fig. 5. The initial languages are generally holistic. Some final languages
exhibit increased levels of compositionality. Highly compositional languages are infrequent.

The impact of environment structure and the bottleneck

The network model of a language learner/producer is plugged into the ILM framework.
We will manipulate three factors — the presence or absence of a bottleneck, the density
of the environment and the degree of structure in the environment.

Fig. 6 plots the frequency by compositionality of initial and final systems in 1000 runs
of the ILM, in the case where there is no bottleneck on cultural transmission. The initial
agent has the maximum-entropy hypothesis — all meaning-signal pairs are equally prob-
able. The learner at each generation is exposed to the complete language of the previous
generation — the adult is required to produce utterances for every object in the environ-
ment. Each run was allowed to proceed to a stable state. Our measure of compositionality
is simply the degree of correlation between the distance between pairs of meanings and
the distance between the corresponding pairs of signals. Perfectly compositional lan-
guages have a compositionality of 1, whereas holistic languages have a compositionality
of approximately 0.

Two main results are apparent from Fig. 6.

1. The majority of the final, stable systems are holistic.
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Figure 7: Frequency by compositionality when there is a bottleneck on cultural transmission. The
results shown here are for the high-density environments given in Fig. 5. The initial languages
are holistic. The final languages are compositional, with highly compositional languages occurring
frequently.

2. Highly compositional systems occur infrequently, and only when the environment is
structured.

In the absence of a bottleneck on cultural transmission, the compositionality of the
final systems is sensitive to initial conditions. The initial system may exhibit, purely by
chance, a slight tendency to express a given feature value with a certain substring. This
compositional tendency can spread, over iterated learning events, to other parts of the
system, which can in turn have further knock-on consequences. The potential for spread
of compositional tendencies is greatest in structured environments — in such environ-
ments, distinct meanings are more likely to share feature values than in unstructured
environments. However, this spread of compositionality is unlikely to lead to a perfectly
compositional language.

Fig. 7 plots the frequency by compositionality of initial and final systems in 1000
runs of the ILM, in the case where there is a bottleneck on cultural transmission (b =
0.4). Learners will therefore only see a subset of the language of the previous generation.
Whereas in the no-bottleneck condition each run proceeded to a stable state, in the
bottleneck condition runs were stopped after 50 generations. There is no such thing as
a truly stable state when there is a bottleneck on cultural transmission. For example,
if all R utterances an individual observes refer to the same object then any structure in



the language of the previous generation will be lost. However, the final states here were
as close as possible to stable. Allowing the runs to continue for several hundred more
generations results in a very similar distribution of languages.

Two main results are apparent from Fig. 7.

1. When there is a bottleneck on cultural transmission highly compositional systems
are frequent.

2. Highly compositional systems are more frequent when the environment is structured.

As discussed with reference to the mathematical model, only highly compositional sys-
tems are stable through a bottleneck. The results from the computational model bear this
out — over time, language adapts to the pressure to be generalisable, until the language
becomes highly compositional, highly generalisable and highly stable. Highly compo-
sitional languages evolve most frequently when the environment is structured, because
in a structured environment the advantage of compositionality is at a maximum — each
meaning shares feature values with several other meanings, and a language mapping these
feature values to a signal substring is highly generalisable.

Conclusions

Language can be viewed as a consequence of an innate language organ. If we take this view,
we can form an evolutionary account which explains linguistic structure as a biological
adaptation to social function — language is socially useful, and the language organ yields
a fitness payoff. However, we have presented an alternative approach. We focus on the
the cultural transmission of language. We can then form an account which explains much
of linguistic structure as a cultural adaptation, by language, to pressures arising during
repeated production and acquisition of language.

We have presented the ILM as a framework for studying the cultural evolution of
language. We have focussed here on the cultural evolution of compositionality. Compo-
sitional language emerges when there is a bottleneck on cultural transmission — compo-
sitionality is an adaptation by language which allows it to slip through the transmission
bottleneck. The advantage of compositionality is at a maximum when language learners
perceive the world as structured — if objects are perceived as structured entities and the
objects in the environment relate to one another in structured ways then a generalisable,
compositional language is highly adaptive.

Of course, biological evolution still has a role to play in explaining the evolution of
language. The ILM is ideal for investigating the cultural evolution of language on a
fixed biological substrate, and identifying the cultural consequences of a particular innate
endowment. The origins of that endowment then need to be explained, and natural
selection for a socially-useful language might play some role here. We might indeed then
find, as suggested by Deacon, that “the brain has co-evolved with respect to language, but
languages have done most of the adapting” (Deacon 1997:122). The poverty of the stimulus



faced by language learners forces language to adapt to be learnable. The transmission
bottleneck forces language to be generalisable, and compositional structure is language’s
adaptation to this problem.
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