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Abstract

Many problems impede the design of multi-
agent systems, not the least of which is the
passing of information between agents. While
others hand implement communication routes
and semantics, we explore a method by which
communication can evolve. In the experiments
described here, we model agents as connec-
tionist networks. We supply each agent with a
number of communications channels imple-
mented by the addition of both input and out-
put units for each channel. The output units
initiate environmental signals whose ampli-
tude decay over distance and are perturbed by
environmental noise. An agent does not re-
ceive input from other individuals, rather the
agent’s input reflects the summation of all oth-
er agents’ output signals along that channel.
Because we use real-valued activations, the
agents communicate using real-valued vectors.
Under our evolutionary program, GNARL, the
agents coevolve a communication scheme over
continuous channels which conveys task-spe-
cific information.

1. INTRODUCTION

Animals, both real and artificial must constantly inter-
act with others by competing for limited resources, by
cooperating on a difficult task, or by communicating in-
formation about the environment. This paper focuses
on communication; in particular, on the issue of how a
set of agents can evolve a communication scheme to
solve a given task without a priori native structure in
place.

In speaking about communication schemes, we
wish to avoid the term “language.” A communication
scheme describes the actual signals passed between
agents. Language, a collection of sentences drawn from
a finite vocabulary, denotes an interpretation of a
communication scheme. In this sense, language is a
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subjective phenomena and is ascribed by an observer
(Kolen and Pollack, 1995). For instance, the description
“agent 0 passes a value of 0.341 to agent 2 down
channel 1” reflects the implementation of interaction,
while the alternative description “agent 0 just signalled
the presence of food to agent 1”7 involves the
interpretation of interaction. These two terms,
communication scheme and language, reflect different
aspects of the same phenomenon. Their use depends
upon which aspect of interaction — implementational
or interpretational — we wish to emphasize.

The role of communication in multi-agent systems
remains one of the most important open issues in
multi-agent system design (Brooks, 1991; Arkin and
Hobbs, 1993). Evolution, or genetic search, lends
insight into these issues in two ways. First, as a
practical matter, evolution opens the door to task-
specific languages. Communication within a group of
agents, robotic or simulated, should possess some level
of flexibility. We resist the urge to adopt a single, fixed
scheme for all tasks or to implement a new scheme for
every task merely because we can easily understand
these approaches. We have turned to evolution as our
designer because it allows the possibility for
communication schemes to emerge from the
communicative needs of the agents actually solving a
given problem with little or no regard for explanatory
clarity.

The second motivation for studying the evolution
of communication focuses on the means rather than the
end. Understanding how groups of agents evolve a
common communication scheme — knowing which
aspects of internal state they choose to communicate,
or how they represent information as messages, for
instance — should provide useful insights into language
development. Furthermore, such understanding
would have practical consequences. If we find that our
agents always adopt a similar communication scheme,
then we should examine that language in detail.
Perhaps it provides increased efficiency for the task, or
is particularly robust. On the other hand, such



regularities could emerge from learning bias in the
evolutionary algorithm.

2. RELATED WORK

Several other researchers have studied the evolution of
communication schemes, but their work all shares an
emphasis on discrete communication. Yanco and Stein
(1993) investigate a simple “follow-the-leader” task in
which one agent, the leader, receives a command which
must be followed by a group of agents. The leader
chooses one of n symbols to represent the command,
broadcasts the symbol to the other agents, and the sub-
ordinates respond. A reinforcement algorithm governs
both the encodings of the leader and responses of the
subordinates; over time, a consensus emerges between
the two.

Werner and Dyer (1992) describe a more complex
environment in which simulated animals must
communicate to find mates. Females, while stationary,
can sense potential mates within a limited range and
“call out” to them by emitting a signal. Males,
wandering around the environment, lack the capacity
to produce signals or see the females directly, but they
can sense the females’ signals and respond by moving
toward them. Using a neural network representation
for agents and a genetic algorithm for search, Werner
and Dyer show that the sexes can agree on a common
language.!

MacLennan (1992) adopts a higher-level view of
language by defining an abstract task in which a group
of agents must learn to communicate. Each agent
possesses local information in terms of one of n
symbols; it chooses a second symbol (from a set of ) to
convey that information, and other agents must
respond appropriately. Using finite state machines to
represent agents and a genetic algorithm, MacLennan
shows how the group of agents evolve a common
symbol-symbol mapping.

Collins and Jefferson (1991, 1992) study AntFarm, a
simulated ant colony in which agents must learn to
communicate the presence of food. At each time step,
an agent drops between 0 and 64 units of pheromone,
which then diffuses throughout the environment as a
signal to other ants. Although they have yet to evolve
cooperative foraging, the work sheds some light on
representational issues, in particular, on the use of
neural networks as an agent representation.

1. Werner and Dyer (1993) propose a very interesting model
“BioLand” which supports the evolution of communication
as well, but the results focus on herding behavior rather than
the evolved communication scheme, and it is unclear how
the signals generated by the agents affect their behavior.

Ackley and Littman(1994) is the closest in spirit to
our work, though significantly more complex in its
construction, and focusing mainly on issues of
distributed evolutionary computation. The agents in
their model operated on tracks and used discrete bit
communication in 6 channels.

As stated earlier, all of this work focuses on
discrete communication signals, with ensuing finite-
sized? languages (2-20 for Yanco and Stein; 4-8 for
Werner and Dyer; 8 for MacLennan; 65 for Collins and
Jefferson and 6 for Ackley & Littman). Implicitly, all of
these studies assume that each agent possesses a
perceptual system capable of discriminating external
events into discrete categories and that the “true”
behavior control lies hidden behind such systems.
Furthermore, some studies make an architectural
distinction between the agent sending the message and
the recipient (Yanco and Stein, 1993; Werner and Dyer,
1992; and to some extend MacLennan, 1992, in the
sense that at any given time, there is a privileged agent
attempting to convey its local information to the
others).

3. COMMUNICATION WITH
CONTINUOUS SYMBOLS

Our approach to understanding multi-agent communi-
cation differs from the work described above. Based
upon our work in understanding where complexity
arises in observations of dynamical systems, we believe
that granting a discrete symbol system privileged posi-
tion as a substrate for evolution is a confusion of levels
(Saunders, Kolen, and Pollack, 1994). Consequently,
rather than assume the transmission of discrete signals
between agents, we provide our agents with continu-
ous channels capable of supporting a variety of com-
munication schemes. Furthermore, we make no archi-
tectural distinctions between transmitter and receiver.

This section describes our main experiments which
are fully described in Saunders(1994). First we briefly
describe GNARL, the algorithm we use to evolve our
agents. Then we introduce an extension of the Tracker
task (Jefferson et al., 1992), which will serve as a
substrate for our experiments. Next, we describe the
method of communication our agents employ. Finally,
we describe our experimental results.

3.1 GNARL

GNARL (Saunders, Angeline, and Pollack, 1994) is an
algorithm based on evolutionary programming (Fogel,
1992) that induces recurrent neural networks. It pro-

2. The size of a language is the number of distinct signals an
agent may produce.
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Figure 1: The Tracker task. (a) The trail is connected initiallhy,
but becomes progressively more difficult to follow. The
underlying 2-d grid is toroidal; (b) The semantics of the 1/O
units for the ant network. The first input node denotes the
presence of food in the square directly in front of the ant; the
second denotes the absence of food in this same square. No-op,
from Jefferson et al., allows the network to stay in one position
while activation flows through recurrent links.

vides a mechanism for the simultaneous acquisition of
network structure and weight values. GNARL employs
a population of networks, replacing half each genera-
tion, and uses a fitness function’s unsupervised feed-
back to modulate the amount of mutation applied to in-
dividual networks.

GNARL has been applied to several different
problems (Angeline, Saunders, and Pollack, 1993). In
particular, we have applied GNARL to the Tracker task
(Jefferson et al., 1992) in which a simulated ant must
learn to follow a broken trail of food (Figure 1a). Each
ant receives two inputs: one indicating the presence of
food in the square directly before the agent; and
another detecting the absence of food in that same
square. Jefferson, et al., allowed four primitive actions:
move-forward (and implicitly eat food if present), turn
left, turn right, and no-op (Figure 1b). Under these
conditions GNARL evolved several different networks
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Figure 2: FSA hand-crafted for the Tracker task, from Jefferson,
et al., 1992. The large arrow indicates the initial state. This
simple system implements the strategy “move forward [zf there
is food in front o/?ou, otherwise turn right four times, looking
for food. If food is found while turning, pursue it, otherwise,
move forward one step and repeat.”

NoFood/Right

NoFood/Mo

as a solution, one of which closely approximates the
finite-state automaton shown in Figure 23

3.2 The Tracker Task, Revisited

To study the evolution of communication in groups of
agents, we extend the Tracker task in three ways:

¢ increasing the number of agents

* increasing the size of the grid to accommo-

date these agents

* moving all the food to a small area in the

center of the environment

We assume that these modifications will shift the
emphasis of the task from evolution of local internal
state to evolution of distributed external state, i.e.,
communication. We concentrate the food within one
area so that when an agent finds it and communicates,
some food remains by the time other agents arrive. The
size of the environment and the amount of food it
contains far exceed the capabilities of a single ant: in
the limited time available an ant can neither search the
entire space nor consume all the food therein. Thus the
task design ensures that the only method of complete
success necessarily involves communication among
the agents.

3.3 An Architecture for Communication

When faced with a task requiring communication, the
architecture of Figure 1b will certainly fail; namely, be-

3. Note however that the network’s behavior is not precisely
captured by the FSA. Kolen (1994a, 1994b) shows that, in
general, FSAs approximate networks only poorly. Another
network induced by GNARL makes this point empirically.
(See Saunders, Angeline, and Pollack, 1994).



cause it in no way supports communication. To remedy
this shortcoming, we begin by adding n additional in-
put and output units to the network of Figure 1b, repre-
senting n channels of communication. (These architec-
tural changes, along with others not yet described, are
shown in Figure 3.)

Output signals propagate throughout the
environment, decaying in inverse proportion to
squared distance.* Perception of these signals is
governed bZI Equation 1. The input signal to agent a
along the it channel, siN(a, i), is a summation of the
signals of all other agents along this channel. A is the
set of agents, s,,,;(b, i) is the ith output signal of agent b.
The noise in the channel, U[-u; v;] is a uniform
random number with range specific to the channel,
and 0 is a linear threshold function, which bounds the
signals in all channels to a user-specified range [s,;,,
Syax]- In the experiments below, s,,;,, = 0 and s,,,,, = 40.

5. (@) = Z 0 (Sout (b, i) +U[-u,u])

. 2
{bDA] distance (a, b)
bza

Egqnl

We have already demonstrated that when hidden
nodes are added to the base architecture of Figure 1b,
the resulting network can display complex behavior
despite the simplicity of its move/turn outputs
(Saunders, Angeline, and Pollack, 1994). In this study,
however, we wish to maintain a clear separation
between complexity arising from communication, and
complexity arising from clever activation of the output
nodes. We accomplish this in two steps. First, we
condense the “move,” “turn,” and “no-op” outputs of
the Tracker task into a single output unit: “Follow
FSA.” Second, we add n additional output units,
representing the agents actions relative to the n
communication channels. We maintain, from the
original study, an implicit winner-take-all network on
the (non-signal) outputs: when the “Follow FSA” node
receives highest activation, the agent follows the
primitive food-collection strategy of the FSA in
Figure 2; when the i “Follow gradient” node receives
highest activation, the agent follows the gradient of
communication channel i. Figure3 shows the final
architecture. All activations are continuous; only the
hidden activation is squashed (with the standard
sigmoid function).

4. We assume that the signals propagate much faster than the
agents react (as would a sound wave), so that effectively, at
each discrete time step, an agent’s output signals establish a
wave front whose strength decays over distance.
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Figure 3: The semantics of the I/O units for evolving
communication. The “food/nofood” inputs are from the Tracker
task; the “Follow FSA” node represents one particular strategy
found by GNARL. The additional nodes, described in the text,
give the agent the ability to perceive, generate, and follow
signals.

These modifications, though not essential to our
results, greatly facilitate their analysis. The food
collection strategy of the FSA is indeed quite simple; if
activated repeatedly on a grid containing no food, the
agent traverses its environment, turning in circles, but
never veering from a straight line. Thus if we observe
an agent moving non-linearly in the absence of food,
we can assert with confidence that the agent is
following a communication signal. Furthermore,
because of the implicit winner-take-all network, we
can easily observe which communication signal the
agent is pursuing by simply comparing activations
across the output nodes.

For the studies reported in this paper, all agents in
an environment are homogeneous in that they share
not only the architecture of Figure 3, but also common
weights. As shown below, however, their behaviors
will be quite different depending upon each agent’s
perspective of its world.

4. RESULTS

With this experimental setup, our thesis can be restated
more precisely as follows. Multi-agent systems may
evolve task-specific communication schemes. In partic-
ular, given the modified Tracker task (Section 3.2), a set
of agents instantiated as recurrent neural networks
(Figure 3), and a method of signal propagation (Section
3.3), then an evolutionary algorithm (GNARL, Section
3.1) is capable of evolving a communication scheme
which allows the agents to perform their task.
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Figure 4: Scenes of evolved communication, 2 agents, 1 communication channel, no noise. The radius of the circles
corresponds to the strength of communication. (a) Initial positions: neither agent can sense food; (b) One agent just
reaches food, time is t=20; (c) Recruitment — first agent attracting the second, t=40; (d) Second agent just at food,
t=60; (e) Agents eating, t=100; (f) Agents eating, t=14; () Recruitment — second agent attracting first, t=180.




Agent 1

Agent 2

Agent O

(@

(©

Agent 1

Agent 2

Agent O

(b)

________ Agent O

Agent 2i8, -
Agent 1 b

(d)

Figure 5: Scenes of evolved communication, 3 agents, 2 communication channels, one noisy. (a) Initial condition, circles
denote signal 0; (b) After one time step, signal 0 has grown to maximum value. It oscillates between the two values
when no food is present. (c) Recruitment, time 0 to 150. Dots indicate path of agents (food and signals have been

removed for clarity); (d) Agent paths, time 150 to 300.




We begin testing this hypothesis with a very
simple case: 2 agents, each with one hidden unit,
capable of passing one real number between each
other, with no noise (1p = 0). We measure fitness by
simply observing the total amount of food eaten by the
group. Figure4a shows the initial environment.
Without communication, each agent would follow the
FSA, and agent 1 would move in a straight line, finding
no food.

With communication, however, the story is quite
different. In 800 generations, GNARL discovered a pair
of agents (from a population of 50 pairs) which had
learned to communicate the presence of food.
Figure 4b shows the case just as agent 0 reaches the
food; and Figure4c shows recruitment: agent 0’s
strong signal, due to the food, attracts agent 1.°
Figures 4e and f show both agents are emitting high
signals while eating, and finally in Figure 4g,
recruitment occurs again, this time in reverse.

We chose this case as a demonstration for several
reasons. First, snapshots easily capture the evolved
communication scheme: larger circles imply a higher
signal. Second, the evolved language is fairly intuitive:
each agent “yells” when it finds food by increasing the
strength of its output signal; upon “hearing” such a
signal, the second agent follows it to the source of food.
We have also observed several different
implementations of the same behavior, another
common one being “Yell constantly when you're
searching for food, but then grow quiet when eating.”
In this second case, agents learn to respond to silence.

We now focus in detail on a third, more complex
communication scheme. For this experiment, we used
the same food distribution, increased the number of
agents to three, and retained a a single hidden unit for
each agent. To investigate how the agents would
respond to noise, we gave them two communication
channels, the first clear (1#y=0), the second noisy
(17=10). Figure 5a shows the initial environment. The
circles reflect the strength of signal 0. We do not
include signal 1, in the graphics, because it was not
used by the agents (more on this below). After one time
step, the signals along channel 0 have grown to their
size in Figure 5b. In the absence of food, signals in this
channel oscillate between these two extreme values.
Figure 5¢ shows recruitment by agent 0; Figure 5d
shows that recruitment is not permanent: when the
food has been consumed, agent 0 strikes out on its
own.

5. The circles denote not signal range, but the radius at
which signal strength is one. (Signal strength is the summand
in Equation 1.)

Figures 6-8 show how behavior is accomplished.
Figure 6 gives the profile of agent 0 over the run. Note
how its output signal 0 oscillates in the absence of
food. Figure 7 shows the profile of agent 1 throughout
the run. The lack of oscillation in agent 0’s output is
enough to turn agent 1 towards the food. (The 5 spikes
in the behavioral profile indicate “Follow signal 0”
behavior.)

Agent 2, however, is slightly different (Figure 8).
Note the oscillation in its behavior, as it alternates
between following the gradient of signal 0 and
following the FSA. At first glance, this seems incorrect,
because the inputs to agents 1 and 2 look identical, and
their architectures are identical, but their output
behaviors are very different. The problem might
simply be one of perceptual scale (i.e. we can’t see any
differences). Figure9 zooms in on the first 50 time
steps of the signal 0 input to agents 1 and 2, and shows
that there is a slight variance in magnitude of signals,
and a phase reversal. Further sensitivity testing, by
artificially varying the input signals and observing the
resulting agent behavior, showed that the difference in
behavior between agent 1 and 2 was caused by the
phase difference, not the magnitude difference.

5. ANALYSIS

Detecting the presence of communication is more diffi-
cult than it sounds. Communication can occur across
long and short distances of both space and time. Ran-
dom noise can corrupt or masquerade as communica-
tion. To operationalize the effects of communication, we
first adopted the following definition: task-specific com-
munication occurs between agents if performance drops when
the communications channel is blocked. In our experimen-
tal milieu, we blocked the agents’ signals by shunting
the channel with various constant values. In all cases,
removal of channel 0 drastically reduced fitness, yet the
removal of channel 1 failed to hamper the search behav-
ior of the agents, confirming that the agents had learned
to rely on the clear channel and ignored the noisy chan-
nel.

This definition of task-specific communication,
however, makes two assumptions which limit its
strength.  First, it assumes that interagent
communication is goal-directed; communication is the
means to increasing the performance of a given task.
Observing the behavior of the agents does not tell us
why one agent squawks over a channel or why another
agent reacts to the ruckus. Second, this definition
assumes that an agent ignores channels providing it
with irrelevant information, ie., noise. Without
dissecting the agent, one cannot tell if noise is a
necessary environmental regularity contributing to the
normal behavior of an agent. If this is true, blocking
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Figure 6: Profile of agent 0, for 300 time steps. The lowest graph is the food input: when food is detected, the value spikes to one;
otherwise it is zero. This agent has learned to correlate oscillation of its output signal 0 with the presence of food.
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Figure 7: Profile of agent 1. The five spikes in behavior indicate points where the zégent follows signal 0, as can be seen in Figure 5c.
Because the agent perceives no food during this time, the resulting behavior occurs due to the agents input signals.
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Figure 8: Profile of agent 2. Although its initial inputs (food & signals) look identical to that of agent 1, this agent’s initial behavior
oscillates between “Follow food” and “Follow signal.” The difference is resolved in Figure 9.
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Figure 9: Close up view of the first input signal of agents 1 and 2, epochs 0 to 50, to see why their initial behaviors
dz'}%er. Agent 1’s input begins oscillating between .03 and .04. Agent 2’s input begins oscillating between .06 and 0.
Upon investigation, we discovered that it is not the magnitude, but the difference in phase which is responsible.

such a channel would more resemble severing an
appendage rather than masking a sensor. In short, an
evolved or programmed solution to a multi-agent
problem is an instance, and drawing conclusions about
the class from a single instance is risky business.

The switch from discrete to continuous signals
brings into question the traditional notion of
communication in this context. Recall the set of
experiments involving three agents. An interesting
communication scheme emerged which employed
both constant and oscillatory signals. While one could
claim that the agents learned to discriminate between
oscillatory and constant signals or discern phase
differences, we believe another mechanism is at work.
Rather than recognize environmental patterns, the
agent allows the input sequences to modulate its
behavior-producing mechanisms. Kolen (1994b) used
this approach to explain the behavior of recurrent
neural networks. From this perspective, we view the
agent as a state transform system consisting of a set of
functions mapping internal state to internal state.
Input, by this approach, selects the current transform
from this set. At no time is the input stream
partitioned, normalized, or recognized, it simply
modulates the behavior of the network.

We began with very few assumptions about the
nature of communication, essentially stripping away
the information-theory veneer that has made previous
systems easy to understand. First we replaced the
engineer with evolutionary search. Second, we
eliminated discrete events and allowed the agents to

modify channels with continuous values. These
assumptions did not prevent solutions to the modified
Tracker problem, in fact some novel approaches were
discovered.  Identifying the contribution of
communication to solving the task proved to be very
difficult. Despite these difficulties with understanding
how the agents operated, we were able to evolve
agents which demonstrated such task-specific
behaviors as recruitment. Our hope is that this work
opens the door to the study of evolving continuous
communication schemes.
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