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Abstract. We describe a Genetic Algorithm that can evolve complete
programs. Using a variable length linear genome to govern how a Backus
Naur Form grammar definition is mapped to a program, expressions
and programs of arbitrary complexity may be evolved. Other automatic
programming methods are described, before our system, Grammatical
FEvolution, is applied to a symbolic regression problem.

1 Introduction

Evolutionary Algorithms have been used with much success for the au-
tomatic generation of programs. In particular, Koza’s [Koza 92] Genetic
Programming has enjoyed considerable popularity and widespread use.
Koza’s method originally employed Lisp as its target language, and oth-
ers still generate Lisp code. However, most experimenters generate a
homegrown language, peculiar to their particular problem.

Many other approaches to automatic program generation using Evolu-
tionary Algorithms have also used Lisp as their target language. Lisp
enjoys much popularity for a number of reasons, not least of which is
the property of Lisp of not having a distinction between programs and
data. Hence, the structures being evolved can directly be evaluated. Fur-
thermore, with reasonable care, it is possible to design a system such
that Lisp programs may be safely crossed over with each other and still
remain syntactically correct.

Evolutionary Algorithms have been used to generate other languages,
by using a grammar to describe the target language. Researchers such
as Whigham [Whigham 95] and Wong and Leung’s LOGENPRO sys-
tem [Wong 95] used context free languages in conjuntion with GP to
evolve code. Both systems exploited GP’s use of trees to manipulate parse
trees, but LOGENPRO did not explicitly maintain parse trees in the pop-
ulation, and so suffered from some ambiguity when trying to generate a
tree from a program. Whigham’s work did not suffer from this, and had
the added advantage of allowing an implementor to bias [Whigham 96]
the search towards parts of the grammar.

Another attempt was that of Horner [Horner 96] who introduced a sys-
tem called Genetic Programming Kernel (GPK), which, similar to stan-
dard GP, employs trees to code genes. Each tree is a derivation tree



made up from the BNF definition. However, GPK has been criticised
[Paterson 97] for the difficulty associated with generating the first gen-
eration - considerable effort must be put into ensuring that all the trees
represent valid sequences, and that none grow without bounds. GPK has
not received widespread usage.

An approach which generates C programs directly, was described by
Paterson [Paterson 97]. This method was applied to the area of evolv-
ing caching algorithms in C with some success, but with a number of
problems, most notably the problem of the chromosomes containing vast
amounts of introns. This method will be more fully discussed in section 3.
We describe a different approach to using BNF definitions, and develop
a system that evolves individuals containing no introns. This system can
be used to evolve programs in any language. We adopt the approach that
the genotype must be mapped to the phenotype [Keller 96] [Ryan 97a]
[Ryan 97b] [Gruau 94] rather than treating the actual executable code
as data. In this respect we diverge from Koza’s approach, but with the
result that the individuals tend to be much smaller.

2 Backus Naur Form

Backus Naur Form (BNF) is a notation for expressing the grammar of
a language in the form of production rules. BNF grammars consist of
terminals, which are items that can appear in the language, i.e +,—
etc. and non-terminals, which can be expanded into one or more ter-
minals and non-terminals. A grammar can be represented by the tuple,
{N,T, P, S}, where N is the set of non-terminals, T the set of terminals,
P a set of production rules that maps the elements of N to 7', and S is
a start symbol which is a member of N. For example, below is a possible
BNF for a simple expression, where

N = {expr,op,pre_op}
T= {Szn, COS, Tan, LOg: +, - /7 *, X, ()}

S =< expr >

And P can be represented as:

(1) <expr> ::= <expr> <op> <expr> (A)
| ( <expr> <op> <expr> ) (B)
| <pre-op> ( <expr> ) ©
| <var> (D)

(2) <op> ::= + (h)

| - (B)
I / (©
|

* (D)



(3) <pre-op> ::= Sin (A)
| Cos (B)
| Tan (C)
| Log (D)

(4) <var> ::= X

Unlike a Koza-style approach, there is no distinction made at this stage
between what he describes as functions (operators in this sense) and
terminals (variables in this example), however, this distinction is more
of an implementation detail than a design issue.

Whigham [Whigham 96] also noted the possible confusion with this ter-
minology and used the terms GPFunctions and GPTerminals for
clarity. We will also adopt this approach, and use the term terminals
with its usual meaning in grammars.

Table 1 summarizes the production rules and the number of choices asso-
ciated with each. When generating a sentance for a particular language,
one must choose carefully which productions are to used, as, depending
on the choices made, a sentance may be quite different from the desired
one, possibly even of a different length.

Rule no.|Choices
1 4
2 4
3 4
4 1

Table 1. The number of choices available from each production rule.

‘We propose to use a genetic algorithm to control what choices are made
at each juncture, thus allowing the GA to control what production rules
are used. In this manner, a GA can be used to generate any manner of
code in any language.

3 Genetic Algorithm for Developing Software

Genetic Algorithm for Developing Software (GADS) as described by
[Paterson 97] uses fixed length chromosomes which encode which pro-
duction rules are to be applied. If, when interpreting a gene, it doesn’t
make syntactic sense, e.g. trying to apply rule 2.A as the first production,
or when no operator is available, it is ignored.

If, at the end of the chromosome, there are gaps in the expression, i.e.
non-terminals which did not have any terminal chosen for them, a default



value is inserted. The default value must be tailored for each production
rule. In [Paterson 97] it was suggested that an empty production is the
suitable approach, however, this is not always possible. Consider the BNF
above, rules 2 and 3 must produce an operator of some description, oth-
erwise the entire expression would be compromised. Thus, an arbitrary
decision must be taken about which rule should be used as the default.
If, for example, an individual was generated that had the non terminal
< op > in it, with all of the genes exhausted, one must decide which of
the rules 2A..2D should be used as a default rule. Clearly, an unfortunate
or misguided choice could harm the evolution of a population.

4 Grammatical Evolution

The GADs approach suffers from a number of drawbacks. In particular,
as the number of productions grows, the chance of any particular produc-
tion being chosen by a gene reduces. Paterson’s suggestion to combat this
was to simply increase the population size or the genome size. Another
suggestion was to duplicate certain production rules in the BNF.

This results in a serious proliferation of introns, consider (using our own
notation, not Patersons) the following chromosome using the productions
from above.

|ID[1A[2B[3B[3A]....[44]

Because of the initial rule that was used, there is only one possible choice
rule to apply, and any other rule that occurs in the genome must be ig-
nored. This can lead to a situation where the majority of genome consists
of introns.

Instead of coding the transitions, our system codes a set of pseudo ran-
dom numbers, which are used to decide which choice to take when a non
terminal has one or more outcomes. A chromosome consists of a variable
number of binary genes, each of which encodes an 8 bit number.

[220]203[17]3[109]215[104]30]

Table 2. The chromosome of an individual. Each gene represents a random number
which can be used in the translation from genotype to phenotype.

Consider rule #1 from the previous example:



(1) <expr> ::= <expr> <op> <expr> | ( <expr> <op> <expr> ) |
<pre-op> ( <expr> ) | <var>

In this case, the non-terminal can produce one of four different results,
our system takes the next available random number from the chromo-
some to decide which production to take. Each time a decision has to
be made, another pseudo random number is read from the chromosome,
and in this way, the system traverses the chromosome.

In natural biology, there is no direct mapping from gene to physical ex-
pression [Elseth 95]. When genes are expressed they generate proteins,
which, either independantly or, more commonly in conjunction with
other proteins, created by other genes, affect physical traits. We treat
each transition as a protein, on their own, each transition cannot gener-
ate a physical trait. However, when other proteins are present, physical
traits can be generated. Moreover, while a particular gene always gener-
ates the same protein, the physical results depend on the other proteins
that are present immediately before and after.

Consider the individual in Table 2. The fourth gene generates the number
3, which, in our system, is analgous to the protein 3. Notice that this will
be generated regardless of where the gene appears on the chromosome.
However, it may have slightly different effects depending on what other
proteins have been generated previously. The following section describes
the mapping from genotype to phenotype in detail.

It is possible for individuals to run out of genes, and in this case there
are two alternatives. The first is to declare the individual invalid and
punish them with a suitably harsh fitness value; the alternative is to wrap
the individual, and reuse the genes. This is quite an unusual approach
in EAs, as it is entirely possible for certain genes to be used two or
more times. Each time the gene is expressed it will always generate the
same protein, but depending on the other proteins present, may have a
different effect. The latter is the more biologically plausible approach,
and often occurs in nature. What is crucial, however, is that each time
a particular individual is mapped from its genotype to its phenotype,
the same output is generated. This is because the same choices are made
each time.

To complete the BNF definition for a C function, we need to include the
following rules with the earlier definition:

<func> ::= <header>

<header> ::= float symb(float X) { <body> }
<body> ::= <declarations><code><return>
<declarations ::= float a;

<code> ::= a = <expr>;



<return> ::= return (a);

Notice that this function is limited to a single line of code. However, this
is because of the nature of the problem, the system can easily generate
functions which use several lines of code. Specifically, if the rule for code
was modified to read:

BNF
Definition

L Variable Length Genome

Fig. 1. The Grammatical Evolution System

<code> ::= <line>; | <line>; <code>

<line> ::= <var> = <expr>
then the system could generate functions of arbitrary length.
4.1 Example Individual

Counsider an individual made up of the following genes (expressed in dec-
imal for clarity) :

[220]203[17]3[109]215[104]30]

These numbers will be used to look up the table in Section 2 which
describes the BNF grammar for this particular problem. The first few
rules don’t involve any choice, so all individuals are of the form:

float symb(float x)



{
a = <expr>;
return(a) ;

}

Concentrating on the <expr> part, we can see that there are four produc-
tions to choose from. To make this choice, we read the first gene from the
chromosome, and use it to generate a protein in the form of a number.
This number will then be used to decide which production rule to use,
thus s we have 220 MOD 4 = 0 which means we must take the first
production, namely, 1A. We now have the following

<expr> <op> <expr>

Notice that if this individual is subsequently wrapped, the first gene will
still produce the protein 220. However, depending on previous proteins,
we may well be examining the choice of another rule, possibly with a
different amount of choices. In this way, although we have the same
protein it results in a different physical trait.

Continuing with the first expression, a similar choice must be made, this
time using 203 M OD 4 = 3, so the third choice is used, that is 1C.

<var> <op> <expr>

There is no choice to be made for var, as there is only one possible
outcome, so X, is inserted. Notice that no number is read from the
genome this time.

X <op> <expr>

The mapping continues, as summarized in table 3, until eventually, we
are left with the following expression:

X+ Sin ( X))

Notice how not all of the genes were required, in this case the extra genes
are simply ignored.

5 Operators

Due to the fact that genes are mapped from genotype to phenotype there
is no need for problem specific genetic operators, and GE employs all the
standard operators of Genetic Algorithms. There are however, two new
operators Prune and Duplicate , which are peculiar to GE.



Expression Rule|Gene[Number Generated
<expr> n/a

<expr><op><expr>| 1A| 220 0
<var><op><expr> | 1D]| 203 3
X<op><expr> 4| n/a

X+<expr> 2A| 17 1
X+pre_op(<expr>)| 2C| 19 3
X+Sin(<Kexpr>) 3A| 109 1
X+Sin(<var>) 1D| 215 3
X+Sin(X) 4/ n/a

Table 3. Mapping a genome onto an expression

5.1 Duplicate

Gene duplication involves making a copy of a gene or genes [Elseth 95],
and has been used many times in Evolutionary computation [Schutz 97].
Duplicated genes can lie adjacent to the original gene, or can lie at a
completely different region. Repeated gene duplications are presumed to
have given rise to the human hemoglobin gene family. The hemoglobin
protein is involved with transporting oxygen around the body through
the bloodstream. The original hemoglobin gene duplicated to form an « -
globin, and (3 - globin genes. Each of these underwent further duplications
resulting at present in four variations on the « - globin gene, and five of
the 3 - globin gene. Different combinations of these genes are expressed
during development of the human, resulting in the hemoglobin having
different binding properties for oxygen. The presence of a copy of a gene
can therefore have benefits. Biologically the results of gene duplications
can be to supply genetic material capable of:

(i) Acquiring lethal mutation(s). If two copies of a gene are present in a
genome, and one happens to be mutated such that it’s protein product
is no longer functional having the second copy means that this
probability of harmful mutation is reduced.

(ii) Evolving new functions. If a mutation is favourable it may result
in an altered protein product, perhaps with new functionality, without
changing the function of the original gene’s protein product.

(iii) Duplicating a protein in the cell, thus producing more of it. The
increased presence of a protein in a cell may have some biological effects.
Goldberg [Goldberg 89] stated that using operators such as duplication
in a variable-length genotype enables them to solve problems by com-
bining relatively short, well-tested building blocks to form longer, more
complex strings that increasingly cover all features of a problem.

The duplication operator used in GE is a multiple gene duplication op-
erator. The number of genes to be duplicated is picked randomly. The
duplicated genes are placed into the position of the last gene on the chro-



Useful
Materia

mosome, if the (X * X) part of the expression were duplicated, this could
result in a useful extension to the genome, especially if a multiplication
operator happend to be between the original expressions genes and the
duplicated one. Gene duplication in GE is essentially analogous to pro-
ducing more copies of a gene(s) to increase the presence of a protein(s)
in the cell.

5.2 Pruning

Individuals in GE don’t necessarily use all their genes. For example, to
generate the expression X * X + X only five genes are required, but an
individual that generates this expression could well be made up of many
more. The remaining genes are introns and serve to protect the crucial
genes from being broken up in crossover. While this certainly serves the
selfish nature of genes in that it increases the longevity of a particular
combination, it is of no advantage to us. In fact, it would make sense for
an individual to be as long as possible, to prevent its combination from
being disrupted. The fact that such disruption could be crucial to the
evolution of the population as a whole is of consequence to the individual.
Figure 2 illustrates the effect of too many introns.

O

Fig. 2. Crossover being hampered by introns

To reduce the number of introns, and thus increase the likelihood of
beneficial crossovers, we introduce the prune operator. Prune is applied
with a probability to any individuals that don’t express all of their genes..
Any genes not used in the genotype to phenotype mapping process are
discarded.

The effects of pruning are dramatic; FASTER; BETTER CROSSOVER.

6 The Problem Space

As proof of concept, we have applied our system to a symbolic regression
problem used by Koza [Koza 92]. The system is given a set of input and



output pairs, and must determine the function that maps one onto the
other. The particular function Koza examined is X* + X%+ X2+ X with
the input values in the range [—1..41]. Table 4 contains a tableau which

summarizes his experiments.

Objective :

Find a function of one independant variable and
one dependant variable, in symbolic form

that fits a given sample of 20 (z;,ys)

data points, where the target functions is the
quartic polynomial X* + X3 + X2 4+ X

GPTerminal Set:

X (the independant variable)

GPFunction Set

+a % %: sin, COS, €Xp, IOg

Fitness cases

The given sample of 20 data points in the
interval [—1, +1]

Raw Fitness

The sum, taken over the 20 fitness cases,
of the error

Standardised Fitness

Same as raw fitness

Hits

The number of fitness cases for which the error
is less than 0.01

Wrapper

None

Parameters

M =500, G =51

Table 4. A Koza-style tableau

The production rules for < expr > are given above. As this and sub-
sequent rules are the only ones that require a choice, they are the ones
that will be evolved.

We adopt a similar style to Koza of summarizing information, using a
modified version of his tableau. Notice how our terminal operands and
terminal operators are analgous to GPTerminals and GPfunctions re-
spectively.

6.1 Results

GE consistently discovered the target function when both the duplication
and pruning operators were employed. Examination of potential solutions
from the other runs showed they tended to fixate on operators such as
Sin or Exp as these gene rated a curve similar to that of the target
function.

Space constraints prevent us from describing the nature of individuals
generated by GE as it was constructing the correct solution. However, the
system exploits the variable length genome by concentrating on the start
of the string initially. Although the target function can be represented by
eighteen distinct genes, there are several other possibilities which, while
not perfectly fit, are considerably shorter. Individuals such as X2 + X
generate curves quite comparable to the target, using a mere five genes.



Objective :

Find a function of one independant variable and
one dependant variable, in symbolic form

that fits a given sample of 20 (z;, y:)

data points, where the target functions is the
quartic polynomial X* + X3 + X2 + X

Terminal Operands:

X (the independant variable)

Terminal Operators

The binary operators +, ¥, /, and —
The unary operators Sin, Cos, Exp and Log

Fitness cases

The given sample of 20 data points in the
interval [—1, +1]

Raw Fitness

The sum, taken over the 20 fitness cases,
of the error

Standardised Fitness

Same as raw fitness

Hits

The number of fitness cases for which the error
is less than 0.01

Wrapper Standard productions to generate
C functions
Parameters M =500, G =51

Table 5. Grammatical Evolution Tableau

Typically, individuals of this form were discovered early in a run, and
contained valuable gene sequences, particularly of the form X % X which,
if replicated could subsequently be used to generate individuals with
higher powers of X. GE is subject to problems of dependencies similar
to GP [O’Reilly 97], i.e. the further from the root of a genome a gene is,
the more likely its function is to be affected by other genes.

By biasing individuals to a shorter length, they were encouraged to dis-
cover shorter, albeit less fit expressions early in a run, and then generate
progressively longer genomes and hence increasingly complex functions
in subsequent generations.

7 Conclusions

We have described a system, Grammatical Evolution (GE) that can map
a binary genotype onto a phenotype which is a high level program. Be-
cause our mapping technique employs a BNF definition, the system is
language independant, and, theoretically can generate arbitrarily com-
plex functions.

We believe GE to have closer biological analogies to nature than GP,
particularly with its use of linear genomes and the manner in which it
uses proteins to affect traits. Other schemes tend to use either the direct
evolution of physical traits or the use of simple one to one mappings from
genotype to phenotypic traits.

This paper serves an introduction to GE. We believe there is great
promise to the system, and that the ability to evolve any high level lan-
guage would surely be a huge boost for Evolutionary Algorithms, both in



terms of increased usage and acceptance, and in terms of the complexity
of the problems it can tackle.

Using BNF definitions, it is possible to evolve multi line functions; these
functions can even declare local variables and use other high level con-
structs such as loops. The next step is to apply GE to a problem that
requires such constructs.

Although GE is quite different from the functional nature GP, in both
its structure and its aims, there is still quite a lot of similarity. We hope
that GE will be able to benefit from the huge amount of work already
carried out on GP, particularly in the fundamentals, i.e. ADFS, indexed
memory, etc. many of which can be coded in BNF with relative ease.
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