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1 Language in the World

How does language relate to the non-linguistic world? If an agent is able to

communicate linguistically and is also able to directly perceive and/or act on

the world, how do perception, action, and language interact with and influence

each other? Such questions are surely amongst the most important in Cogni-

tive Science and Artificial Intelligence (AI). Language, after all, is a central

aspect of the human mind – indeed it may be what distinguishes us from other

species.

There is sometimes a tendency in the academic world to study language in

isolation, as a formal system with rules for well-constructed sentences; or to

focus on how language relates to formal notations such as symbolic logic.

But language did not evolve as an isolated system or as a way of communi-

cating symbolic logic; it presumably evolved as a mechanism for exchanging

information about the world, ultimately providing the medium for cultural

transmission across generations. Motivated by these observations, the goal of

this special issue is to bring together research in AI that focuses on relating

language to the physical world. Language is of course also used to commu-

nicate about non-physical referents, but the ubiquity of physical metaphor

in language [21] suggests that grounding in the physical world provides the

foundations of semantics.
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Systems that connect language to the world may be called situated to empha-

size the links to non-linguistic situational context. These systems also address

the symbol grounding problem [17] and may thus be called grounded. The

topic of this special issue is situated, grounded systems. This includes systems

which translate sensory signals into language and language into physical ac-

tions, systems which learn how to use language in this manner, and systems

that use non-linguistic data when making linguistic decisions. Non-linguistic

interaction is generally anchored in sensors or effectors which are connected to

the physical world (or to simulations of the physical world). Although much

current work on sensor grounding emphasizes visual perception, other modal-

ities ranging from thermal to haptic are also being explored.

The numerous open challenges of language grounding provide an opportunity

to bring together many sub-fields of AI. While early AI researchers often inves-

tigated many aspects of machine intelligence, in recent years there has been a

tendency for researchers to focus on specific sub-fields of AI with well defined

goals, such as computer vision, parsing, information retrieval, machine learn-

ing, and planning. Language grounding provides an impetus for AI researchers

to integrate these sub-fields, so that they can attempt to build machines that

can converse about what they observe and do in human-like ways. Early ap-

plications along these lines are already emerging, including:

• Automatic generation of textual reports grounded in real-time numerical

data such as weather forecasts, financial reports, and sports summaries (for

example, [34] and Reiter et al’s paper in this special issue);

• Multimedia information retrieval and management (for example, [2] and

Barnard and Johnson’s paper in this special issue);

• Natural language interfaces to robots (many everyday objects and environ-

ments such as cars and houses may be treated as robots in the sense that

they have sensors, actuators, bodies, and control systems) (for example,

[43, 19] and Roy’s paper in this special issue);

• Natural language interfaces to virtual reality systems and games (for exam-

ple, [16] and Kelleher et al’s paper in this special issue);

• Situated NLP for mobile devices (e.g. location-dependent web search queries);

• Intelligence analysis that combines language with contextual cues to inter-

pret otherwise ambiguous or noisy communication signals.

Broadly speaking, the long term implications of this work include the pos-

sibility of machines that are able to autonomously acquire and verify beliefs

about the world, and to communicate in natural language about their beliefs.

Although at a relatively early stage, we see the work in this issue as taking
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steps in this direction.

The growing interest in situated language processing systems closely parallels

the rise in study of embodied cognition and cognitive linguistics [47, 3, 14, 9,

6, 46, 20]. Behavioral and neural studies are increasingly uncovering the rich

interplay between language, action, and perception. These findings bring into

question strongly modular theories of mind that posit stringent information

encapsulation between modules. Insights emerging from the construction of

situated / grounded language processing system may lead to computational

models that are relevant to understanding human cognitive processes at a

functional level [36], and to help us understand how language evolved and is

learned [44, 30].

2 Key Technical Challenges

A system that connects language to the world must bridge the symbolic

realm of words with the non-symbolic realm of sensory-motor interaction.

This requirement raises difficult and often subtle issues that do not arise in

purely symbolic approaches to natural language processing, nor in purely non-

symbolic approaches to perception and action. We highlight below some of the

challenges in building such systems. For each of these broad areas, the specific

challenge of cross-modal processing (language, action, perception) is key to

building situated/grounded language processing systems.

We illustrate many of the these challenges with the problem of mapping visual

input data to linguistic color terms, which is one of the simplest and perhaps

best understood language-and-world tasks. A robot which is using visual data

purely for internal decision making (such as deciding which widgets coming

off a production line need to be inspected) might simply feed camera data

into a neural network that is trained to distinguish ‘good’ from ‘bad’ widgets,

without attempting to explicitly model color, or indeed even separate color

from other visual data. On the other hand, a machine translation system

which is translating English to French might simply treat color as a set of

semantic primitives, without attempting to model what these mean; all such

a system needs to know is that RED is a color primitive which is lexicalised as

red in English and rouge in French. Such simple approaches can work well in

systems which only operate in one modality, but building systems which link

visual color data to linguistic color terms requires us to solve many additional

problems.
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First of all, we need cross-modal representations (and associated reasoning

algorithms) that support both the linguistic and sensory-motor sub-systems.

In practice, construction of AI systems have led to a large variety of repre-

sentations and reasoning algorithms that are targeted towards specific niches;

that is, representations which work well for language processing, vision, expert

systems, or some other AI niche. Unfortunately, in most cases representations

that work well for one niche don’t work well for others. For example, a neural

network that identifies faulty widgets from visual data may have internal nodes

which in some way encode color information, but these nodes are unlikely to

be useful for choosing linguistic color terms. Another example is that many

modern vision systems use “bag of feature” models that lead to robust object

detection, but ignore the spatial structure (shape) of objects. Although such

approaches lead to good performance on strictly visual tasks, they provide no

obvious basis for grounding important aspects of natural language semantics.

For example, modifiers in language can be used to specify part-whole modu-

larity of objects (cup without a handle). A visual representation that does not

preserve spatial structure and part-whole relations will not be able to link to

these kinds of natural language phrases. Similarly, approaches to motor control

and action representation that do not preserve appropriate temporal structure

will be unable to link to adverbial modifiers in natural language. In general,

the challenge is to design representations that work robustly in sensory-motor

contexts, yet provide the appropriate structural “hooks” for language.

Once we have established a representation that encodes the necessary non-

linguistic information, we need to associate words with perceptual and

action categories. Drawing from established methods in pattern classifica-

tion (e.g. [28]), words can be treated as labels for sensory-grounded categories.

As is well known in the field of pattern classification, feature selection is crucial

to success. In particular, we should choose sensory features which are similar

to those encoded by natural language. For example, a popular choice for vi-

sual color features is a cognitively motivated three-dimensional color encoding

[22, 23]. Standard generative or discriminative classification techniques may

then be used to model categories within this three-dimensional space. In more

complex domains, the choice of perceptual features is often not as obvious. For

example, the meaning of spatial terms such as above have proven to depend on

subtle interactions between the shapes of objects involved and led to extensive

research in appropriate choices of features [31]. Feature selection is only part

of the challenge, however.

Linguistic word choice depends on context as well as the actual sensor data.

For example, the meaning of a modifier may depend on the category of ob-
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jects it is modifying; thus the visual association of red shifts widely as it

is used in differing contexts such as red wine, red hair, or red car. One ap-

proach to this problem might be to separately model possible colors of each

object class which are geometrically combined with context-independent color

prototypes [13]. Color words can also convey non-linguistic information; for

example, green banana suggests a banana that is not ripe as well as a banana

which is visually green. Such context effects are ubiquitous in natural lan-

guage. To take just one non-color example, consider adding voice commands

to a mobile robotic vacuum cleaner. The difference in meaning of “behind” in

“clean behind the couch” and “hide behind the couch” depends on complex

interactions between the physical environment and the functional meaning of

“cleaning” and “hiding”. These and numerous other kinds of context effects

stand as open challenges for future research.

Another issue is deciding how specific and detailed the linguistic descrip-

tion should be; for example, is it better to use a broad color term such as

red or a more specific one such as magenta? Most objects are not uniformly

one color, does this need to be mentioned (for example, red car vs. red car

with silver trim); note this often depends on domain knowledge (we would

not usually say red car with black wheels, as wheels by default are black).

In most cases linguistic descriptions are summaries of sensor data (since we

cannot communicate megabytes of sensor data in a few words), so we must

decide what to include in the summary. For example, an agent seeing a cup

on a table will have a large amount of information about the cup’s color, size,

orientation, precise position, and so forth, which is not communicated in the

linguistic summary there is a cup on the table. Specificity and detail decisions

may depend on task (context again!), and algorithms have been proposed for

these decisions in specific constrained tasks such as reference generation [10].

However, we do not know of methods to make such decisions in general.

To ground verb meanings, systems must represent temporal structure of ac-

tions. Beyond simply labeling sequences of movement, verbs often encode

causal structure (who did what to whom). Thus, ideally, representations of

action would on one hand link to perception and control of action in the phys-

ical environment, and on the other provide structural hooks for the argument

structure of verbs. The intertwined nature of verbs and actions leads to larger

scale challenges in designing planning algorithms for situated language pro-

cessors. A scene description system, for example, needs to plan word choice

such that possible listener ambiguities arising from the current physical con-

text can be anticipated and avoided. More challenging yet, is the problem

of planning with a mix of communicative and motor actions. For example,
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consider a cooperative robot that helps its human partner in physical tasks

(e.g. lifting large objects) and that uses language to coordinate joint action.

The robot must plan its words and its motor actions in a coordinated fashion.

Methods from robot planning and discourse planning must be integrated to

achieve such behaviors.

The above discussion focuses on representations and algorithms; but how do

we actually get the data to create specific language-to-world rules? For exam-

ple, how do we actually decide which color values correspond to red hair? In

general researchers have to date assumed that most of this data is learned

from examples and feedback. Hence we must decide how this learning

should be done for each of the challenges discussed above. For learning per-

ceptual associations of words, established methods of parameter estimation

and feature selection may be used. Learning how to plan across modalities or

integrate ambiguous sources of knowledge might be cast as a reinforcement

problem. In general, many learning problems will involve not only parameter

estimation but also structure acquisition. The complexity of situated language

systems, such as those described in this volume, suggest that any “blank slate”

learning approach is likely not to scale due to the enormous search space size.

Thus, we anticipate structured learning approaches, i.e., learning methods in

which manually designed biases constrain learnability, will play an critical role.

If language-to-world rules are learnt rather than explicitly communicated, it is

likely that the rules learnt by different agents will be different to some degree.

Indeed, it is clear that different people associate different meanings with words

[33]; for example different people associate different color values with the word

red, even in identical contexts. Humans who are talking to each other align

their language to each other [7, 26], and computer language-to-world systems

may wish to likewise align with their human conversational partner.

The fact that different agents use different language-to-world rules suggests

that it is possible that the overall set of rules used by a community of agents

may change over time, especially if old agents are regularly replaced by new

agents, who again must learn and align language rules. Many researchers are

interested in using simulations of such agents to study language evolution,

and gain insights as to how human language evolved.

Last but not least, an important methodological issue is how language-and-

world systems should be evaluated. For example, if we have built a system

that generates color words from visual data, how can we determine if this

system does a good job or not? The papers in this special issue use a very
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diverse range of evaluation techniques, including performance on a held-out

test set, psychological experiments with human subjects, soundness and com-

pleteness measures, user questionnaires, and simulations. This diversity may

reflect the fact that researchers in this area come from many different subfields

of AI, which have their own expectations and conventions about evaluation.

While in some ways this diversity is exciting, it can make it more difficult for

readers to understand and compare evaluations. Indeed, we note as editors

that the criticisms of evaluation were the most common complaints made by

referees about the content of papers submitted to this special issue. Hence,

agreeing on appropriate evaluation techniques is an important challenge for

the language-and-world community as a whole.

The challenges we have laid out are broad and are meant to provide an overall

guide to the issues at stake. We now highlight selected previous work to provide

some historical context.

3 Examples of Related Prior Work

A comprehensive survey of work in situated / grounded language processing is

beyond the scope of this introduction, so instead we highlight a few threads of

research that are representative. Readers interested in more thorough surveys

may refer to collections of related work [27, 8, 4] and reviews of research on

word grounding, learning and evolution of language [36, 30, 44].

Winograd’s seminal SHRDLU system demonstrated the importance of inte-

grating world models with language planning and understanding [48]. The

system could engage in natural language dialog to control the actions of a

simulated robot arm in a blocks world, ask clarifying questions, and generate

explanations of its actions. Although SHRDLU did not deal with problems

of sensory-motor categorization, cross-modal ambiguity, or learning, it was

nonetheless a milestone in the history of AI and a clear example of situated

language processing. In the same period, the first robots that connected ma-

chine perception to symbolic descriptions were being developed by Nilsson

[25]. Although natural language was not the focus of this work, many of the

issues related to sensory-motor categorization and planning mentioned above

were central to this early work.

More recently, Siskind has explored the links between language and perception

through the construction of a series of visually-grounded language systems [40,

41, 42]. Building on insights from cognitive linguistics [45], he has developed
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a temporal representation that encodes the causal relations between objects

inferred from visual observation. He has demonstrated implementations that

translate video input into structured representations. Due to the emphasis on

causal relationships, his approach provides a natural basis for linking argument

structure of verbs to objects that fulfill semantic roles (e.g. agent, patient) in

the physical world. Learning from positive examples has been demonstrated

using this representation [12].

The Visual Translator (VITRA) is one of the most ambitious end-to-end visu-

ally grounded scene description systems built to date [18]. VITRA was able to

generate natural language descriptions of traffic scenes and segments of soccer

matches. Visually-grounded models of spatial relations and actions operated

on video input, which were then translated into verbal descriptions used a set

of domain-dependent generation rules. The generation system included a lis-

tener ambiguity model that was used to eliminate potential listener confusions

by generating descriptions that were unlikely to match distractor referents in

visual scenes.

The “L0 Project” was created with the goal of developing computational mod-

els of situated language acquisition motivated by the question, “How could we

learn to describe what we see” [11]. This effort led to a series of projects that

addressed different aspects of physically situated language acquisition and use

[1, 29, 24, 5]. Bailey and Narayanan developed a structured representation of

action underlying verbs that was used to control a simulated robot arm [1] and

as a basis for understanding physically grounding metaphors [24]. Regier ex-

plored geometric visual features that underlie spatial relations and that seem

to be at play across languages. This led to his later work with colleagues on

linguistically motivated vector-based representations of spatial relations [31],

and insights into the role of attention in spatial relations [32].

Roy and his colleagues have developed a series of systems that relate words, de-

scriptive phrases, and commands to physical environments [39, 35, 15, 37, 38].

The cross-channel early lexical learning (CELL) model was used to learn words

by processing acoustic recordings of infant-directed speech paired with video

images of objects. Later work focused on visually-guided grammar acquisi-

tion for scene description [35], modeling spatial language in scene descriptions

[15], and visual context sensitive speech understanding [38]. Roy, Hsiao, and

Mavridis developed an interactive manipulator robot named Ripley that is

able to translate spoken commands such as hand me the blue thing on your

right into physical actions. The robot maintains a mental model of its table

top environment, providing a cross-modal representation for binding verbal
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commands, visual perception, and motor control. Roy’s paper in this volume

synthesizes many of the theoretical insights that emerged from this body of

work.

4 Papers in this Volume

4.1 Barnard and Johnson: Word sense disambiguation with pictures

Barnard and Johnson show that visual information can help in the classic

Natural Language Processing (NLP) problem of word sense disambiguation

(WSD). Many words of course have multiple senses (meanings), and WSD

systems attempt to determine which sense of a word is meant. For example,

whether bank refers to a financial institution or to the edge of a river. Existing

algorithms for this task use purely linguistic information. Barnard and John-

son show that when the text is accompanied by an image which has visual

correlates with previous uses of the word (that is, the image might be a city

street scene or a natural scene with water), visual analysis of this image can

increase the accuracy of the WSD system. They use images from a standard

corpus, not images hand-crafted to assist in the WSD task. Their algorithm is

based on a technique for predicting likely words for images, which is inspired

by statistical machine translation techniques; in other words, they apply ideas

developed for translating French to English to the task of ’translating’ images

to English.

From the perspective of the Section 2 challenges, a primary contribution of

this paper (and of previous work by Barnard and collaborators [2]) is in the

area of cross-modal representations. The authors show how to extend a tech-

nique developed for NLP (statistical machine translation) so that it also works

with visual data; and that it is possible to develop integrated algorithms and

representations, for an important real-world task, which work well with both

linguistic and non-linguistic data. From an applications perspective, the au-

thors show that is possible to use visual information to assist in an NLP task

(WSD).
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4.2 Dominey and Boucher: Learning to talk about events from narrated video

in a construction grammar framework

Dominey and Boucher describe a system that learns how language is used

to describe events in a simple microworld, by observing how humans talk

about events in this world. They focus on learning sentence structures, and

in particular propose that this be done using simple template-like rules for

sentences, instead of complex compositional grammars. They experimentally

show that their system does a reasonably good job of learning language even

when the observational data comes from naive human subjects who know

nothing about the system.

From the perspective of the Section 2 challenges, this paper is a contribu-

tion to learning, and also perhaps to evaluation (since previous systems in

this area have tended to use observational data provided by the developers

themselves, who knew how the system worked). The paper also shows how

psychological insights about how children learn language can be incorporated

into a computer language-learning system.

4.3 Kelleher et al: Dynamically structuring, updating and interrelating rep-

resentations of visual and linguistic discourse context

Kelleher et al show that visual information can assist in the NLP task of

generating and interpreting referring expressions (noun phrases that identify

objects) such as the blue house or the tall tree. In principle the choice of re-

ferring expression is strongly affected by context and salience, including both

discourse context (what has been mentioned in previous utterances) and per-

ceptual context (what speaker and hearer see or otherwise perceive). Kelleher

et al show how these two kinds of context (and two types of salience) can be

integrated and jointly used for reference interpretation and generation in a

virtual reality system.

From the perspective of the Section 2 challenges, perhaps the major contri-

butions of this paper are in the areas of cross-modal representations and on

the use of non-linguistic data in adjudicating the specificity of linguistic de-

scriptions. The authors show how linguistic and visual data about context

and salience can be integrated and used for NLP tasks; and how such a cross-

modal integration leads to a better understanding of the general phenomena of

salience. From an applications perspective, they show that language-and-world
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research can play an important role in the new area of virtual reality.

4.4 Needham et al: Protocols from perceptual observations

Needham et al show how an autonomous agent can learn how to play a sim-

ple game which includes both visual and linguistic aspects. Audio and video

recordings are made of two humans playing a game, and these are analyzed

to learn the rules of the game; these rules are then given to a computer agent.

Learning is done in two stages. First, the audio and video systems learn clas-

sifiers which identify distinct visual objects and distinct audio words. These

classifiers are used to convert recorded games into a symbolic representation;

this is essentially a temporally-ordered sequence of states, combined with a

symbolic description of the state of the game at each state. Inductive logic

programming is then used to learn the rules (protocols) of the game from this

information.

From the perspective of the Section 2 challenges, this paper is clearly a con-

tribution to learning. In particular, it shows how symbolic and non-symbolic

learning can be combined, so that an agent can learn both linguistic and visual

aspects of a real-world activity. From a more applied perspective, the authors

shows that it is possible for agents to learn how to participate in real-world

multi-modal interactions with humans.

4.5 Reiter et al: Choosing words in computer-generated weather forecasts

Reiter et al focus on the problem of choosing words to communicate numeri-

cal weather prediction data; this indeed is the only paper in the special issue

which does not attempt to connect language to vision. They present an ex-

tensive empirical analysis of how humans (weather forecasters) perform this

task, focusing on the fact that there are substantial differences between the

forecasters in which words they prefer to use, and indeed in the meanings they

associated with words; for example some forecasters used late morning to mean

9AM, while others used this phrase to mean noon. Reiter et al then describe

their SumTime-Mousam weather-forecast generation system, which in fact is

operationally used by a forecasting company to generate several kinds of fore-

casts. At a lexical level, SumTime-Mousam is programmed to avoid words

whose meaning varied substantially across forecasters, and words only used

by a small minority of forecasters. An evaluation of wind descriptions (part of
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the weather forecast) showed that human forecast readers preferred SumTime-

Mousam texts over texts written by human forecasters; qualitative comments

from the users suggest that this is partially because SumTime-Mousam texts

contain fewer idiosyncratic or ambiguous words.

From the perspective of the challenges presented in Section 2, this paper’s

most important contribution is perhaps in the area of alignment. The authors

show that there is considerable difference in the language used by different

people (that is, in “idiolects”), that a computer text-generation system can be

programmed to avoid many idiolect-specific misunderstandings, and that this

seems to enhance the quality of the generated texts. They also show that it is

possible to build a complete data-to-language system which is good enough to

be used operationally, and which produces texts that are as good as (perhaps

even better than) human-written texts, at least by some metrics.

4.6 Roy: Semiotic schemas: A framework for grounding language in action

and perception

Roy presents a theoretical framework for grounding the meaning of verbs,

adjectives, and nouns referring to physical referents using a unified represen-

tational scheme that “provides a computational path from sensing and motor

action to words and speech acts”. He defines grounding as a cycle that relies on

both “bottom-up” sensor-grounded perception and “top-down” agent-driven

action on the physical environment. Rather than start with an ontological

distinction between objects and events, Roy takes a constructivist approach

by suggesting a common set of representational primitives that are used to

construct complex events, objects, and object properties. As a result, the con-

ceptual grounding of verbs, nouns, and adjectives are expressed as networks

of sensory-motor primitives called semiotic schemas. The internal structure

of schemas provides a basis for relating and combining concepts underlying

words – thus the framework provides a sub-symbolic level of explanation of

conceptual structures that ground symbolic (linguistic) activity. The frame-

work arose from – and provides a guide for future work in – the construction of

robotic and virtual systems that connect situated language to machine action

and perception.

In terms of the Section 2 challenges, Roy’s framework is a contribution to

cross-modal representation and processing that is shaped by the relationship

between natural language and embodiment.
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4.7 Vogt: The Emergence of Compositional Structures in Perceptually Grounded

Language Games

Vogt is somewhat different from the other papers in this special issue because

he is interested in understanding how language evolved – not in building com-

puter systems that interact with human users or analyze human-authored doc-

uments. He explores language evolution by creating a simulated world where

agents interact linguistically in a shared environment, in particular by playing

“language games” where an “adult” agent which already has a linguistic model

interacts with a “child” agent which is learning the model. Vogt is interested

in what happens to the language system over the course of many generations,

and in particular if grammatical structures (such as compositionality) evolve

and remain stable over the course of time in the language system, and how the

evolution of compositional structures is related to (the modeling of) semantic

development.

From the perspective of the Section 2 challenges, this paper is a contribution

to language evolution, and also to learning. In particular, Vogt shows how

complex compositional rules can evolve in an agent population, as well as

basic sense-data-to-word associations.

5 Conclusions

Understanding how language relates to the world is one of the grand chal-

lenges of cognitive science, and building automated systems that connect the

symbolic world of language to the non-symbolic world of sensory input and

effector control is one of the great challenges of AI. As the papers in this spe-

cial issue show, researchers are beginning to develop techniques to address the

problems described in Section 2, and also beginning to build systems that link

language and the world in sophisticated ways, in quite a variety of application

contexts. These systems often operate in limited domains and/or assume input

data that is relatively noise-free, but nonetheless they demonstrate that even

our current limited understanding of the scientific issues involved enables us

to build systems that do a good job at real tasks such as generating weather

forecasts and word sense disambiguation.

Research in this area is especially exciting because it requires integrating

various subfields of AI, including vision, robotics, pattern analysis, knowl-

edge representation, learning, and natural language processing. Current AI
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research often feels like a collection of subfields which rarely communicate

with each other. While such specialization has in many ways helped the sub-

fields progress, we believe that the subfields could benefit from interacting

more, and also that this would benefit the AI and cognitive science research

agenda as a whole. The papers in this volume show that tangible progress in

the theory and application of situated, grounded language processing systems

is well underway. We hope this special issue encourages more people to get

involved in this growing research area.
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