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Abstract

Properties of the physical world have shaped human evolutionary design and given rise
to physically grounded mental representations. These grounded representations provide the
foundation for higher level cognitive processes including language. Most natural language
processing machines to date lack grounding. This paper advocates the creation of physically
grounded language learning machines as a path toward scalable systems which can concep-
tualize and communicate about the world in human-like ways. As steps in this direction,
two experimental language acquisition systems are presented.

The first system, CELL, is able to learn acoustic word forms and associated shape
and color categories from fluent untranscribed speech paired with video camera images.
In evaluations, CELL has successfully learned from spontaneous infant-directed speech. A
version of CELL has been implemented in a robotic embodiment which can verbally interact
with human partners.

The second system, DESCRIBER, acquires a visually-grounded model of natural lan-
guage which it uses to generate spoken descriptions of objects in visual scenes. Input to
DESCRIBER’s learning algorithm consists of computer generated scenes paired with natu-
ral language descriptions produced by a human teacher. DESCRIBER learns a three-level
language model which encodes syntactic and semantic properties of phrases, word classes,
and words. The system learns from a simple ‘show-and-tell’ procedure, and once trained,
is able to generate semantically appropriate, contextualized, and syntactically well-formed
descriptions of objects in novel scenes.
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Introduction

Humans have been designed by an evolutionary process which is driven by the structure
of the physical world. Our physiology is ultimately a reflection of the effects of gravity,
the characteristics of light and sound propagation, and a host of other properties of the
natural world. In other words, evolutionary design is grounded in the physical world.
Various layers of sensory, motor, and control adaptations are causally linked to how the
world works. The resulting physiology provides the ‘hardware’ in which representational
structures and processes (the ‘software’) are likewise shaped by physical world constraints.
Aspects of the world which are sensed or acted upon by an agent must be represented either
implicitly or explicitly within in the agent. The particular aspects of the world which are
represented and the manner in which those aspects are represented is highly dependent on
the evolved physiological mechanisms at the agent’s disposal. Higher level cognitive abilities
including language build on top of this grounded foundation. Thus mental representations
are grounded. Representational grounding is essential for situated agents to perceive, plan,
act, and communicate. The link between evolutionary grounding and grounding of mental
representations is intimately intertwined. The former gives rise to the latter. An analogous
relationship between evolutionary design and representational grounding can be applied to
the creation of artificial intelligence (AI) systems.

Is the mind a symbol manipulator as posited in the classical view of AI articulated
by (Newell & Simon, 1976)? Searle’s well known Chinese room experiment (Searle, 1980)
questions the viability of purely symbolic AI. Searle argues that even if a machine could
be programmed to manipulate symbols intelligently, the machine would not intrinsically
understand the meaning of those symbols. Symbol processors blindly push symbols around
using preprogrammed rules. Even if the result is intelligent behavior, the machine does not
actually understand what it is doing. For example, a web search engine finds relevant web
sites based on natural language queries, yet it does not really understand what the queries
mean. A human interpreter is needed to read meaning into the actions of the machine.

Over the past two decades, research in artificial intelligence has shifted emphasis from
purely symbolic tasks such as chess and theorem proving, towards embodied and perceptu-
ally grounded problems (cf. Brooks, 1986; Agre, 1988). A key issue in establishing intrinsic
meaning for a machine is for all symbols to be bound, either directly or indirectly, to the
machine’s physical environment (Harnad, 1990). For a machine to understand the concept
of hammer, it must be able to recognize one when it perceives it and know what its function
is. Thus both perception and action play a crucial role in representing the concept of a
hammer in a way which is meaningful for the machine, as opposed to a token which has
meaning only to an external human observer.

In addition to grounding symbols, the rules by which symbols are manipulated in cog-
nitive processes must also be grounded. Returning to the notion of cognition as symbol
manipulation, what we seem to need are symbols that capture the ‘sensorimotor shape’ of
what they represent. But this is exactly what symbols are not. Symbols, such as words,
are arbitrary patterns which do not resemble the form of what they signify. This situation
motivates the development of an expanded notion of signs that include both symbols with
arbitrary form and environmentally shaped ‘non-symbols’. The philosopher Charles Peirce
did exactly this in his analysis of signs (Peirce, 1932). I will briefly introduce Peirce’s tax-
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onomy of signs and show how it can be interpreted as a framework for cognitive processing
of grounded language.

Signs are physical patterns which signify meaning. Peirce made the distinction between
three types of signs based on how they are associated with their meanings: icons, indices,
and symbols. Icons physically resemble what they stand for. Interpreted in cognitive terms,
an icon is the pattern of sensory activation resulting from an external object1. Icons are the
result of projections of objects through the perceptual system and are thus strongly shaped
by a combination of the nature of the physical world and the nature of the perceptual
system. Icons are the physical world as far as an agent is concerned. There is not a more
direct way to know what is ‘out there’ than what the perceptual system reports.

Peirce defines indexical signs as a set of sensory properties which point to some other
entity of interest to the agent. For example, footsteps can serve as indexical signs which
indicate a human presence. Words can also serve as indices. For instance, ‘this’ and ‘here’
can be used to pick out objects and locations in the world. The entire meaning of an index
is derived from its direct connection to its referent. Indexical reference is equivalent to the
problem of achieving joint reference which is critical to success in language acquisition (cf.
Bloom, 2000).

The third level of representation is symbolic. Words are archetypical examples of sym-
bols. Symbols can be removed from their context. They can be used when their referents
are not present. Symbols gain meaning in large part from their relationships with other
symbols. Possible relationships between symbols include, ‘part-of’ (leaves and branches are
parts of trees), ‘kind-of’ (elms and oaks are kinds of trees), and ‘need-a’ (people need food
and sleep), to mention but a few. In this paper I will focus on the distinction between
iconic and symbolic signs. Although indexical signs are needed to establish connections to
the world, they are beyond the scope of this discussion.

Peirce’s distinction of icons and symbols provides a framework for developing cognitive
models of communication (for example, see Harnad, 1990; Deacon, 1997). Rather than
thinking of the mind as a symbol manipulator, we can think of the mind as a sign ma-
nipulator. In other words, a manipulator of both icons and symbols. Icons are by their
very nature grounded. They directly reflect experiential data and may form the basis of
perception and action. The rules for combining and manipulating icons are constrained by
the agent’s physiology/hardware and are guided by experience. For example, the design
of the agent’s visual system might allow for the combination of icons representing red and
ball (a ball with the property red), or ball and bounce (a ball which bounces), but not red
and bounce (since the perceptual system cannot bind a color to an action without an object
present). Thus the nature of how the perceptual system represents the external world in-
fluences the rules by which symbols may be meaningfully combined. Experience will teach
the agent that things tend to fall down (not up), along with a large number of other rules
about how the world works. These two types of knowledge result in grounded rules of icon
manipulation. Symbols are associated with icons or categories of icons and thus directly
inherit iconic groundings. Similarly, grounded icon manipulation rules are inherited for
symbol manipulation.

Symbols and icons provide complementary strengths. The retention of iconic represen-
1For brevity I will use the word ‘object’ to mean anything in the world which can be referred to including

physical objects, but also properties, events, states, etc.
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tations is essential even after symbolic representations have been acquired. Without iconic
representations, the agent would be unable to recognize new percepts or perform motor
control. In addition, some kinds of reasoning are most efficiently achieved using iconic rep-
resentations. For example an image-like representation of a set of spatially arranged objects
can be used to efficiently store all pair-wise spatial relations between objects. A non-iconic
representation such as a list of logical relations (‘Object A is directly above Object B’)
grows factorially with the number of objects and is vastly less efficient as the number of
objects becomes large.

On the other hand, symbols are unencumbered by experiential baggage. They can be
efficiently copied, stored and manipulated. New symbols can be created in terms of existing
icons and symbols to represent abstract concepts. The degree of abstraction is limited only
by the cognitive capacities of the agent.

The conceptualist case for embodied and grounded representations has been argued by
many authors including (cf. Jackendoff, 1983; Johnson, 1987; Lakoff, 1987; Harnad, 1990;
Barsalou, 1999). I will not elaborate further on these issues since they are well explicated
in the cited works. I will, however, briefly present one perspective on why ungrounded
representations are problematic from an engineering design perspective. This perspective
returns to my earlier point that a link exists between grounding the design process of
systems, and the resulting representations that emerge in those systems.

One way to look at the problem of ungrounded symbolic representations is that the
representations in the machine are based on the intuitions of human designers. We, as
builders of these systems, intuit the form and nature of our own mental representations and
build them into the machines. The obvious danger in this approach is that our intuitions
may be wrong. Symbolic representations designed on the basis of intuition can, however, be
extremely powerful. Witness the success of chess playing machines and countless powerful
number crunching systems. Both of these examples operate in worlds created by people for
people. The world of chess and the world of numerical computation are domains in which
intuition based representations undoubtedly excel. In most natural domains which are not
constructed by people, we should be less comfortable in relying on our intuitions.

An alternative to symbolic representations based on the intuitions of human designers
is to construct physically grounded machines (cf. Brooks, 1986; Agre, 1988). In doing so,
representations in the machines are shaped by the same factors which have shaped human
design – the physical world. Grounded mechanisms can serve as a foundation for higher level
representations. The link between evolutionary grounding and representational grounding
in humans provides a lesson in how to proceed in designing intelligent machines. If we
build grounded machines that process raw sensor data and act in a physical environment,
then whatever representations we design for these machines will be shaped by properties of
the physical world. The effects of gravity, light and sound propagation, and so forth, will
mold the representations which arise in the machines. Rather than rely solely on human
intuitions, we submit our designs to the tests of physical reality. In so doing, I believe
we will develop representations that are more likely to scale in human-like ways. I do not
suggest that building grounded systems is sufficient to assure human-like representations,
but I believe that it is necessary.

This paper presents two implemented learning systems which represent progress toward
our goal of building machines that learn to converse about what they see and do. By choos-
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ing the problem of linking natural language to perception and action, we are forced to de-
sign systems which connect the symbolic representations inherent in linguistic processing to
grounded sensorimotor representations. The first system, CELL, demonstrates perceptual
grounding for learning the names of shapes and colors. The second system, DESCRIBER,
learns hierarchical grammars for generating visually-grounded spatial expressions.

Our work is related to several other research efforts. One aspect of CELL is its ability
to segment continuous speech and discover words without a lexicon. This problem has
also been studied by a number of researchers including (Aslin, Woodward, LaMendola, &
Bever, 1996; de Marcken, 1996; Brent, 1999). In contrast to these efforts which process only
linguistic input (speech or speech transcriptions), CELL integrates visual context (what the
speech is about) into the word discovery process. Both CELL and DESCRIBER make use
of ‘cross-situational learning’, that is, integration of partial evidence from multiple learning
examples. Along similar lines, Siskind (1992) developed a model of cross-situational learning
which learned word semantics in terms of symbolic primitives. Although Siskind (2001) has
also developed visual representations of actions suitable for grounding verb semantics, he
has not to date integrated these visual representations into a model of language acquisition.
Several researchers (cf. Steels & Vogt, 1997; Cangelosi & Harnad, 2002, this volume)
are studying models of the evolution of communication, i.e., the origin of language as
an adaptive mechanism. In contrast, our work does not model evolutionary processes.
Evolutionary processes are effectively replaced by iterative design processes carried out by
human engineers. Another important difference is that we focus on the challenges faced
by a single agent which must learn natural language in order to communicate with human
‘caregivers’. Thus the target language is static from the perspective of the learning agent
rather and an evolving target. Our work is most closely related to several projects which
also seek to design grounded natural language learning systems such as Sankar and Gorin
(1993), Regier (1996), Bailey, Feldman, Narayanan, and Lakoff (1997), and in this volume,
Steels and Kaplan (2002). Our long term focus is to construct interactive robotic and virtual
agents which can verbally interact with people and converse about both concrete and, to a
limited degree, abstract topics using natural spoken language. We look to infant and child
language acquisition for hints on how to build successively more complex systems to achieve
this long term goal.

CELL: Learning Shape and Color Words from Sights and Sounds

CELL is a model of cross-modal early lexical learning. The model has been embodied
in a robot shown in Figure 1 which learns to generate and understand spoken descriptions
of object shapes and colors from ‘show-and-tell’ style interactions with a human partner.
To evaluate CELL as a cognitive model of early word acquisition, it has been tested with
acoustic recordings of infant-directed speech. In this paper a summary of the model and
evaluations are provided. For more detailed presentations of CELL as a cognitive model
the reader is referred to (Roy & Pentland, 2002). For further details of cross-modal signal
analysis and integration into a robotic platform see (Roy, In press).

CELL discovers words by searching for segments of speech which reliably predict the
presence of visually co-occurring shapes. Input consists of spoken utterances paired with
images of objects. This approximates the input that an infant receives when listening to
a caregiver and visually attending to objects in the environment. The output of CELL’s
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Figure 1. Toco is a robot which can be taught by ‘show-and-tell’. Toco learns early language
concepts (shapes, colors) by looking at objects and listening to natural spoken descriptions. After
learning, Toco can engage in interactive visually-grounded speech understanding and generation.

learning algorithm consists of a lexicon of audio-visual items. Each lexical item includes a
statistical model (based on hidden Markov models) of a spoken word and a visual model of
a shape or color category.

To acquire lexical items, the system must (1) segment continuous speech at word bound-
aries, (2) form visual categories corresponding to word semantics, and (3) form appropriate
correspondences between speech and visual models. These learning problems are difficult.
Continuous speech does not contain reliable acoustic cues at word boundaries. Thus prob-
lem 1 may be regarded as a search problem in an extremely large and noisy space. In
problem 2, visual categories are not built into CELL but must be learned by observation.
The choice of categories must integrate visual clustering properties of physical objects with
the conventions of the target language. Problem (3) is difficult because, in general, the lin-
guistic descriptions provided to CELL contain multiple words. Of those words, only a subset
refer directly to visual context. In many utterances, none of the words refer to the context.
To address the inference problem inherent in (3), evidence from multiple observations must
be integrated.

Input to CELL is grounded in sensors. Linguistic input consists of acoustic signals
transduced by a microphone. Context for inferring visual referents of words is provided by
a color video camera. A set of feature detectors have been designed which extract salient
features from sensor data. These detectors determine the nature of iconic representations
in CELL.

The acoustic front-end processor converts spoken utterances into sequences of phoneme
probabilities. The ability to categorize speech into phonemic categories was built-in since
similar abilities have been found in pre-linguistic infants after exposure to their native
language (Kuhl, Williams, Lacerda, Stevens, & Lindblom, 1992). At a rate of 100Hz,
this processor computes the probability that the past 20 milliseconds of speech belong to
each of 39 English phoneme categories or silence. The phoneme estimation was achieved by
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Figure 2. Architecture of the CELL model.

training an artificial recurrent neural network similar to (Robinson, 1994). The network was
trained with a database of phonetically transcribed speech recordings of adult native English
speakers (Garofolo, 1988). Utterance boundaries are automatically located by detecting
stretches of speech separated by silence. Figure 3 shows the output of the acoustic analyzer
for the short utterance “bye, ball” (extracted from our infant-directed spontaneous speech
corpus described below). The display shows the strength of activation of each phoneme as
a function of time. The brightness of each horizontal display line indicates how confident
the acoustic processor is in the presence of each phoneme. The acoustic representation in
Figure 3 is the icon formed in CELL in response to the spoken utterance. The icon may be
thought of as the result of projecting the spoken utterance through the perceptual system
of the machine. CELL’s perceptual system is biased to extract phonemic properties of the
acoustic signal.

A visual processor has been developed to extract statistical representations of shapes and
colors from images of objects. The visual processor generates shape and color histograms
of local and global features. In a first step, edge pixels of the object are located using a
background color model which segments the foreground region. For each pair of edge points
of the object, the normalized distance between points and the relative angle of edges at the
two points are computed. All distances and angles are accumulated in a two-dimensional
histogram. This histogram captures a representation of the object’s silhouette which is
invariant to scale and in-plane rotation. Three-dimensional shapes are represented with a
collection of two-dimensional shape histograms, each derived from a different view of the
object. Color is also represented using a histogram of all RGB values corresponding to the
object. Figure 4 displays the shape histograms for two objects used in evaluations. These
histograms depict the iconic representation of shapes in CELL. Although the relationship
between the original shape of the object’s silhouette and the ‘shape’ of iconic representation
in the histogram’s activation patterns is complex, a direct causal link nonetheless exists
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Figure 3. Iconic representation of the spoken utterance “bye, ball” in CELL.

between the former and the latter.

Figure 4. Iconic representation of two objects in CELL. Input images of objects are shown in the
upper row. The resulting shape histograms are shown below.

Visual input is captured from a video camera mounted in the head of the robot. The
robot has four degrees-of-freedom (two at the neck and two at the ’waist’) for controlling
the orientation of the camera. The robot captures images of objects from various vantage
points. The chi-squared divergence statistic is used as a visual distance metric for comparing
histograms. This statistic has been shown to work well for visual histogram comparison
(Schiele & Crowley, 1996).

CELL learns using an on-line procedure. Input consists of images of objects paired with
spoken descriptions. Phonemic representations of the speech utterances and co-occurring
color and shape histograms are temporarily stored in a short term memory (STM). The
STM has a capacity of five utterances, corresponding to approximately 20 words of infant-
directed speech. As input is fed into the model, each new [utterance,shape,color] entry
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replaces the oldest entry in the STM. A short-term recurrence filter searches the contents
of the STM for recurrent speech segments which occur in matching visual contexts. The
STM focuses initial attention to input events which occur in close temporal proximity. By
limiting analysis to a small window of input, computational resources for search and memory
for unanalyzed sensory input are minimized, as is required for cognitive plausibility. To
determine matches, an acoustic distance metric has been developed (Roy, 2000) to compare
each pair of potential speech segments drawn from the utterances stored in STM. This
metric estimates the likelihood that the segment pair in question constitutes variations of
similar underlying phoneme sequences, and thus represents the same word. The chi-squared
divergence metric described earlier is used to compare the visual components associated with
each STM utterance. If both the acoustic and visual distance are small, the speech segment
and shape/color histogram are copied into the LTM. Each entry in the LTM is a pairing of
a ‘speech icon’ with a ‘shape/color icon’ which I refer to collectively as a cross-modal icon.

In a final learning step, cross-modal icons from LTM are consolidated into categorical
models of spoken words paired with shapes/colors. A category is defined by a prototype
cross-modal icon in conjunction with an acoustic and a visual radius which specify allow-
able deviation from the prototype. To understand how the consolidation step works, let us
assume that the LTM contains N cross-modal icons. We designate one of these as the pro-
totype and assign a radius of allowable variation to the constituent speech and visual icons.
Each of the remaining N −1 items can be compared to the prototype to determine whether
they match the prototype acoustically and visually. If the distance from the test icon to
the prototype is less than the corresponding radius, then we set an indicator variable to 1,
otherwise to 0. Thus, for each comparison between a cross-modal icon and the prototype,
we obtain the value of an acoustic and a visual indicator variable.

Each of the N − 1 comparisons can be thought of as an experiment, the outcome of
which is the value of two random variables which indicate acoustic and visual matches. The
mutual information (MI) between the two variables is estimated in order to test whether
the two variables are correlated (and thus indicative of a good speech-to-visual association).
Mutual information is a measure of the amount of uncertainty removed regarding the value
of one variable given the value of the other (Cover & Thomas, 1991). It is assumed that
semantically linked speech-shape/color icons will lead to random variables with high MI.
Cross-modal icons with high MI are selected to form categorical representations. The radii
are determined by an optimization process which searches for the combination of speech
and visual radii values which maximizes cross-modal MI (see Roy (In press) for details).
During on-line learning, each new cross-modal icon placed in LTM by the recurrence filter
is treated as a prototype. If the resulting MI is high, it leads to a permanent lexical item.
A garbage collection process periodically removes cross-modal icons from LTM which are
not selected by the consolidation process.

A human partner can interact with the robot implementation of CELL in one three
modes. In the Learning Mode, the person may present objects to the robot and describe
them using natural fluent verbal descriptions. Each object-utterance pair enters the CELL’s
STM and is processed. Once CELL has acquired a set of visually-grounded words, the
robot may be switched to either the Understand Mode or the Generate Mode. In the
Understanding Model, a person may speak one-word or two-word phrases (shape, color, or
color-shape). In response, the robot will attempt to recognize the speech (using the acoustic
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models in its acquired lexicon) and then find an object in its environment which best fits
the visual model associated with the recognized word or phrase. In the Generate Mode,
a novel object can be presented to the robot for description. The system builds a three-
dimensional model of the object by viewing it from multiple angles. The robot generates a
spoken description using a phonetic speech synthesizer of the object by retrieving the best
matching entries in its lexicon.

Evaluation with Infant-Directed Speech

CELL has been evaluated as a model of how infants might segment fluent spontaneous
speech and discover word units. A corpus of audio-visual data was gathered from infant-
directed interactions (Roy, 1999). Six caregivers and their pre-linguistic (7-11 months)
infants were asked to play with objects while being recorded. Seven classes of objects
commonly named by young infants were selected (Huttenlocher & Smiley, 1994): balls,
shoes, keys, toy cars, trucks, dog, horses. A total of 42 objects, six objects for each class,
were obtained. The objects of each class varied in color, size, texture, and shape.

Each caregiver-infant pair participated in 6 sessions over a course of two days. In each
session they played with 7 objects, one at a time. All caregiver speech was recorded onto
DAT using a wireless head-worn microphone. In total, approximately 7,600 utterances were
collected comprising of 37,000 words across all six speakers. Most utterances contained
multiple words with a mean utterance length of 4.6 words.

The objects were imaged by the robot. A total of 209 images from varying perspectives
were collected for each of the 42 objects, resulting in a database of 8,778 images.

The speech recordings from the caregiver-infant play sessions were combined with the
images taken by the robot to provide multimodal input to CELL. To prepare the corpus for
processing, the following steps were performed: (1) The speech recordings were segmented
at utterance boundaries. This was done automatically by finding contiguous frames of
speech detected by the recurrent neural network. (2) For each utterance, a random set of
15 images of the object which was in play at the time the utterance was spoken was selected.

The lexicons extracted from the corpus were evaluated using three measures. The first
measure, segmentation accuracy (M1), is the percentage of lexical items with boundaries set
at English word boundaries. The second, word discovery accuracy (M2), is the percentage
of lexical items which were complete English words with an optional attached article. The
third measure, semantic accuracy (M3), is the percentage of lexical items which passed M2
and were paired with semantically correct visual models.

For comparison, the system was also run with only acoustic input. In this case, it was
not meaningful to use the MI maximization. Instead, the system searched for globally
recurrent speech patterns, i.e., speech segments, which were most often repeated in the
entire set of recordings for each speaker. This acoustic-only model may be thought of as a
rough approximation to a minimum description length approach to finding highly repeated
speech patterns which are likely to be words of the language.

Results of the evaluation shown in Table 1 indicate that the cross-modal algorithm was
able to extract a large proportion of English words from this very difficult corpus (M2),
many associated with semantically correct visual models (M3). Typical speech segments in
the lexicons included names of all six objects in the study, as well as onomatopoetic sounds
such as “ruf-ruf” for dogs, and “vroooom” for cars. Comparison with the audio-only system
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Table 1: Performance results on word segmentation, word discovery, and semantic accuracy averaged
across six speakers. Results shown for cross-modal learning using CELL, and acoustic-only learning.

Segmentation Accuracy (M1) Word Discover (M2) Semantic Accuracy (M3)
audio only 7±5% 31±8% 13±4%

audio-visual 28±6% 72±8% 57±10%

clearly demonstrates improved performance when visual context is combined with acoustic
evidence in the clustering process. For the difficult test of word boundary detection (M1),
multimodal input led to a four-fold improvement over acoustic-only processing. Cross-
modal structure enabled the system to find and extract useful knowledge without the aid
of manual annotations or transcriptions.

DESCRIBER: Learning Word and Grammar Semantics in a
Spatial Description Task

The word learning experiments based on CELL focused on learning surface forms of
words, and the acquisition of associated visual categories. A second system, DESCRIBER,
investigates the acquisition of a limited visually grounded grammar in a spatial description
task. The description task is based on images of the sort shown in Figure 5. The computer
generated image contains a set of ten non-overlapping rectangles. The height, width, x-
y position, and red-green-blue (RGB) color of each rectangle is continuously varying and
chosen from a uniform random distribution. DESCRIBER addresses the following problem:
Given a set of images, each with a target object and a natural language description of
the target, learn to generate syntactically correct, semantically accurate, and contextually
appropriate referring expressions of objects embedded in novel multi-object scenes.

Figure 5. A typical scene processed by DESCRIBER. The arrow indicates the target object.

DESCRIBER acquires a visually-grounded language model which enables it to generate
referring expressions. In an assessment of semantic ambiguity made by human judges, the
visual descriptions have been found to be comparable to human generated descriptions.
This paper provides a sketch of the principal mechanisms underlying DESCRIBER. A more
detailed account of the system will be available in an upcoming paper.
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The ‘perceptual system’ of DESCRIBER consists of a set of feature extractors which
operate on synthetic images. In comparison to CELL, visual processing in DESCRIBER
is trivially available since we have direct access to the source of the images (i.e., access to
the program which generated the images). A set of visual attributes including shape, size,
location, color, and brightness, is extracted from each rectangle in a scene. The features for
the set of objects constitute the iconic representation of a scene. Learning in DESCRIBER
consists of six stages:

Stage 1: Word Class Formation
In order to generate syntactically correct phrases such as ‘large red square’ as opposed

to ‘red large square’ or ‘square red’, word classes that integrate syntactic and semantic
structure must be learned. Two methods of clustering words into syntactically equivalent
classes were investigated. The first relies on distributional analysis of word co-occurrence
patterns. The basic idea is that words which co-occur in a description are unlikely to belong
to the same word class since they are probably labeling different aspects of the scene. The
second method clusters words which co-occur in similar visual contexts. This method uses
shared visual grounding as a basis for word classification. We have found that a hybrid
method which combines both methods leads to an optimal clustering of words.

Stage 2: Feature Selection for Words and Word Classes
A subset of visual features is automatically selected and associated with each word.

A search algorithm finds the subset of visual features for which the distribution of fea-
ture values conditioned on the presence of the word is maximally divergent from the un-
conditioned feature distribution. Features are assumed to be normally distributed. The
Kullback-Leibler divergence is used as a divergence metric between word-conditioned and
unconditioned distributions. This method has been found to reliably select word features
in an eight dimensional feature space. Word classes inherit the conjunction of all features
assigned to all words in that class.

Stage 3: Grounding Adjective/Noun Semantics
For each word (token type), a multidimensional Gaussian model of feature distributions

is computed using all observations which co-occur with that word. The Gaussian distri-
bution for each word is only specified over the subset of features assigned to that word in
Stage 2.

Stage 4: Learning Noun Phrase Word Order
A class-based bigram statistical language model is learned and models the syntax of

noun phrases. The visually grounded word classes acquired in Stage 1 form the basis for
this Markovian model of word order.

Stage 5: Grounding the Semantics of Spatial Terms
A probabilistic parser uses the noun phrase bigram language model from Stage 4 to

identify noun phrases in the training corpus. Utterances which are found to contain two
noun phrases are used as input for this stage and Stage 6. Multi-noun-phrase utterances
are usually of the form ‘TARGET NP [spatial relation] LANDMARK NP’, that is, a noun
phrase describing the target object, followed by a spatial relation, followed by a landmark
noun phrase. A typical utterance of this type is, ‘The large square slightly to the left of the
vertical pink rectangle.’. An automatic process based on bigram word pair probabilities is
used to tokenize commonly occurring phrases (e.g., ‘to the left of’ is converted to the token
‘to the left of’). Any words in the training utterance which are not tagged as noun phrases
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by the parser are treated as candidate spatial terms. A set of visual spatial primitives based
on Regier (1996) is introduced in this stage. The procedures in Stages 2 and 3 are re-used
to ground spatial words in terms of these spatial features.

Stage 6: Learning Multi-Phrase Syntax
Multi-noun-phrase training utterances are used as a basis for estimating a phrase-based

bigram language model. The class-based, noun phrase language models acquired in Stage
4 are embedded in nodes of the language model learned in this stage.

To train DESCRIBER, a human participant was asked to verbally describe approxi-
mately 500 images of the kind shown in Figure 5. Each spoken description was manually
transcribed, resulting in a training corpus of images paired with utterance transcriptions2.
Figures 6 and 7 illustrate the results of the learning algorithm on this training corpus. The
language model has a three-layer structure. At the highest level of abstraction (left side of
Figure 6), phrase order is modeled as a Markov model which specifies possible sequences of
noun phrases and connector words, most of which are spatial terms. Transition probabili-
ties have been omitted from the figure for clarity. Two of the nodes in the phrase grammar
designate noun phrases (labeled TARGET OBJECT and LANDMARK OBJECT) and are
diagrammatically linked by dashed lines to the next level of the model. Note that at the
phrase level, the semantics of relative noun phrase order are encoded by the distinction of
target and landmark phrases. In other words, the system knows that the first noun phrase
describes the target and the second describes the landmark. This distinction is learned in
Stage 6 (details of how this is learned can be found in Roy (In review).

Each word in the noun phrase language model is linked to an associated visual model.
The grounding models for one word class are shown as an example in Figure 7. The words
‘dark’, ‘light’ and ‘white’ were clustered into a word class in Stage 1. The blue and green
color components were selected as most salient for this class in Stage 2. The ellipses in
the figure display isoprobability contours of the word-conditional Gaussian models in the
blue-green feature space learned for each word in Stage 3. The model for ‘dark’ specifies low
values of both blue and green components, whereas ‘light’ and ‘white’ specify high values.
’White’ is mapped to a subset of ‘light’ for which the green color component is especially
saturated. In summary, the phrase level language model is grounded through two levels of
indirection in terms of sensory features of the system.

A planning system uses the grounded grammar to generate semantically unambiguous,
syntactically well formed, contextualized text descriptions of objects in novel scenes. A
concatenative speech synthesis procedure is used to automatically convert the text string
to speech using the input training corpus. The final output of the system are spoken
descriptions of target objects in the voice of the human teacher. In outline form, the
planner works as follows:

Stage 1: Generate Noun Phrases
Using the noun phrase model as a stochastic generator, the most likely word sequence

is generated to describe the target object, and each non-target object in the scene.
Stage 2: Compute Ambiguity of Target Object Noun Phrase
An ambiguity score is computed based on how well the phrase generated in Stage 1

describes non-target objects in the scene. The Viterbi algorithm (Rabiner, 1989) is used
2A natural extension of this work is to integrate the acoustic word learning methods from CELL to

replace this manual transcription step.
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Figure 6. Noun phrase and word class structures acquired by DESCRIBER.
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Figure 7. Visual grounding of words for a sample word class.
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to compute the probability that each object in the scene matches the target phrase. If
the closest competing object is not well described by the noun phrase, then the planner
terminates, otherwise it proceeds to Stage 3.

Stage 3: Generate Relative Spatial Clause
A landmark object is automatically selected which can be used to unambiguously iden-

tify the target. Stage 1 is used to generate a noun phrase for the landmark. The phrase-
based language model is used to combine the target and landmark noun phrases.

Sample output from DESCRIBER is shown in Figure 8 for four novel scenes which were
not part of the training corpus. In each scene, the target object is indicated with an arrow.
Note that the descriptions take into account the relative context of each target object. In the
lower two scenes, Stage 1 failed to produce an unambiguous noun phrase, so DESCRIBER
generated a complex utterance containing a relative landmark. These descriptions represent
DESCRIBER’s attempt to strike a balance between syntactic, semantic, and contextual
constraints3.

An evaluation was conducted to assess how accurately human listeners can select target
objects from scenes, given DESCRIBER’s spoken utterances, in comparison to the original
human trainer’s descriptions. Four judges selected the correct object 81.3% of the time
based on DESCRIBER’s output versus 89.8% when given human generated descriptions.
These results suggest that DESCRIBER acquires the grounded language capacity necessary
for this task.

We have recently ‘transplanted’ a real time vision system in place of the synthetic vision
system. In initial tests with controlled visual environments, we have been able to successfully
run DESCRIBER on real world objects. Similar to CELL, the grounded language model
underlying DESCRIBER can be used for language understanding, however, we have not yet
implemented this capability.

Discussion

A goal in implementing CELL and DESCRIBER was to design representations which
were at least partially shaped by the machine’s environment, rather than the intuitions of
human developers. To varying degrees this was accomplished. Representations in CELL
and DESCRIBER are causally linked to sensory experience. Sensory input gives rise to
internal representations which are used by each system to generate, and in the case of
CELL, understand, spoken language. The iconic representations of word semantics enables
each system to relate natural language to the visual environment.

Does either system achieve symbolic representation? DESCRIBER comes closer than
CELL. In CELL, lexical items are audio-visual associations. The associations are formed
on the basis of cross-modal mutual information. Mutual information is a symmetric metric
(i.e., MI(A; B) = MI(B; A)). In other words, as far as CELL is concerned, visual categories
could just as well serve as labels for speech or vice versa. Likewise, it is possible that in
very early language learning, infants are also unaware of the referential capacity of language,
and instead use it in purely associationist ways. In any case, the lexical items in CELL are
clearly not symbolic. They are, however, grounded and thus could serve as the foundation
for grounded symbols.

3An utterance length penalty was introduced as a fourth constraint to reward concise descriptions.
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The highest vertical rectangle.The thin pink rectangle.

The dark green rectangle above
the light green rectangle.

The dark purple rectangle touching
the light purple rectangle.

Figure 8. Sample output generated by DESCRIBER for target objects indicated by arrows in
the images. Relative spatial clauses are automatically generated to reduce ambiguity when needed
(bottom two scenes).

Words acquired by DESCRIBER come closer to being symbolic. DESCRIBER’s ac-
quired hierarchical language structures encode relations between words independent of their
grounding. These relations enable DESCRIBER to generate verbal descriptions for novel
scenes. This generative capacity is a result of the formation and use of word classes. Statis-
tical rules of word order acquired from observation of some words are mapped to other words
on the basis of shared class membership. For example, if the sequence ‘large blue square’
is observed, the sequence ‘small red rectangle’ can be generated if the appropriate word
classes have been acquired. Since word classes are formed partially on the basis of seman-
tic similarity, bottom-up visual grounding directly influences the application of syntactic
rules to words. Thus, the rules of symbol manipulation in DESCRIBER are influenced by
subsymbolic (iconic), visually grounded structure.

Conclusions and Future Directions

The systems presented in this paper represent steps forward toward machines which
can converse about what they see and do. In contrast to conventional natural language
processing systems, the semantics of words and utterances in CELL and DESCRIBER
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are grounded in visual representations. The non-symbolic links to perceptually derived
representations constitute a step toward grounding semantics which will enable machines
to autonomously acquire and use symbolic information for their own purposes. However, a
limitation in this work is that neither CELL nor DESCRIBER can act on their environments.
All they can do is talk and listen. Future work will address this important issue.

We are investigating new grounded architectures with two important features: the ability
to act on their environment, and the ability to autonomously seek goals. Figure 9 shows a
newly constructed robot which has been designed as a platform for supporting our current
investigations. This robot has a much richer set of sensors than the robotic platform used
with CELL, and also has the ability to manipulate objects in its environment. Aspects of
CELL and DESCRIBER will be integrated and extended to support experiments with this
new robot.

Figure 9. A new robot for experiments in sensorimotor representation grounding. Pictured here
is the robot’s ‘head’ with mouth closed. The sensor system includes stereo color cameras, stereo
microphones, an artificial vestibular system, course grain touch sensors, joint position detectors,
and artificial proprioceptive joint detectors. All degrees of freedom are compliant; a human may
physically interact with the robot while it is in operation, providing a natural way to teach the robot
how to act.

With continuing progress in the fields of perceptual computing, robotics, pattern recog-
nition, and machine learning, the components required to create sophisticated, physically-
grounded, language learning machines have become a reality. Simulated environments such
as that used in DESCRIBER vastly simplify the development process and provide scaf-
folding for developing data structures and algorithms. However, for reasons discussed at
the beginning of this paper, real physical environments must ultimately be addressed. A
great challenge in building physically grounded machines such as CELL is the complexity of
designing and debugging large heterogeneous hardware and software systems. To overcome
this challenge, powerful data visualization and debugging tools must be developed in the
future that are appropriate for these kinds of systems.

These projects help lead towards a new generation of communication machines which
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are grounded in the same physical reality as people. As one example of a practical outcome
of this kind of work, I expect perceptually situated verbally controlled robots to become
a reality by following this path of research. Both CELL and DESCRIBER have resulted
in representations and learning algorithms which will serve as building blocks towards this
goal. Ultimately, I believe that the lessons learned from designing grounded representational
structures and processes can help lead to insights into the nature of the human conceptual
and communication systems by letting us ‘step out of ourselves’ and perceive the world
through the bodies and senses of our machines.
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