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Abstract

One of the most distinctive characteristics of human language is the extent to which it relies on learned
vocal signals. Communication systems are ubiquitous in the natural world but vocal learning is a
comparatively rare evolutionary development (Jarvis, 2004). In this paper we take one example of this
phenomena, bird song, which displays some remarkable parallels with human language (Doupe and
Kuhl, 1999), and we focus on one particular case study, that of the Bengalese finch (Lonchura striata
var. domestica), a domesticated species whose song behaviour differs strikingly from its feral ancestor
in that it has complex syntax and is heavily influenced by early learning (Okanoya, 2002). We present
a computational model of the evolutionary history of the Bengalese finch which demonstrates how an
increase in song complexity and increased influence from early learning could evolve spontaneously
as a result of domestication. We argue that this may provide an insight into how increased reliance on
vocal learning could evolve in other communication systems, including human language.

1 Introduction

The human capacity for language is one of our
most distinctive characteristics. While communica-
tion systems abound in the natural world, human lan-
guage distinguishes itself in terms of its communica-
tive power, flexibility and complexity. One of the
most unusual features of human language, when com-
pared to the communication systems of other species,
is the degree to which it involves learning. Just how
much of language is innate and how much is learned
is an ongoing controversy, but it is undeniable that
the specific details of any particular language must
be learned anew every generation. We do, of course,
bring a great deal of innate resources to bear on our
language learning process, and the results these in-
nate biases have on the development of languages
may explain a great deal about the structure of the
languages we see today. But still every child in every
new generation must go through a lengthy process
of language acquisition if they are to become normal
language users.

Once in place, this inter-generational process of
language acquisition and use, oriterated learning
(Kirby and Hurford, 2002), can give rise to cultural
evolution, which studies have shown may explain
many prominent phenomena of human language, in-
cluding the emergence of dialects and, by extension,

separate languages (Livingstone, 2002), regular and
irregular word forms (Kirby, 2001) and composi-
tional syntax (e.g. Brighton, 2002).

The emergence of learning can therefore be seen
as a major transition in the evolution of language and
we would like to better understand the evolutionary
pressures and factors which caused this transition. A
natural point at which to start such an investigation
is to look at the communication systems of other an-
imals to see if there are any parallels which might il-
luminate the relevant ecological factors. Much com-
parative research has been carried out with the non-
human primates, but despite some fascinating results,
it seems that their natural communication systems
are very different to language, including the fact that
learning plays a much less prominent role. In fact
it appears that vocal learning systems have evolved
in only three groups of mammals: humans, bats and
cetaceans, and three groups of birds: songbirds, hum-
mingbirds, and parrots (Jarvis, 2004).

In this paper we concentrate on bird song as it has
many striking parallels with language, particularly
the way in which it is learned, as Darwin noted in
The Descent of Man:

The sounds uttered by birds offer in several
respects the nearest analogy to language,
for all the members of the same species ut-



ter the same instinctive cries expressive of
their emotions; and all the kinds that sing,
exert their power instinctively; but the ac-
tual song, and even the call notes, are learnt
from their parents or foster-parents. (Dar-
win, 1879, p. 108)

Since Darwin’s day much research has been car-
ried out into bird song and, to take Tinbergen’s four
perspectives of ethology, we now know a great deal
about its mechanism, development, function and evo-
lution. However, despite much research, in general
the evolutionary function of song learning remains
unclear (Slater, 2003). The parallels between bird
song and human language have also been further
elaborated as modern techniques have allowed us to
establish the neural mechanisms of both song and lan-
guage (Doupe and Kuhl, 1999).

2 A case study

Recent studies by Kazuo Okanoya of a domesticated
species of finch, the Bengalese finch (Lonchura stri-
ata var. domestica), and its feral ancestor, the white-
backed munia (Lonchura striata), provide an inter-
esting case study of the interaction of learning and
evolution in bird song. The Bengalese finch sings a
song with complex finite state syntax which is heav-
ily influenced by early auditory experience. Surpris-
ingly, the munia sings a strikingly simpler, more lin-
ear song which is less influenced by early learning.
In other words, in a relatively short period of domes-
tication, there have been radical changes in song be-
haviour. This has happened even though the domes-
ticated species has been artificially bred for plumage
rather than song.

Okanoya (2004) has identified the neural mecha-
nism underlying this difference in behaviour and has
shown that while Bengalese chicks are able to learn
the songs of munia tutors, munia chicks are not able
to learn the more complex Bengalese song, clearly
demonstrating that there is a physiological basis for
this difference.

2.1 Okanoya’s hypothesis

As experiments have shown that both female mu-
nias and female Bengalese finches prefer the more
complex song, Okanoya (2002) argues that it is sex-
ual selection which drove this increase in complex-
ity. He argues that domestication freed the Bengalese
finch from the pressure of predation and other pres-
sures associated with life in the wild which had pre-
viously held song complexity in check. According to

Okanoya, the more complex song of the Bengalese
finch may therefore be seen as an honest signal of fit-
ness (Zahavi, 1975); a fitter bird can afford a more
complex song. Sasahara and Ikegami (2004) show
with a computational model of the finch data that
song complexity could indeed increase as a result of
sexual selection.

2.2 Deacon’s hypothesis

Reviewing the same data, Deacon (p.c.) agrees that
domestication masked the natural selection pressure
keeping the munia’s song simple, but argues that the
increase in complexity happenedwithoutdirect selec-
tion on the trait. Essentially, he posits that domestica-
tion shielded the trait from selection which allowed
random genetic drift to erode innate song biases in
the munia. This allows previously minor influences,
such as mnemonic biases and early auditory experi-
ence, to have more of an effect on song structure and
learning, which results in the various neural modules
involved in song production and learning becoming
increasinglyde-differentiated. Deacon goes on to ar-
gue that this process of masking and subsequent de-
differentiation is a potential explanation for the evo-
lution of complex functional synergies such as the
neural mechanisms for song production now present
in the Bengalese finch, and, he argues, in the human
capacity for language. The concept of selective mask-
ing and its effect on the evolution of language are ex-
plored in more detail in (Deacon, 2003).

3 A computational model

In order to evaluate Deacon’s hypothesis and to try
to establish if such behaviour could evolve sponta-
neously as a result of domestication, we have devel-
oped a computational model of the finch data. The
model is designed to be reasonably biologically plau-
sible, and also general enough that it could be ex-
tended to other species. The model works with an
evolving population of agents, or birds, and the main
stages in the simulation are listed here, details of each
stage are given below:

Birth The bird’s song filter is built up from its
genotype as described in section 3.1.

Development The bird is exposed toe songs from
its environment, and, using its filter, selectst songs
from which it will learn (its training set) as described
in section 3.2. The bird then uses the learning algo-
rithm described in section 3.3 to learn the song gram-
mar it will use to sing throughout its life.



Adulthood The bird is tested inf fitness trials, as
described in section 3.4 to see how many times, using
its filter, is can correctly recognise a bird of its own
species and how many times it is correctly recognised
by a bird of its own species. These values are added
to give a bird’s fitness score.

Reproduction Parents of the same species are
selected probabilistically according to their fitness
score and their chromosomes are crossed over using
one-point crossover with probabilitypCO (set to 0.7
for all results provided here), to give a new child.
Individual genes are mutated with probabilitypMut
(set to 0.05 for all results provided here). The muta-
tion operator used is the ‘Reflect’ operator described
in (Bullock, 1999).

Death Each bird in the population is sampleds
times and the resulting songs are stored for the next
generation to learn from. All of the current birds in
the population are removed and their children become
the new population.

3.1 The song filter

A bird is modelled as having a genetically coded
note1 transition matrix, which specifies a transition
probability from each note to every other note in the
used in the simulation, including a probability for
the first and final notes. The total number of notes
is a parameter of the simulation,numNotes, but in
all results provided here this was set to 8, i.e. the
notes froma alphabetically through toh, this value
was chosen as it appears to be the number of unique
notes identifiable in both the Bengalese finch and mu-
nia’s songs (Okanoya, 2002, p. 56). The matrix is
coded for by a chromosome which has one real val-
ued locus for each entry in the matrix which can vary
between 0 and 1. This chromosome will thus have
(numNotes + 1)2 loci, the 1 is added to include the
transitions at the beginning and end of the song. To
construct a matrix from the chromosome we look at
eachnumNotes + 1 loci of the chromosome in turn,
and normalise the values to give a probability distri-
bution for each row of the matrix. An example ma-
trix, and the chromosome that codes for it is shown
in table 3.1. Note that this scheme allows different
genotypes to code for the same phenotype.

The transition matrix serves one main purpose; to
establish the probability that a given song is one of the

1It should be noted that while we use the term ‘note’ throughout
this paper, this is not intended to refer to a particular acoustic note,
rather we simply use it to denote an atomic song element that can
be reliably differentiated from other elements which appear in the
song.

a b c E
S 0.08 0.15 0.62 0.15
a 0.11 0.89 0.00 0.00
b 0.05 0.10 0.40 0.45
c 0.82 0.09 0.00 0.09

0.1 0.2 0.8 0.2 0.1 0.8 0.0 0.0 0.1 0.2 0.8 0.9 0.9 0.1 0.0 0.1

Table 1: An example note transition matrix and the
chromosome that codes for it. The S indicates the
start of the song, and the E indicates the end of the
song.

bird’s own species song. This is done by establishing
the average probability of each note transition in the
song, as shown in equation 1 which defines the pref-
erence a given matrixmx has for a particular songsy,
in this equationn is the number of note transitions in
sy andmx(ti) is the entry inmx for theith transition
of sy. For example the preference value the matrix in
table 3.1 gives for the songcab, which has the transi-
tionsS-c, c-a, a-b andb-E, is 0.62+0.82+0.89+0.45

4 =
0.695, while the preference for the songacb is 0.043.
Note that we always include the transition to the first
note and from the last note, so the empty song ‘’ has
a single transitionS-E, for which this matrix has a
preference value of 0.15.

preference(mx, sy) =
∑n

i=0 mx(ti)
n

(1)

The matrix can be thought of as a song ‘filter’. A
song with a high probability will be more likely to
pass though the filter than one with a lower probabil-
ity, in our examplecab would be much more likely
to pass through the filter thanacb. If the matrix has
a single high probability transition for each note this
can be thought of as a strong filter, as it will only
accept songs which contain these transitions. If the
matrix has even probabilities for each transition it is
considered a weak filter as it accepts all songs equally.

We can measure the strength of the filter ex-
plicitly by calculating the entropy for each transi-
tion distribution (i.e. each row in the matrix), us-
ing Shannon’s (1948) measure. This will result in a
value which ranges from0 to log(nV alues), where
nV alues is the number of probabilities in rowrx (i.e.
the number of columns in the matrix). We then nor-
malise this value into the range0 to 1, as shown in in
equation 2, which defines the normalised entropy for
a given rowrx, in this equationpi is the probability
of the ith transition inrx. The overall strength of a
matrix mx is then calculated as the average entropy



of each rowr in the matrix, as shown in equation 3.
A filter strength of 0 means that the filter will only
accept one song while an strength of 1 means that the
filter will accept all songs equally. As an example,
the matrix in table 3.1 has a strength value of 0.56.

entropy(rx) =
−

∑nV alues
i=0 pi log (pi)
log(nV alues)

(2)

strength(mx) =
∑nRows

i=0 entropy(ri)
nRows

(3)

This filter is intended to model the preferences
many songbirds have for their species specific
song (Catchpole and Slater, 1995). In the model a
bird uses its filter for two purposes:

1. To select its training set (the songs it will later
use to learn from) from the songs it is exposed
to during infancy.

2. To judge whether another bird is a member of
the same species for mating or territorial de-
fense.

In this respect, this model is similar to those used
in Lachlan’s models of the ‘cultural trap’ in bird
song (Lachlan and Slater, 1999; Lachlan and Feld-
man, 2003). This seems a reasonably plausible as-
sumption, as it is known that some songbirds do have
an innate preference for conspecific song both when
learning songs as a nestling and also for later mate
selection (Catchpole and Slater, 1995).

3.2 Selecting the training set

The infant bird is exposed toe environmental songs
to select itst training songs from, bothe and t are
parameters of the simulation, but were set to 50 and
5 respectively for all results provided here. 5 seems
a rather low value oft, but the learning algorithm is
very computationally intensive and so a low value is
used to speed up the simulation. Thee environmen-
tal songs are randomly selected from the songs sam-
pled from the previous generation, to compose this
set each bird is sampleds times, another parame-
ter which is set to 5 here, so for a population size
popSize of 100, as used here, this will contain 500
songs.

The infant bird is exposed to each of thee songs
in turn and uses its filter to compute the probability it
will be accepted. During experimental runs it was de-
termined that checking that the song is accepted once

did not impose enough of a pressure for the bird to
correctly select conspecific song and so a song is only
added if it is accepted by the filter twice successively.
If the bird has not pickedt songs after being exposed
to all e songs, the process is repeated untilt songs
have been selected. The training songs are then fed
into the learning algorithm described below.

3.3 Song learning

Song learning is modelled as minimum description
length (MDL) induction of a probabilistic finite state
machine (PFSM), closely following the algorithm de-
scribed in (Teal and Taylor, 2000). Induction of
finite-state machines was chosen to model learning
as Okanoya (2002) argues that the songs of both mu-
nias and Bengalese finches can be usefully described
by a finite-state syntax. The algorithm works by
firstly establishing the maximal PFSM that explic-
itly represents each song in the training set, the prefix
tree. The algorithm then searches for nodes which
can be merged which will reduce the MDL of the
overall machine, whilst also ensuring that the PFSM
remains deterministic. The MDL measure takes into
account the amount of information (measured by the
number of bits) required to code for the machine it-
self, and also to code for each of the training songs
in terms of the machine. Essentially the algorithm
searches for the most parsimonious machine in terms
of the data. This approach allows us the bird to gen-
eralise from its training set, whilst also always being
able to reproduce each of the songs it learned from.
The reader is referred to (Teal and Taylor, 2000) for a
more detailed description of the algorithm used. The
only difference between Teal and Taylor’s and our ap-
proach is that we also take into account the probabil-
ity of each note transition, given the probabilities of
each transition in the training set.

3.4 Calculating a bird’s fitness

To establish a bird’s fitness we want to check both that
its filter allows it to correctly identify its own species,
and that its song is correctly identified by other birds
of its species. This seems a reasonable model of the
pressures acting on song in the wild (Catchpole and
Slater, 1995).

To calculate an individual birdb1’s fitness we per-
form f fitness trials, a parameter set to 250 for the
results provided here. In each fitness trail we get the
b1 to produce a song and we then randomly select
another member of the population,b2 and check that
b2 correctly recognises the song using its filter. We
also getb2 to produce a song and check thatb1 cor-



rectly recognises the song with its filter. Every correct
recognition means thatb1’s fitness is incremented by
1. With f set to 250, this means that the maximum
fitness achievable is 500, or generally2f .

3.5 Modelling the finch data

This is a fairly general model of bird song, and so
we need set it up to match the data available on the
Bengalese finch and the munia as closely as possible.
The simulation passes through 3 main phases, each
of which runs for 500 generations. The phases are
described below.

Phase 1 We know that the white-backed munia
has a very stereotyped song and that it seems to only
be able to learn songs that match its species-specific
song fairly closely (a munia cross-fostered with Ben-
galese parents is not able to learn its tutor’s song).
In our model this corresponds to the munia having a
strong filter. To simulate this state we seed the envi-
ronmental songs with a single song type, e.g.abcdef .
We then run the simulation for 500 generations using
the fitness function and learning algorithm described
above. As the environment songs are entirely identi-
cal the songs that any bird will learn from are always
the same, and so they will always induce the same
PFSM. This is not meant to be biologically plausible,
we simply want the population to develop strong fil-
ters for a particular simple song type.

Phase 2 At the end of phase 1 we have a population
of birds who sing a stereotypical song and produce
offspring with a strong genetic bias to learn that song.
To test if the filter can indeed help young birds recog-
nise the appropriate song to learn from in the second
phase of the run we start introducing random songs
into the bird’s environment, this is intended to model
hetero-specific song in the environment. We model
this by replacing 10% of thes sampled songs with
randomly generated songs which use the same notes
as the current population and which are constrained
to within the same length as the munia songs.

Phase 3 We model domestication of the popula-
tion simply by ceasing to calculate fitness, but we
continue to perform the crossover and mutation op-
erations. The seems a reasonable model of domes-
tication, as in captivity the birds no longer have to
recognise their own species to successfully mate or
defend their territory as the mating is now controlled
by humans and they are kept in aviaries. Domestica-
tion can thus be seen tomaskthe selection pressure
on these functions. We continue to introduce 10% of
random songs into the environment each generation,
as it seems a reasonable asumption that the birds will

still be exposed to hetero-specific song, or at least
other extraneous sounds, in captivity. Experimental
results of this setup are described in the next section.

4 Results

The graph in figure 1 shows several measures taken
over the course of each of the three phases described
above.

The first measure, in red, is how much variation
there is, on average, in an individuals repertoire. This
is calculated simply as the total edit (or Levenshtein)
distance between a number of an individual’s songs
(set to 10 for all runs shown here). The second mea-
sure, in green, is the average filter strength of the pop-
ulation, calculated as described in equation 3. The
third measure, in blue, is the average fitness of the
population. We do not calculate this measure in phase
3 and so it does not appear for this phase. The fourth
measure we include, in blue, is the average grammar
encoding length (GEL) of the population’s PFSMs,
this is a measure of the size, in bits, it would take to
encode a PFSM using the measure defined in (Teal
and Taylor, 2000). The fifth measure, in brown, is
the average song linearity of the songs tested in mea-
sure 1, defined as the number of unique notes in each
song divided by the number of unique note to note
transitions. The sixth and final measure, in yellow,
is the average linearity of the population’s PFSMs
calculated simply as the number of states divided by
the number of transitions. A completely linear PFSM
would thus have a linearity of 1, while a maximally
non-linear PFSM would have a linearity equal to 1
over the number of transitions in the PFSM.

Two example PFSMs taken from the population at
the end of phase 2 are shown in figure 2, and two PF-
SMs from the end of phase 3 are shown figure 3. The
GEL and PFSM linearity values for each machine is
also given.

Figure 2:Two example PFSMs from the population at the
end of phase 2.

4.1 Analysis

These results demonstrate that the strong filters built
up in phase 1, as shown by the increase in filter
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Figure 1:These results are averages taken over 10 separate runs of the simulation with a different random number generator
seed for each run. It should be noted that all these measures have been normalised and linearly mapped to give a value within
0 and 1000, where the minimum value seen in the run is set to 0 and maximum values seen in the run is set to 1000. This
graph therefore only shows the relative change each of the measures over the course of a run, not the absolute values of each
measure. We have also smoothed the lines in the graph to better allow us to see the overall trends. More detailed results are
available upon request.

Figure 3:Two example PFSMs from the population at the
end of phase 3.

strength2, enable the birds to filter out the hetero-
specific songs introduced in phase 2 without any
fitness decrease. We see that all 5 measures stay
roughly the same throughout this phase, indicating
that this is a fairly stable state. When we ‘domesti-
cate’ the population in phase 3 we see a significant
change in its behaviour. Immediately we see that the
filters begin to weaken, and we see that the GEL and

2Note that the strongest filter would give a value of 0, and the
weakest 1

the individual variation measures also rise steadily
throughout the phase indicating that the population’s
PFSMs are getting larger and the birds have a more
varied song repertoire. At the same time we see both
the song, and underlying PFSM linearity drop, indi-
cating that the songs a bird will sing have compara-
tively more varied note transitions.

This behaviour seems to be a result of the fact the
strength of the population’s filters is no longer being
selectively maintained, that it they have beenmasked
from selection. This allows mutations to accumu-
late and for the filters to become steadily weaker.
This allows some of the hetero-specific songs to pass
though the filter when a bird is selecting its training
set, which results in the bird inducing a more var-
ied PFSM. Essentially the domesticated populations
is able to learn from much more varied sources and
so early auditory experience has much more of an ef-
fect on adult song behaviour.

These results are comparable to those provided
in (Wiles et al., 2002), who show with a computa-
tional model how a similar masking effect, in this
case a fruit-rich environment rather than domestica-
tion, may have played a role in the loss of the ability
of anthropoid primates to synthesize vitamin C. Their



model, however, goes further than ours and shows
that if the selection pressure were laterunmasked this
could result in selection for other abilities, e.g. colour
vision, that maintained the levels of vitamin C avail-
able.

4.2 Song complexity?

Okanoya (2002) argues that the Bengalese finch has a
much more “complex” song that the munia. His mea-
sure of complexity is the song linearity, defined as
the total number of unique song notes divided by the
number of unique note-to-note transitions. He finds
that the average song linearity of the munia is around
0.8 while the Bengalese finch song has a value of
around 0.4 (p. 56). We provide results for this mea-
sure over the course of our simulations in the graph
above, but on average we also see a higher value,
around 0.95, for the ancestral population and a lower
value, around 0.6, for the domesticated population.

While this measure seems a reasonably intuitive
measure of song complexity, it should be noted that
this measure will classify an entirely random song as
maximally complex. We do not want to equate ran-
domness with complexity, but we find it hard to define
a measure that can differentiate between the two. Any
standard measure of the information content of a song
will not be able to do so; a random song is maximally
informative in information-theoretic terms. However
we consider that two measures, the GEL of a bird’s
PFSM taken together with the linearity of the PFSM
provide a reasonable estimate of the complexity of
a song. A PFSM with a very small GEL and a low
linearity is likely to produce more random songs, as
it approaches a one state PFSM with multiple transi-
tions back to the same state. A PFSM with a large
GEL, but a very high linearity (as we see in the an-
cestral population in the model) will produce an en-
tirely linear song. A PFSM with a large GEL and
a relatively low linearity will produce songs that we
are more happy to refer to as complex, as the GEL
indicates that it has many states, and so different
notes will be used in different contexts, but each state
also has several transitions which means that differ-
ent transitions can be made from each context. Our
results demonstrate that the domesticated population
does have a higher GEL and a lower PFSM linear-
ity than the wild population and so we are tentatively
happy to agree that domestication has caused an in-
crease in song complexity. However, we are still
working on developing a more satisfactory measure
of song complexity.

4.3 Comparison with the biological data

Comparing these results with the data available for
the Bengalese finch we find that the model does seem
to capture some of the phenomena involved. Okanoya
has shown that a munia chick which is not exposed to
conspecific song will not sing a normal song, which
seems to fit with the model. He has also shown
that while Bengalese chicks can readily learn munia
songs, munia chicks cannot learn the more complex
Bengalese songs. In the model this difference is at-
tributable to their different filters. The difference in
the values for the song linearity in the ancestral and
domesticated populations also seem to match fairly
well.

As it stands though, the model does not explain
why the female munia prefers the Bengalese song.
We would argue that a bias for complexity song may
have been latent in the munia, and the fact that the
munia females prefer the more complex song does not
prove that this was the driving force for the change in
song behaviour, although introducing such a prefer-
ence into the model may help to tease these pressures
apart. Okanoya (2004) demonstrates that the NIf re-
gion of the Bengalese finch’s brain is necessary for
the it to be able to sing the more complex song; when
surgically lesioned a Bengalese finch with previously
complex song will sing a simpler, more munia-like
song. We would argue that the model remains neu-
tral to this datum, as it is possible that the munia does
have this pathway present in its brain but, because it
only ever learns a simpler song, does not use it.

5 Discussion

Our results demonstrate that an increase in song com-
plexity (in some sense) and increased influence from
early learning can arisewithoutdirect selection on ei-
ther trait, simply through the process of domestica-
tion, but what is the significance of this result for the
study of human language? Can studying the evolu-
tion of learning and complexity in bird song inform
our study of the origins of complex language in our
species? We believe that understanding the mecha-
nisms behind the emergence of the Bengalese finch’s
song, and indeed the evolution of bird song in gen-
eral, is valuable for evolutionary linguistics in two
ways.

Firstly, it has been argued that iterated learning is
a key mechanism for the origins of syntax in human
language (Kirby and Hurford, 2002). It is striking
that human language differs from most other commu-
nication systems both in being transmitted through
iterated learning and in having complex syntactic



structure. We say “most” here but not “all”. We ap-
pear to be in a very exclusive club with songbirds
as another member. Of course, there are important
differences between iterated learning in humans and
birds. For example, in the former a central constraint
on transmitted languages is that they beexpressive,
in that strings must convey complex meanings. Bird
song does not carry meaning in the same way, al-
though a diversity of songs may play a role as a sex-
ual display (Catchpole and Slater, 1995). Neverthe-
less the co-occurrence of iterated learning and signal
complexity in both songbirds and humans combined
with the rarity of either anywhere else in nature can-
not be ignored.

Secondly, and more specifically, by uncovering the
crucial role of selectivemaskingin the case of the
Bengalese Finch, we bring a new mechanism to the
table for discussions of the origins of human syn-
tax. It is quite possible that we should not be look-
ing for selective advantages of a culturally transmit-
ted syntactic language, but rather asking what se-
lective forces may have been shielded in our recent
evolutionary past. The lifting of selection pressure,
and the subsequent diversification of behaviour could
have been the necessary precursors of a system of
iterated learning for language. What remains to be
understood is exactly what more is required for any
subsequent modification and synergistic reorganisa-
tion of the neural mechanisms underlying these new
behaviours.

We feel that the answer to this question is best pur-
sued through computational modelling of the vocal
behaviour of both birds and humans.
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