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Abstract – This paper repor ts new simulations on an 
extended neural network model for  the transfer  of 
symbol grounding. I t uses a hybr id and modular 
connectionist model, consisting of an unsupervised, 
self-organizing map for stimulus classification and a 
supervised network for category acquisition and 
naming. The model is based on a psychologically-
plausible view of symbolic communication, where 
unsupervised concept formation precedes the 
supervised acquisition of category names. The 
simulation results demonstrate that grounding is 
transferred from symbols denoting object properties to 
newly acquired symbols denoting the object as a whole. 
The implications for  cognitive models integrating 
neural networks and multi-agent systems are discussed. 

I. INTRODUCTION 

Semantic interpretability is of great importance to 
modeling cognitive systems. In fact it has been the central 
theme in cognitivism, which considers the brain to be a 
symbol system and explains cognition as a manipulation of 
symbols governed by rules [6,7,16]. This approach doesn't 
resolve a fundamental question though: how these symbols 
are connected to their meanings. The cognitivist symbols 
don't have an inherent meaning: they reside in the mind of 
the interpreter and always require the semantic 
interpretation of an external observer. This is the symbol 
grounding problem [9], which affects all cognitivist 
models that deal with language learning and evolution. 

The grounding of symbols can be tackled using a 
connectionist approach. Various neural network models 
exist that are able to extract invariant characteristics from 
input stimuli and build categories. Some models [e.g. 15, 
17] explicitly involve the learning of labels (names) for the 
categories. However, attaching individual labels to 
conceptual categories is not sufficient for the development 
of a symbolic language. The names of categories have to 
be combined to form propositions using syntactic or other 
logic (e.g. boolean) constraints to be considered symbols. 
This would permit the expression of complex meanings by 

means of new combinations of symbols (i.e. linguistic 
propositions). Some connectionist models have made use 
of multiple symbols, although with limited compositional 
capabilities [2,5,8]. For example, Cangelosi et al. [2] 
studied the transfer of grounding from names for 
geometric shapes to the superposed categories 
"symmetric" and "asymmetric". This model was then 
extended [8] to include three grounding transfer 
simulations with both extensional (category information) 
and intensional (property information) categorical 
structures, e.g. object = superposed object category 
("Circle = Symmetric"), object + property = object 
category ("Horse + Stripes = Zebra") & property + 
property = object category ("Red & Square = DAX").   

An additional requirement for solving the symbol 
grounding problem is that of anchoring symbols to the 
sensorimotor abilities of organisms. Cognition is not 
exclusively explained by means of isolated symbolic and 
mental processes, but it also involves embodiment factors. 
Symbols have a physical grounding in the bodily 
experience of the environment with which a cognitive 
agent interacts [1,14]. In computational cognitive 
modeling, the embodied approach has been extensively 
used for studying low-level cognitive functions like 
sensorimotor coordination and active vision. Only recently 
has this approach been extended to include high-level 
cognitive abilities such as language [4]. While the 
connectionist models discussed simulate the grounding of 
language based solely on perceptual experience, embodied 
models integrate the perceptual and motor experience. To 
achieve it, neural networks have been combined with 
models of artificial life and adaptive behavior to simulate 
language evolution and language use in simulated agents 
and robots [e.g. 3,12]. For example, Marocco et al. [12] 
use a population of evolutionary robots that learn to 
manipulate objects in a simulated physical environment. 
The robots also learn to name objects through a process of 
communication using an evolutionary algorithm. The 
sensorimotor, cognitive and linguistic behavior of robots is 
controlled by a neural network. This permits the grounding 
of symbols (names) in their sensorimotor experiences. 



Other embodied models study the acquisition of 
grounded language in robots without the use of 
connectionist systems. For example, Steels [18] uses 
robots that learn a grounded symbolic language through 
language games. He emphasizes the fact that language 
emerges as part of a specific interactive situation. Vogt 
[19] follows a similar approach defining symbols as 
structural connections between reality and sensorimotor 
activation deriving from the interaction between agent and 
environment. He uses mobile robotic agents that play 
adaptive language games. These studies point out that a 
situated and embodied multi-agent system permits us to 
study aspects of the evolution and acquisition of language 
otherwise out of reach. 

Not all symbols can be directly grounded in our own 
perceptual and sensorimotor experience. We acquire most 
concepts from descriptions by others, rather than from 
direct experience with their referents. Moreover, we 
possess concepts that have no reference to anything 
actually existing in the outside world. We can invent new 
concepts on our own and talk about them thereby 
transferring the concepts into somebody else’s mind. It is 
clear that language can’ t rely exclusively on a direct 
grounding of symbols on sensorimotor projections. 

Linguistic descriptions are essential for knowledge 
acquisition and transfer. Typically a description of a 
concept consists of its name together with a list of 
properties, such as shape, size, color, functionality, usage, 
etc. (e.g. "A zebra is white with black stripes"), and/or 
with references to other concepts (e.g. "A zebra is a horse 
with stripes"). In this paper we will take into consideration 
the case in which a concept is defined by a list of its 
properties. These properties can be either grounded 
directly through interaction with the environment or can 
derive their grounding from descriptions. We hypothesize 
a process of grounding transfer from the names of the 
properties (directly grounded during the network training) 
to the names of the new concepts being defined (indirectly 
grounded during language learning). Furthermore, we state 
that this process essentially consists of a neural linking of 
the linguistic sign to sensorimotor representations of its 
defined properties. This implies that representations of 
symbols are essentially amodal: they are based on 
sensorimotor representations distributed across different 
parts of the neural network.  

The new simulation reported in this paper further 
extends the work by Cangelosi and colleagues [2,8] by 
postulating a process of self-organization in which the 
ability to classify and categorize stimuli is acquired in an 
unsupervised manner. This process constructs analogue 
sensorial representations in a feature map on which names 
for properties are grounded. Only the relations between 
symbols and the objects they refer to and those between 
symbols and their symbolic definitions are acquired 
through supervised learning. In [17] a supervised 
algorithm (error backpropagation) was used for the 

acquisition of categories and their names. The present 
model is based on a more psychologically plausible view 
of symbolic communication: unsupervised concept 
formation precedes the supervised association of a 
category name [17]. The grounding of symbols is initially 
based on sensorimotor cognitive functions that 
spontaneously emerge from the agent's interaction with its 
environment. Only subsequently a supervised algorithm is 
employed for the acquisition of the basic symbols and for 
the transfer of knowledge through language.  

II. EXPERIMENTAL SETUP 

The model proposed here implements an autonomous 
cognitive system, immune to the symbol grounding 
problem. Its basic symbols (names of shapes and colors) 
are intrinsically connected to the categories being acquired 
through direct interaction with the environment. These 
symbols are successively applied to construct descriptions 
of new categories of stimuli (e.g. individuals made by 
specific combinations of one shape and color). New 
symbols are in this way defined without having a direct 
experience of their referents. This process of grounding 
transfer enables the system to express meanings that go 
beyond immediate experience. New symbols, acquired 
exclusively from symbolic descriptions, are ultimately 
grounded in the interaction of the system with its 
environment. 

During the first phase, we present images of objects 
distinguished by different colors and shapes. The networks 
learn to discriminate between different stimulus categories 
by constructing a feature map in an unsupervised manner. 
This feature map expresses the intrinsic order of the 
stimulus set. The networks acquire in this way analogue 
sensorial representations of their environment that enable 
them to categorize the stimuli along the dimensions of 
shape and color. 

During the second phase, we also present symbolic 
stimuli together with the images. Every picture is 
associated with symbols, consisting of arbitrary bit 
sequences that represent names for its color and shape 
properties. The networks are required to reproduce the 
same symbols in output. During this phase, symbols 
denoting color and shape properties are directly grounded 
in the sensorial representations acquired during the first 
phase.  

During the third phase, the training input is exclusively 
symbolic. We use descriptions containing the previously 
acquired symbols in combination with a new symbol that 
denotes an object category. A sample description could be 
“Red & Square = DAX”. Descriptions of both known and 
unknown objects are presented to the networks. For 
example, we can present images of red and blue squares 
and of green and red triangles, but never show a green 
square or a blue triangle. In any case, we can present the 
symbolic definition of a green square (“Square & Green = 



SOD”) during this learning phase. Only later, during the 
test phase, we will actually project on the retina the images 
of these previously unseen objects, to check if grounding 
transfer has occurred. If grounding has been transferred 
from the basic names of shapes/colors to the new names of 
individual objects, the network will effectively activate the 
output unit corresponding to name of the new images. 

A. The stimulus set 
The training and test stimuli consist of images of objects 

that vary along the dimensions of color, shape and position 
(Fig. 1 Left). Each image is a 5x5 pixel drawing. The 
objects depicted can be red, green or blue. The shapes are 
a square, a cross or a group of four dots. Every image (i.e. 
combination of a color and shape) is presented in nine 
different positions in the retina (Fig. 1 Right). Every pixel 
of the image is represented using three input units, with a 
continuous activation ranging from 0 to 1, encoding the 
red, green and blue primary components. 

In total there were 81 images, 54 for training purposes 
and 27 reserved for testing. The names of properties and 
object categories are encoded with localist symbolic input 
and output units. The symbolic input may contain the 
names of the categories of different visual features (e.g. 
"Red", "Square"), the name of the object as a whole, or a 
full description of the objects (e.g. "Red + Square = 
DAX"). 
 

 
Fig. 1. (Left) The training and stimulus sets. Different 
levels of gray correspond to the colors red, green or 
blue. Stimuli are plotted in a 5x5 retina. (Right) 
Example of the 9 positions of one of the training 
stimuli. 

B. The network architecture 
The current model implements neural networks 

composed of two modules and a retina for input (Fig. 2). 
The first module is a two-layer Self-Organizing Map 
(SOM), while the second is a standard multi-layer 
perceptron (MLP). This new model is a further extension 
of previous connectionist models of symbol grounding and 
transfer [2,8].  Images are projected on the retina and are 
subsequently categorized by the first module. The second 
module receives as input the analogue sensorial 
representations of the first module and some additional 
symbolic input stimuli in the form of combinations of 
arbitrary bit sequences.  

Two learning algorithms coexist within the model. The 
first module classifies stimuli using a Kohonen Self-
Organizing Feature Map [11]. The second module 
connects the analogue representations emerged in the first 
network to the discrete symbolic stimuli via the standard 
error backpropagation algorithm [13]. SOMs are the result 
of a vector quantization algorithm that generates a 
mapping from the multi-dimensional stimulus space to a 
bi-dimensional matrix within which the similarity between 
different stimuli is expressed. In this way, the first module 
autonomously constructs an activation matrix in which the 
intrinsic order of the stimulus set is expressed. 

The second module receives a symbolic input together 
with the activation matrix of the first module.  Visual 
input, symbolic input and output stimuli are related 
through a direct learning process in which stimuli are 
presented simultaneously. Learning is supervised and 
consists in computing the error with respect to a teacher 
input and propagating this error backwards from output to 
input units and correcting the weight distribution. In this 
way the symbols are grounded on the representations of 
the first unsupervised module and are therefore grounded 
in the interaction between the system and the environment. 

 

 
Fig. 2. The network architecture 

C. Training and testing procedures 
Learning is incrementally organized in three stages. 

During the various training phases, the networks resolve 
progressively more difficult tasks by basing their learning 



on the representations that emerged during the previous 
phase. It is the modularity of the hidden layer that permits 
this kind of learning since representations for different 
categorization criteria are localized in different areas of the 
network. In this way we obtain a combination of a neural  
architecture and a learning procedure that enables the 
network to combine elementary constituents into higher-
level representations. 

During the first learning stage, the SOM network 
acquires categories for the stimuli projected on the retina 
through the unsupervised algorithm. The network 
generates a matrix which expresses the degree of similarity 
of the stimulus set and thus implicitly contains a division 
into categories. 

In the second phase, the MLP networks learn to connect 
the SOM stimulus representations produced by the first 
module to the symbolic input and output units of the 
second module. These symbolic stimuli correspond to the 
names of the categories acquired during the first phase. 
The networks receive as input, at the same time, both 
visual and symbolic stimuli and learn to produce the 
corresponding symbolic output, consisting of the correct 
names of the property categories to which the visual 
stimuli belong.  

In the third training phase, the networks exclusively 
receive symbolic input consisting of simple descriptions. 
These contain the previously-learned property names 
together with a new symbol denoting the object as a 
whole. In this way new symbols can be defined without 
having a direct experience of their referent, by just 
describing their form and color properties. This is the 
process of grounding transfer. Grounding is transferred 
from the symbols acquired during the second phase to the 
new symbols defined in the propositions. The new 
symbols are now indirectly grounded in the network’s 
perceptual and cognitive (categorization) experience. 

During the test phase, novel images, depicting the 
referents of the new symbols, are projected onto the retina 
for the first time. This enables us to verify if grounding has 
effectively transferred. If the networks consistently 
respond with the correct symbol for every new image 
presented, then we can conclude that grounding transfer 
has taken place.  

III. RESULTS 

The training and testing phases were repeated with 30 
networks with different random initial weights. The 
learning rate was 0.2 for the first phase and 0.5 for the 
following two phases. The momentum was set invariably 
to 0.9 in all training phases. The stimuli were presented in 
random order during the unsupervised SOM 
categorization, and in sequential order during the 
supervised MLP phases.  

All 30 networks completed the training procedure 
successfully. The networks acquired names for the color 

and shape properties of the training stimuli correctly, with 
a success rate of 100%. After the final training stage, 27 
images depicting new objects were presented to the 
networks for the first time, in order to check if grounding 
transfer had taken place from directly grounded property 
names to names for the objects. The percentage of correct 
object naming during the grounding transfer test (i.e. 
producing the correct name for an image containing an 
object never seen before) was computed using a winner-
takes-it-all approach. The unit with highest activation 
determines the name of the input image. The rate of 
correct responses for the 30 nets was 89.7%. Without 
having ever seen the test images before, the nets were able 
to categorize and name them correctly in the great majority 
of cases. These results are very similar to that of the 
previous grounding transfer models using only MLPs and 
the supervised learning algorithms. 

IV. DISCUSSION AND CONCLUSIONS 

This simulation demonstrates that grounding is 
transferred from symbols denoting object properties to 
newly acquired symbols denoting the object as a whole. In 
general terms, it shows that a connectionist model enables 
knowledge acquisition, through the combination of 
previously-grounded symbols, that goes beyond direct 
experience with the environmental stimuli.  

The original aspect of this simulation is the use of a 
hybrid unsupervised (SOM) and supervised (MLP) model. 
Previously, such a hybrid, modular approach had been 
used to study category acquisition and labeling [17]. 
Schyns calls it "mapped functional modularity". His model 
contains an unsupervised module that categorises the 
stimulus set, while a supervised module connects labels to 
their representations. Like in our model, unsupervised 
concept formation precedes the supervised association of a 
category name. However, Schyns’s model is limited to the 
direct grounding of basic category names. No names of 
higher-order categories are learned via symbolic 
instructions, and therefore the grounding transfer 
mechanism does not apply. Instead, he concentrates on 
prototype effects and conceptual nesting of hierarchical 
category structures. Symbols are only used as indicators of 
knowledge and facilitators of concept extraction. On the 
other hand, the present work builds on Schyns’s [17] and 
our [2,8] previous models by focusing on the transfer of 
grounding. This can better permit the development of 
scaled-up connectionist models that can deal with various 
properties of language, such as that of generativity. In 
particular, future research with the current grounding 
transfer model will consider the use of more complex rules 
for combining previously-grounded symbols to generate 
and describe new meanings. The current simulation only 
uses an implicit AND logical connective to link the two 
symbols referring to the color and shape of the new object. 
New work will include the use of more complex 



compositional languages. These will require the use of 
more logical connectives, up to the level of combining 
symbols through syntactic rules.  

Research on computational modeling of the grounding 
of language has recently moved towards the integration of 
connectionist models with other simulation methodologies 
such as multi-agent models and artificial life. These 
techniques support an embodied and situated approach to 
cognitive modeling [1, 14]. For example, Honkela and 
Winter [10] use SOM models to control the cognitive 
system of agents able to perceive and act in the 
environment and to communicate about it. Cangelosi and 
colleagues [3, 12] use neural networks to control the 
cognitive and linguistic behavior of simulated agents and 
embodied robots.  

The current model is being expanded and integrated into 
an artificial life multi-agent system. This will permit the 
study of the emergence of a shared grounded language and 
of grounding transfer in autonomous agents. Such an 
embodied and situated approach will enable us to study the 
effects of interaction in an environment and how the 
consequent bodily experience influences language 
emergence and acquisition. 
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