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1 Introduction

Everyone who reads this paper knows on the order of 50,000 words of his primary language. These

words are stored in the ‘mental lexicon’ together with one or several meanings, some information

how they relate to other words, and how they fit into sentences. During the first 16 years of life

we learn about one new word every 90 waking minutes. A six-year-old knows about 13,000 words

([41], [38], [51]-[53]).

Words are strings of phonemes. Sentences are strings of words. Language makes use of combi-

natorics on two levels. This is what linguists call ‘duality of patterning’. While words have to be

learned, virtually every sentence that a person utters is a novel combination. The brain contains

a program that can build an unlimited number of sentences out of a finite list of words. This

program is called ‘mental grammar’([27]). Children develop this grammar rapidly and without

formal instruction. Experimental observations show that 3 year old children apply grammatical

rules correctly 90% of the time.

The most complicated mechanical motion that the human body can perform is the simple

activity of speaking. While generating the sounds of spoken language, the various parts of the

vocal tract perform movements that have to be accurate within millimeters and synchronized

within a few 100th of a second ([38]).

Speech perception is another biological miracle of our language faculty. The auditory system is

so well adapted to speech that we can understand 10-15 phonemes per second during casual speech

and up to 50 phonemes per second in artificially sped-up speech. These numbers are surprising

given the physical limitations of our auditory system: if a clicking sounds is repeated at a rate of

about 20 per second, we no longer hear it as a sequence of separate sounds, but as a continuous

buzz. Hence we apparently do not perceive phonemes as consecutive bits of sound, but each

moment of spoken sound must have several phonemes packed into it, and our brain knows how to

unzip them ([36], [30], [14]).

The preceding paragraphs demonstrate that human language is an enormously complex trait.

Our language performance relies on precisely coordinated interactions of various parts of anatomy,

and we are amazingly good at it. We can all speak without thinking. In contrast, we often cannot

perform basic mathematical operations without concentration. Why is doing math or playing

chess painfully difficult for most of us, when the computational tasks necessary for generating

or interpreting language are arguably more complicated? A plausible answer is that evolution

designed some parts of our brain specifically for dealing with language.

Evolution relies on the transfer of information from one generation to the next. For billions

of years this process was limited to the transfer of genetic information. Language facilitates the

transfer of non-genetic information and thus leads to a new mode of evolution. Therefore the
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emergence of language can be seen as a major transition in evolutionary history ([34], [35]), being

of comparable importance as the origin of genetic replication, the origin of eukaryotes, or the

emergence of multi-cellular organisms.

Attempts to shed light on the evolution of language have come from many areas including

studies of primate social behavior ([55], [6], [10]) or animal communication ([14], [22], [56]), the

diversity of existing human languages ([21], [7]), the development of language in children ([43],

[3], [24]), theoretical studies of cultural evolution ([8], [9], [60], [2]) and learning theory ([44],

[45]). Our objective here and in several related papers ([47]-[50], [54])) is to bring discussions of

language evolution within the precise mathematical framework of modern evolutionary biology.

For mathematical models of language evolution see also [23]-[24], [57].

In Section 2, we describe how evolution can design a very basic communication system where

arbitrary signals refer to specific objects (or concepts) of the world. We study errors during

communication and show how such errors limit the repertoire a simple communication system. In

Section 3, we show that word formation can overcome this error limit – a phenomenon explained

by Shannon’s noisy coding theorem. In Section 4, we design a framework for modelling the

population dynamics of words. We define the basic reproductive ratio of words and calculate the

maximum size of a lexicon. We discuss how natural selection can guide the emergence of syntactic

communication. Section 5 is a conclusion.

2 Evolving Arbitrary Signals

Let us first study the basic requirements for the evolution of the simplest possible communication

system. We imagine a group of individuals (humans or other animals) using a number of arbitrary

signals to communicate information about a number of objects (or concepts) of their perceived

world. We will define an speaking matrix, a listening matrix, a payoff function, and finally the

evolutionary dynamics.

Consider a population of individuals that can communicate via signals. Signals may include

gestures, facial expressions, or spoken sounds. We are interested how an arbitrary association

between signals and ‘objects’ can evolve.

In the most simple model, each individual is described by an active matrix, P , and a passive

matrix, Q ([25]). The entry Pij denotes that the probability that the individual, as a speaker, will

refer to object i by using signal j. The entry Qji denotes the probability that the individual, as a

listener, will interpret signal j as referring to object i. Both P and Q are stochastic matrices; their

entries lie in [0, 1], and their rows each sum to one. The ‘language’ of an individual, L = (P,Q),

is defined by these two matrices.

When one individual using L = (P,Q) communicates with another individual using L′ =
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(P ′, Q′), we define the payoff as the number of objects communicable between the individuals,

weighted by their probability of correct communication. Thus the payoff for L versus L′ is given

by

F (L,L′) =
1

2

n∑

i=1

m∑

j=1

PijQ
′
ji + P ′

ijQji =
1

2
((PQ′) + (P ′Q)) . (2.1)

There are n objects and m signals. Loosely speaking, this payoff function reflects the total amount

of information that L can convey to L′, and vica versa. In this basic model, any possible mis-

communication results from a discrepancy between the signal-object associations of the speaker

and the listener. The maximum possible payoff to two individuals who share a common language

is the smaller of n or m.

2.1 Evolutionary dynamics

This framework can be used to study how signals can become associated with arbitrary meaning

(an approach pioneered by [23]). Consider a population of size N . Each individual is characterized

by a language L = (P,Q) matrix. The fitness is evaluated according to eq (2.1). Every individual

talks to every other individual with equal probability. For the next generation, individuals produce

children proportional to their payoff. This is the standard assumption of evolutionary game theory;

the payoff of the game is related to fitness ([33]). In the context of language evolution, it means

that successful communication increases the survival probability or performance during life-history

and hence enhances the expected number of offspring. Thus, language is of adaptive value and

contributes to biological fitness.

Children inherit from their parents a language acquisition device – a strategy how to acquire

language. In the idealized case children learn the exact language spoken by their parents. In

more realistic cases, children might sample their parents’ languages, building an internal associ-

ation matrix which, when normalized, gives a P and Q matrix. If children sample their parents’

languages infinitely many times, they will adopt acquire an the same language as their parents.

Under finite sampling, the child’s language will only resemble its parents’. Alternatively, children

might sample the languages of the most fit individual or individuals in the population. Children

might even alternatively sample the language of a random individual in the population. In all

cases, over time the population will evolve towards a coherent language L = (P,Q). If children

sample their parents’ languages or the languages of well-spoken individuals, however, the resulting

population will have a higher mean equilibrium fitness ([47], [49]).

It is interesting to ask which languages are Nash-equilibria in this evolutionary setting. It

turns out that a language can satisfy F (L,L) > F (L′, L) for all L′ if and only if n = m, P is

permutation, and Q is transpose of P ([58]).
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2.2 Errors during transmission

In this section, we analyze the consequences of transmission errors during communication. We will

show that such errors limit the maximum fitness of a language irrespective of the total number of

objects that are being described by the language.

Denote by Uij the probability of mistaking signal i for signal j. The corresponding signal-error

matrix, U , is a stochastic m × m matrix. Its rows sum to 1. The diagonal values, Uii, define the

probabilities of correct communication. Given this error matrix, the fitness a language becomes

F =
n∑

i=1

m∑

j=1

m∑

k=1

PijUjkQki. (2.2)

In the best possible case, the language is given by a permutation matrix (assuming m = n) and

the fitness is simply given by the sum over the diagonal entries of the error matrix

F =
m∑

i=1

Uii. (2.3)

The signal-error matrix, U , can be constructed to reflect the similarities of the signals. In

particular, we denote the similarity between signal i and signal j by Sij. We stipulate that Sii=1

and Sij ≤ 1. The probability of mistaking signal i for signal j quantifies how similar signal i is to

j compared with all other signals: Uij = Sij/
∑m

k=1 Sik. In these terms, the fitness of a common

language, n = m can be expressed as

F (L,L) =
m∑

i=1

1
∑m

k=1 Sik

. (2.4)

We imagine that the signals of the language are embedded in some compact metric space, X,

and that dij denotes the distance between signals i and j. The similarity between two signals,

then, is a decreasing function of the distance Sij = f(dij).

For example, if we embed signals i into the unit interval vi ∈ [0, 1], and if similarity is an

exponentially decreasing function of distance Sij = exp(−α|vi − vj|), then the maximal fitness

satisfies

F (L,L) =
m∑

i=1

1/
m∑

k=1

exp(−α|vi − vk|). (2.5)

As the number of signals increases, m → ∞, then F (L,L) is bounded by 1 + α/2, regardless of

the choice of embedding ([48]). In other words, the maximal fitness is bounded, regardless of the

number of signals and objects used.

This error-limit is an example of a general phenomenon. It can be shown that the maximal

fitness is always bounded by some constant depending only on the X and f , but not on n ([17]).
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In other words, even as the signal repertoire of a language increases, the fitness cannot exceed a

fixed value.

If communication about different objects leads to different payoff contributions, then the max-

imum fitness of a language can be achieved by concentrating only on a small number of the most

valuable objects, all other objects being ignored ([47], [49]). Increasing the repertoire of the lan-

guage can reduce fitness. Hence natural selection will prefer communication systems with limited

repertoires. An error limit arises as a consequence of errors during communication: if signals can

be mistaken for each other, it can be better to have fewer signals that can be clearly identified.

In our current understanding all animal communication systems seem to be based on fairly

limited repertoires. Bees use a three dimensional analog system. Birds have alarm calls for a

small number of predators. Vervet monkeys have a handful of signals, their best studied signals

being ‘leopard’, ‘eagle’ and ‘snake’. In contrast human language has a nearly unlimited repertoire.

How did we overcome the error limit?

3 Word Formation

The error limit can be overcome by combining sounds into words. We will provide a very simple

and intuitive argument for this which is closely related to the noisy coding theorem of Shannon.

Communicating with words

Words are strings of sounds. Linguists call these sounds ‘phonemes’. We now develop a more

general framework for word-based language. A language will now be described by four components:

a lexicon, an active matrix P , a passive matrix Q, and a phoneme error-matrix V .

Our model of word-based language uses words which are l-phonemes long. The lexicon of

the language, however, does not necessarily include all possible ml words. Instead, the lexicon

contains a subset of all possible words. We denote the phonemes of the language by the set

Φ = {φ1, . . . , φm}. We denote the lexicon by some subset C ⊂ Φl. We refer to the words in

C as the lexicon or proper vocabulary of the language. Let us denote the size of the lexicon by

n = |C| (i.e. n is the cardinality of the set C). Notice that n also denotes the number of objects

expressible in the language.

The active matrix P defines the (probabilistic) association between objects and words for the

speaker. P is now an n-by-ml stochastic matrix whose ijth entry denotes the probability that a

speaker will attempt to use word j to denote object i. By definition, nonzero entries in P may

occur only at columns corresponding to words in the lexicon C. The passive matrix Q maps all

possible perceived words (probabilistically) back into the n objects. We specify the passive matrix
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via a stochastic ml-by-n matrix Q. The entry Qji represents the probability that a listener who

perceives the jth word will interpret it as the ith object.

Finally, we must provide a description of transmission errors. As before, we use an ml-by-

ml word error-matrix U . The entry Uij denotes the probability that, when a speaker attempts

to vocalize the ith word, the listener perceives the jth word. Notice that only the rows of U

corresponding to lexicon words matter; we have assumed that a speaker will never attempt to

vocalize an improper vocabulary word (although a speaker may, in fact, utter a word outside of

the lexicon via a transmission error).

In strict analogy with previous models, the U -matrix is built upon the similarity between the

phonemes of which the words are comprised. In particular, we start with a stochastic m-by-m

phoneme error-matrix V . The entry Vij denote the probability that, when a speaker attempts to

vocalize the ith phoneme, the listener hears the jth phoneme. The similarity between words α

and β is defined by the product of the similarity of their phonemes. In other words, we have the

following expression for the word error-matrix:

Uαβ =
l∏

k=1

Vα(k)β(k) . (3.6)

where α(k) denotes the kth phoneme of word α.

Thus, a language L is described completely by the three matrices L = (P,Q, V ). The matrix U

is derived from V , and C is determined by those columns of P containing nonzero entries. Finally,

we stipulate that all individuals in a population share the same V -matrix. In other words, all

individuals use the same phonemic alphabet, and they share the same imperfections in their vocal

and auditory organs.

In this setting, the proper payoff function (in strict analogy with previous models) is given

by the sum of the number of objects which speaker L can convey to speaker L′, weighted by

the probability of communicating the objects correctly. In other words, letting wi denote the ith

object, we define

F (L,L′) =
n∑

i=1

∑

α∈Φl

∑

β∈Φl

PwiαUαβQβwi
(3.7)

=
n∑

i=1

∑

α∈Φl

Pwiα

∑

β∈Φl

Qβwi

l∏

k=1

Vα(k)β(k) . (3.8)

We now ask what is the maximum possible fitness a language can obtain. Of course, the

maximum is obtained when the speaker and listener share a common language given by binary
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active and passive matrices. But we do not yet know, given P and V , what is the optimal listening

matrix Q.

Moreover, there remains another issue to be addressed: is it possible, by increasing the word

length l, to increase a language’s payoff without bound? In light of the error limit discussed in

Section 2, this inquiry addresses a fundamental question regarding the adaptive benefits of word

formation.

3.1 Shannon’s noisy coding theorem

The adaptive benefit of word formation is clarified by appealing to the noisy coding theorem of

Shannon. In this section we briefly review Shannon’s fundamental result.

Shannon considers a discreet memoryless source I which emits characters from an alphabet

Φ = {φ1, . . . , φm} according to some discreet probability distribution. The discreet source I is

linked to a noisy channel used to transmit information. The channel is summarized by a channel

matrix V . The entry Vij gives the conditional probability (φjreceived|φisent).

Given a channel V and an input-source, we obtain a natural output stream J . The capacity

C(V ) ∈ [0, 1] measures the maximum rate at which information about an input stream may be

inferred by inspecting the output stream:

C(V ) = sup
I

[H(I) + H(J) − H(I, J)] (3.9)

where H denotes the entropy of a source.

In order to increase fidelity, Shannon defines a set of n codewords, C, each codeword being a

string of l characters from Φ. The encoder takes input messages from the source I, encodes the

information into codewords, and sends the codeword on to the noisy channel, letter by letter. The

decoder is a (deterministic) map from all possible outputs of the noisy channel, Φl, back to C.

Shannon defines the error probability of this communication system as

e(C) =
1

n

n∑

i=1

(errorincommunication

— codewordwi is transmitted). (3.10)

Clearly one would like to construct codes with error probability as small as possible. This is

precisely the problem which Shannon’s fundamental theorem addresses.
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Theorem 3.1 (Shannon, 1948) If a discrete memoryless channel V has capacity C > 0 and R

is any positive quantity with R < C, then there exists a sequence of codes (Ci|1 ≤ i < ∞) such

that
(a) Ci has 2�R·i� codewords of length l = i

(b) the error probability satisfies e(Ci) ≤ Ae−Bi,
(3.11)

where the constants A and B depend only on the channel V and on R.

Shannon’s theorem provides a sequence of communication systems with linearly increasing

codeword length, exponentially increasing number of codewords (and thus describable objects),

and exponentially decreasing error probability. (In essence, Shannon constructs each successive

code Ci by choosing random codewords and decoding via the maximum likelihood method.) Shan-

non’s coding theorem provides us with exponentially good codes. There is, however, an important

converse to this theorem. The converse tells us that we could hope for nothing better:

Theorem 3.2 (Wolfowitz, 1961) For a discreet memoryless channel of capacity C and for any

R > C, there cannot exist a sequence of codes Ci such that Ci has 2R·i codewords of length i and

error probability tending to zero. In fact, such a sequence of codes must have error probability

which approaches one as i → ∞.

3.2 Coding theory and word-formation

Shannon’s communication system is clearly related to our model of word-based language. A

Shannon-encoder may be expressed as a binary n-by-ml matrix P whose rows sum to one. The

entry Pij indicates whether or not the encoder uses word j to denote object (or message) i.

Similarly, the decoder may be expressed as a binary ml-by-n matrix Q. The entry Qji denotes

whether or not the jth word is included in the subset words decoded as the ith codeword (or ith

message).

In this setting, Shannon’s codeword communication through a noisy channel is easily seen to

be equivalent to our model for language. Shannon’s alphabet Φ plays the role of the phonemes,

the encoder plays the role of the active matrix, and the decoder the passive matrix. Shannon’s

“codewords” are simply strings of phonemes. Similarly, the noisy channel V plays the role of

the phoneme error matrix. Shannon’s communication system is always deterministic, however;

it requires that the matrices P and Q are binary. Notice that, when P is binary, there is an

unambiguous one-to-one correspondence between lexicon words and objects. In this situation, the

“objects” expressible in our original language model may be identified with Shannon’s codewords.

In light of the equivalence of these two systems, it is important to relate the information-

theoretic definition of error probability – whose behavior is described by Shannon’s theorem and
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its converse – with our definition of language fitness. Such a relation will allow us to use Theorem

3.1 to derive the maximal fitness of our word-based model.

Towards this end, consider the expression F̃ (C) = |C| · (1 − e(C)) = n · (1 − e(C)). By

Shannon’s theorem, given a channel V with nonzero capacity, we can find a sequence of codes Ci

with linearly increasing codeword length and with exponentially increasing F̃ (C). Thus Shannon’s

theorem (together with its converse) reveals the maximal properties of F̃ (C). It is not difficult

to see, however, that F̃ (C) is equivalent to the fitness of language in our evolutionary model:

F̃ (C) = F (L,L). The proof of this statement is little more than an exercise in unravelling

definitions ([54]).

Therefore, if all the individuals in a population use the same language, and if that language has

binary P and Q-matrices, then the fitness F (L,L) agrees with the information-theoretic quantity

F̃ (C). As a consequence, Shannon’s coding theorem implies the following result.

Theorem 3.3 (Word Formation) Given a phoneme error-matrix V (with nonzero capacity),

there exists a sequence of languages Li with linearly increasing word-length and exponentially

increasing fitness.

Thus word formation overcomes the error limit which constrains strictly phonemic commu-

nication; increasing word-length can increase fitness without bound. This result highlights the

importance of word formation, which is more or less unique to the human species.

4 The emergence of syntax

We now study a later stage in the evolution of language when the population has agreed upon a

common association between objects and words. But individuals vary in the extent and compo-

sition of their lexica. We now develop a model to study the population dynamics of the words

themselves – the frequency which they are found among the lexica of different individuals.

4.1 Population dynamics of words

Each individual is born not knowing any of the words, but can acquire words by learning from

other individuals. Individuals are characterized by the subset of words they know. There are 2n

possibilities for the internal lexicon of an individual. Internal lexica are defined by bit strings:

1 means that the corresponding word is known, 0 means it is not. Let us enumerate them by

I = 0, .., ν where ν = 2n − 1. The number I is the integer representation of the corresponding

bit string. Denote by xI the abundance of individuals with internal lexicon I. The population
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dynamics can be formulated as

ẋI = δI − xI + b
ν∑

J=0

ν∑

K=0

(xJxKQJKI − xIxJQIJK) I = 0, .., ν (4.12)

We have δ0 = 1 and δI = 0 for I > 0; thus all individuals are born not knowing any of the words.

Individuals die at a constant rate, which we set to 1, thereby defining a time scale. The quantities

QIJK denote the probabilities that individual I learning from J will become K. Eq (4.12) can

be studied analytically if we assume that in any one interaction between two individuals only a

single new word can be acquired and if words are memorized independently of each other. Thus

the acquisition of the internal lexicon of each individual proceeds in single steps. The parameter

b is the total number of word learning events per individual per life-time. In this case, we obtain

for the population dynamics of xi, which is the relative abundance of individuals who know word

Wi:

ẋi = −xi + Rixi(1 − xi). (4.13)

Here Ri = bqφi is the basic reproductive ratio of word Wi. It is the average number of individuals

who acquire word Wi from one individual who knows it. The parameter q is the probability to

memorize a single word, and φi is the frequency of occurrence of word Wi in the (spoken) language.

If Ri > 1, then xi will converge to the equilibrium x∗
i = 1− 1/Ri. We can now derive an estimate

for the maximum size of a lexicon. From Ri > 1 we obtain φi > 1/(bq). Suppose Wi is the

least frequent word. We certainly have φi ≤ 1/n, and hence the maximum number of words is

nmax = bq. Note that this number is always less than the total number of words, b, that are

presented to a learning individual. Hence, the combined lexicon of the population cannot exceed

the total number of word learning events for each individual.

A curious observation of English and other languages is that the word frequency distributions

follow Zipf’s law ([61], [?], [36]): the frequency of the i-th most frequent word is given by a constant

divided by i. Therefore we have

φi = C/i. (4.14)

The constant is given by C = 1/
∑

i(1/i). Nobody knows the significance of Zipf’s law for language.

Miller & Chomsky ([39]), however, point out that a random source emitting symbols and spaces

will also generate word frequency distributions that follow Zipf’s law. This seems to suggest that

Zipf’s law is a kind of null hypotheses of word distributions.

We can use Zipf’s law to derive an improved equation for the maximum lexicon size. Assuming

that word frequency distributions follow Zipf’s law, we find that the maximum number of words

is approximately given by the equation

nmax(γ + ln nmax) = bq. (4.15)
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We have used Euler’s gamma: γ = 0.5772.... Suppose we want to maintain a language with

n = 100 words. If the probability of memorizing a word after one encounter is given by q = 0.1,

we need b ≈ 5000 word learning events. For n = 104 and q = 0.1 we need b ≈ 106.

4.2 Evolution of syntax

Animal communication is believed to be non-syntactic: signals refer to whole events. Human

language is syntactic: signals consist of components that have their own meaning. Syntax allows us

to formulate a nearly unlimited number of sentences. Let us now use the mathematical framework

of Section 4.1 in order to study the transition from non-syntactic to syntactic communication.

Imagine a group of individuals that communicate about events in the world. Events are combi-

nations of objects, places, times and actions. (We use ‘object’ and ‘action’ in a very general way as

everything that can be referred to by nouns and verbs of current human languages.) For notational

simplicity, suppose that each event consists of one object and one action. Thus event Eij consists

of object i and action j. Denote by rij the rate of occurrence of event Eij. Denote by φij the

frequency of occurrence of event Eij. We have φij = rij/
∑

ij rij. Non-syntactic communication

uses words for events, while syntactic communication uses words for objects and actions.

Let us first consider the population dynamics of non-syntactic communication. The word, Wij,

refers to event Eij. The basic reproductive ratio of Wij is given by R(Wij) = bqφij. If R(Wij) > 1

then the word Wij will persist in the population, and at equilibrium the relative abundance of

individuals who know this word is given by

x∗(Wij) = 1 − 1/R(Wij). (4.16)

As in Section 4.1, the maximum number of words that can be maintained in the population is

limited by bq.

For natural selection to operate on language design, language must confer fitness. Assume that

correct communication about events confers some fitness advantage to the interacting individuals.

In terms of our model, the fitness contribution of a language can be formulated as the probability

that two individuals know the correct word for a given event summed over all events and weighted

with the rate of occurrence of these events. Hence, at equilibrium, the fitness of individuals using

non-syntactic communication is given by

Fns =
∑

i,j

x∗(Wij)
2rij. (4.17)

Let us now turn to syntactic communication. Noun Ni refers to object i and verb Vj refers

to action j, hence the event Eij is described by the sentence NiVj. For the basic reproductive
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ratios we obtain R(Ni) = (b/2)qsφ(Ni) and R(Vj) = (b/2)qsφ(Vj). The frequency of occurrence of

noun Ni is φ(Ni) =
∑

j φij, and of verb Vj it is φ(Vj) =
∑

i φij. The factor 1/2 appears because

either the noun or the verb is learned in any one of the b learning events. The probability to

memorize a noun or a verb is given by qs. We expect qs to be (slightly) smaller than q, which

simply means that it is a more difficult task to learn a syntactic signal than a non-syntactic signal.

For both signals, the (arbitrary) meaning has to be memorized; for a syntactic signal one also has

to memorize how it relates to other signals (whether it is a noun or a verb, for example).

For noun Ni to be maintained in the lexicon of the population, we require R(Ni) > 1, which

implies φ(Ni) > 2/(bqs). Similarly for verb Vj we find φ(Vj) > 2/(bqs). This means that the total

number of nouns plus verbs is limited by bqs, which is always less than b. The maximum number

of grammatical sentences, however, which consist of one noun and one verb, is given by (bqs)
2/4.

Hence syntax makes it possible to maintain more sentences than the total number of sentences,

b, that are said to a learning individual by all of her teachers together. Therefore all words have

to be learned, but syntactic signals enable the formulation of new sentences that have not been

learned beforehand.

For calculating the fitness of syntactic communication, note that two randomly chosen indi-

viduals can communicate about event Eij if they both know noun Ni and verb Vj. Denote by

x(NiVj) the relative abundance of individuals who know Ni and Vj. From eq (4.12) we obtain the

dynamics

ẋ(NiVj) = −x(NiVj) + R(Ni)x(Ni)[x(Vj) − x(NiVj)] (4.18)

+ R(Vj)x(Vj)[x(Ni) − x(NiVj)]. (4.19)

If R(Ni) > 1 and R(Vj) > 1, the abundances converge to the equilibrium

x∗(NiVj) =
x∗(Ni)x

∗(Vj)

1 − 1/[R(Ni) + R(Vj)]
. (4.20)

At equilibrium, the fitness of syntactic communication is given by

Fs =
∑

i,j

x∗(NiVj)
2rij. (4.21)

When does syntactic communication lead to a higher fitness than non-syntactic communication?

Suppose there are n objects and m actions. Suppose a fraction, p, of these mn events occur, while

the other events do not occur. In this case R(Wij) = bq/(pmn), for those events that occur, and

R(Ni) = bqs/(2n) and R(Vj) = bqs/(2m). We make the (somewhat rough) assumption that all

nouns and all verbs, respectively, occur on average at the same frequency. If all involved basic
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reproductive ratios are well above one, we find that Fs > Fns leads to

m2n + mn2

m2 + mn + n2
>

2q

pqs

. (4.22)

If this inequality holds then syntactic communication will be favored by natural selection. Other-

wise non-syntactic communication will win. For m = n condition (4.22) reduces to

n > 3q/(pqs). (4.23)

Therefore the size, n, of the communication system has to exceed a threshold value before

natural selection can see the advantage of syntactic communication. This threshold value depends

crucially on the parameter p which describes the syntactic structure of the relevant events. If p is

small then most events are unique object-action pairings and syntax will not evolve. The number

np is the average number of relevant events that contain a particular noun or verb. This number

must exceed thee before syntax can evolve.

‘Relevant event’ means there is a fitness contribution for communicating about this event. As

the number of such ‘relevant communication topics’ increased, natural selection could begin to

favor syntactic communication and thereby lead to a language design where messages could be

formulated that were not learned beforehand. Syntactic messages can encode new ideas or refer

to extremely rare but important events. Our theory, however, does not suggest that syntactic

communication is always at an advantage. It is likely that many animal species have a syntactic

understanding of the world, but natural selection did not produce a syntactic communication

system for these species, because the number of relevant signals was below the threshold illustrated

by eq (4.23). Presumably the increase in the number of relevant communication topics was caused

by changes in the social structure and interaction of those human ancestors who evolved syntactic

communication.

5 Conclusions

We have outlined some basic mathematical models that enable us to study a number of the most

fundamental steps that are necessary for the evolution of human language by natural selection.

We have studied the basic requirements for a language acquisition device that are necessary for

the evolution of a coherent communication system described by an association matrix that links

objects of the world (or concepts) to arbitrary signals. Errors during language learning lead to

evolutionary change and adaptation of improved information transfer. Misunderstandings during

communication lead to an error-limit: the maximum fitness is achieved by a system with a small
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number of signals referring a small number of relevant objects. This error-limit can be overcome

by word formation, which represents a transition from an analogue to a digital communication

system.

Words are maintained in the lexicon of a language, if their basic reproductive ratio exceeds

one: a person who knows a word must transmit knowledge of this word to more than one new

person on average. Since there is a limit on how much people can say to each other and how much

they can memorize, this implies a maximum size for the lexicon of a language (in the absence of

written records).

Words alone are not enough. The nearly unlimited expressibility of human language comes

from the fact that we use syntax to combine words into sentences. In the most basic form, syntax

refers to a communication system where messages consist of components that have their own

meaning. Non-syntactic communication, in contrast, has signals that refer to whole situations.

Natural selection can only see the advantages of syntactic communication if the size of the system

is above a critical value. Below this value non-syntactic communication is more efficient.

Throughout the paper we assumed that language was about information transfer. Efficient and

unambiguous communication as well as easy learnability of the language is rewarded in terms of

payoff and fitness. While we think that these are absolutely fundamental and necessary assump-

tions for much of language evolution, we also note the seemingly unnecessary complexity of current

languages. Certainly systems designed by evolution are often not optimized from an engineering

perspective. Moreover, it seems likely that at times evolutionary forces were at work to make

things more ambiguous and harder to learn such that only a few selected listeners could under-

stand the message. If a good language performance enhances the reputation within the group,

we can also imagine an arms-race toward increased and unnecessary complexity. Such a process

can drive the numbers of words and rules beyond what would be best for efficient information

exchange. We hope this will be the subject of papers to come.
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