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Abstract

This paper studies the evolution of a proto–language in a finite
population under the frequency–dependent Moran process. A proto–
language can be seen as a collection of concept–to–sign mappings. An
efficient proto–language is a bijective mapping from objects of com-
munication to used signs and vice versa. Based on the comparison of
fixation probabilities, a method for deriving conditions of evolution-
ary stability in a finite population (Nowak et al. 2004, Nature), it is
shown that efficient proto–languages are the only strategies that are
protected by selection. No mutant strategy can have a fixation prob-
ability that is greater than the inverse population size. In passing,
the paper provides interesting results about the comparison of fixa-
tion probabilities as well as Maynard Smith’s notion of evolutionary
stability for finite populations (Maynard Smith, 1988, J. theor. Biol.)
that are generally true for games with a symmetric payoff function.

Keywords: language evolution, evolutionary stability, Moran
process, fixation probabilities

1 Introduction

A central issue in modern linguistics is the search for universals, that is,
properties that are shared by all languages. One of these design features of
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language is our ability to infer abstract concepts and to link them to arbitrary
signs. A collection of such concept–to–sign mappings can be interpreted
as a proto–language. Evolutionary game theory—which provides a formal
framework for studying biological as well as cultural evolution of frequency–
dependent phenomena—can be used to show how such a proto–language can
evolve from a pre–linguistic environment (Nowak and Krakauer 1999; Nowak
et al., 1999; Trapa and Nowak, 2000; for a review of the more general purpose
of integrating the computational and evolutionary aspects of language see,
for example, Nowak et al., 2002; or Niyogi, 2006).

From a linguistic point of view, an interesting aspect of the evolution
of concept–to–sign mappings is whether a simple replication mechanism will
always lead to bidirectionality, that is, the property that whenever a particu-
lar sign is used to communicate a particular object, this sign will also evoke
the image of this object (see, for example, Hurford, 1989). In an infinitely
large population this is not necessarily the case. The deterministic replicator
dynamics (Taylor and Jonker, 1978; Hofbauer and Sigmund 1998; Nowak
and Sigmund, 2004) can be blocked in a suboptimum state, where one ob-
ject of communication is linked to two or more signs—synonymy, or where
one sign is used for two or more objects—homonymy (Pawlowitsch, 2006).
In the beginning of language, however, small population size most probably
played a crucial role (see, for example, Enard et al., 2002). To get a good
model of the onset of language—a model that actually serves the purpose of
giving a plausible reconstruction of events—it is therefore important to turn
to finite populations. There has been already an attempt to study an aspect
of language evolution in a finite population. Komarova and Nowak (2003)
have discussed the evolution of grammar in a population of finite size.

In this paper I discuss the evolution of a lexical matrix in a finite popula-
tion under a frequency–dependent Moran process in the style of Nowak et al.
(2004). Evolutionary dynamics, according to this model, can be genetic or
cultural. In addition to selection, drift is an intrinsic feature of this process.
Eventually this process leads to fixation of a strategy throughout the whole
population. But new variants can arise by mutations. One crucial aspect
of the frequency–dependent Moran process in a finite population is that a
single mutant strategy that has a (small) disadvantage in terms of relative
fitness against the resident type can still generate a lineage and finally take
over the whole population through the effects of drift. If selection is not
present, and drift is the only evolutionary force at work, a single mutant
strategy that appears in an otherwise monomorphic population has a chance
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to reach fixation of 1/N , the inverse population size. Nowak et al. (2004)
say that selection opposes the replacement of the resident type if the fixation
probability of the mutant is lower than 1/N . Here I shall explore what this
implies for the evolution of proto–language. In particular I am interested in
the emergence of bidirectionality.

2 The model

Let us consider a language game in the style of Nowak et al. (1999) or Trapa
and Nowak (2000). Suppose there are n events that potentially become the
object of communication, and that there are m available signs. A strategy
in the role of the sender can be represented by a matrix

P =


p11 . . . p1j . . . p1m
...

...
pi1 . . . pij . . . pim
...

...
pn1 . . . pnj . . . pnm

 ∈ Pn×m,

and a strategy in the role of the receiver can be represented by a matrix
q11 . . . q1i . . . q1n
...

...
qj1 . . . qji . . . qjn
...

...
qm1 . . . qmi . . . qmn

 ∈ Qm×n,

where

Pn×m = {P ∈ R+
n×m :

m∑
j=1

pij = 1,∀i}, (1)

Qm×n = {Q ∈ R+
m×n :

n∑
i=1

qji = 1,∀i}. (2)

The interpretation is that pij is the probability with which event i is linked
to sign j, and qji is the probability with which sign j is linked to event i. If a
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sender P meets a receiver Q, the probability that they correctly communicate
event i is

m∑
j=1

pijqji.

We call the sum of these probabilities over all n events the potential of com-
munication

π(P, Q) =
n∑

i=1

m∑
j=1

pijqji = tr(PQ). (3)

For a given number of n objects of communication and a given number of
m available signs, the maximally attainable potential of communication is
min{n, m}. We call a pair (P, Q) ∈ Pn×m × Qm×n efficient if it attains the
maximally available potential of communication. For simplicity we assume in
the sequel that m = n. A pair (P, Q) ∈ Pn×n×Qn×n is efficient if tr(PQ) = n.

Assuming that communication is mutually beneficial, we identify the po-
tential of communication with the payoff that both players, the sender as
well as the receiver, get out of their interaction, that is,

πP (P, Q) = π(P, Q) = πQ(P, Q). (4)

The strategy sets for a sender (1) and respectively a receiver (2) together with
the payoff function (3) then constitute a two–player asymmetric game (the
two players have different strategy sets) with a symmetric payoff function
(the two players get the same payoff out of their interaction).

Language as a social phenomenon crucially hinges on the fact that every
single individual potentially appears in both, the role of the sender as well
as the role of the receiver. We assume that interaction is pairwise and that
individuals adopt the role of the sender or the role of the receiver with equal
probabilities. Formally this amounts to symmetrizing the asymmetric game,
where a strategy of the symmetrized game is a pair of a sender and a receiver
matrix

L = (P, Q) ∈ Pn×m ×Qm×n, (5)

and the payoff function for (P1, Q1) interacting with (P2, Q2) is

f [(P1, Q1), (P2, Q2)] =
1

2
tr(P1Q2) +

1

2
tr(P2Q1). (6)
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Note that this payoff function is symmetric,

f [(P1, Q1), (P2, Q2)] = f [(P2, Q2), (P1, Q1)],

which, in this case, is a consequence of the symmetry of the payoff function
in the asymmetric game (4) in combination with the symmetry of the weights
(1/2, 1/2) for being in the role of the sender or in the role of the receiver.
Symmetric games with a symmetric payoff function are sometimes called
partnership games or doubly symmetric games.

2.1 Infinitely large populations

The classical notion of a population game assumes an infinitely large popu-
lation (see, for example, Hofbauer and Sigmund, 1998). A strategy is evo-
lutionarily stable if it is a best reply to itself, and if in addition to that
whenever there is an alternative best reply, the original strategy attains a
strictly higher payoff against this alternative best reply than the alternative
best reply attains against itself (Maynard Smith, 1982). If we look at the
game described by equations (5) and (6) as a game played in an infinitely
large population, a strategy (P, Q) ∈ P ×Q is an evolutionarily stable strat-
egy if and only if it represents a bijective mapping from events to used signs
and vice versa; that is, if and only if P is a permutation matrix and Q is
the transpose of P (Trapa and Nowak, 2000). In the case of 3 objects of
communication and 3 available signs an evolutionarily stable strategy is, for
example,  1 0 0

0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1

 ,

or  0 1 0
0 0 1
1 0 0

 ,

 0 0 1
1 0 0
0 1 0

 .

It is not difficult to see that sender–receiver pairs of this form are the only
strict Nash strategies of this game (for a discussion of Nash strategies and
best–response properties in terms of the P and Q matrices see the Appendix).
The result about evolutionary stability then follows from the fact that for
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symmetrized asymmetric games, a strategy is evolutionarily stable if and only
if it is a strict Nash strategy—which, in turn, follows from Selten’s result that
in asymmetric games, strict Nash strategies are the only evolutionarily stable
strategies (Selten, 1980).

For games with a symmetric payoff function, evolutionarily stable strate-
gies coincide with the locally asymptotically stable rest points of the replicator
dynamics (Hofbauer and Sigmund, 1988 and 1998). This is due to the fact
that for this class of games, the replicator dynamics—which describes deter-
ministic frequency–dependent evolution in an infinitely large population—
induces an increase in average fitness along every non–stationary path . Yet
the replicator dynamics will not always lead to an evolutionarily stable strat-
egy. There are strategies of this game that are not evolutionarily stable (in
the strict sense) but weakly evolutionary stable or neutrally stable. A strategy
is neutrally stable if it is a Nash strategy, and if, in addition to that, whenever
there is an alternative best reply to the original Nash strategy, this alterna-
tive best reply is not a better reply to itself than the original Nash strategy
is to the alternative best reply (Maynard Smith, 1982). In the language of
the P and Q matrices, a strategy (P, Q) is neutrally stable if and only if
(i) neither P nor Q has a column with multiple maximal elements strictly
between 0 and 1, and (ii) at least P or Q has no zero column (Pawlowitsch,
2006). This means that in a neutrally stable strategy, one sign can be used
for two or more objects of communication—a column with multiple 1–entries
in P , or one event can be inferred by two or more signs—a column with
multiple 1–entries in Q. But there cannot be two or more objects that are
in parallel linked to, or inferred by, two or more signs—two or more columns
with multiple maximal elements strictly between 0 and 1; and there can-
not be any sign that remains idle—a zero column in P—as long as there is
an event that is never possibly understood—a zero column in Q. Neutrally
stable strategies are Lyapunov stable in the replicator dynamics (Thomas,
1985; Bomze and Weibull 1995). As a result, the replicator dynamics can be
blocked in a state where ambiguity of concept–to–sign mappings remains in
the population, and there is no convergence to an efficient proto–language
(Pawlowitsch, 2006).

The deterministic replicator dynamics in an infinitely large population
does not include any effects of drift. In a finite population, however, drift
is automatically present as differences in relative fitness only translate into
expected and not realized offspring.
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3 Finite populations

One example for a game dynamical process in a finite population is the
frequency–dependent Moran process as introduced in Nowak et al. (2004);
see also Nowak (2006): One individual is selected proportional to its fitness
and produces identical offspring, which replaces a randomly chosen individual
from the population. The fitness is determined by a combination of a constant
background fitness, which is the same for all individuals, and the payoff from
the game.

Suppose first that there are only two competing languages.

Example 1

L1 = (P1, Q1) =

 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1


and

L2 = (P2, Q2) =

 α 1− α 0
0 0 1
0 0 1

 ,

 1 0 0
1 0 0
0 1− β β

 ,

where α, β ∈ (0, 1). Restricting attention to these two strategies, we can
describe the payoff structure by a payoff matrix of the form

L1 L2

L1 a b
L2 c d

, (7)

where a = f(L1, L1), b = f(L1, L2), c = f(L2, L1), and d = f(L2, L2). In our
case we have

L1 L2

L1 3 1 + α
2

+ β
2

L2 1 + α
2

+ β
2

2

. (8)

Note that c = b as f(L2, L1) = f(L1, L2).
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Let N be the number of individuals. A state of the population is a vector
X = (X1, X2), where X1 is the number of individuals playing L1, and X2 is
the number of individuals playing L2, with X1 + X2 = N. We use

F (L1 | X1, X2) =
X1 − 1

N − 1
f(L1, L1) +

X2

N − 1
f(L1, L2), (9)

F (L2 | X1, X2) =
X1

N − 1
f(L2, L1) +

X2 − 1

N − 1
f(L2, L2) (10)

to denote the fitness of L1, and respectively L2, given that X1 individuals
speak L1 and X2 individuals speak L2. For the specific form of the payoff
function we have

F (L1 | X1, X2) =
X1 − 1

N − 1
3 +

X2

N − 1

(
1 +

α

2
+

β

2

)
, (11)

F (L2 | X1, X2) =
X1

N − 1

(
1 +

α

2
+

β

2

)
+

X2 − 1

N − 1
2. (12)

The frequency–dependent Moran process combines two evolutionary forces:
selection and drift. Eventually this process leads to fixation of a single strat-
egy throughout the whole population; new variation can only be brought in
by mutations.

Let us assume that the population has reached the state where all indi-
viduals speak L2 = (P2, Q2). To assess the stability of L2 in an evolutionary
sense Nowak et al. (2004) propose two criteria: (I) selection opposes L1 in-
vading L2 if a single L1 mutant in a population consisting otherwise of L2

has a lower fitness than the regular type L2; and (II) selection opposes L1

replacing L2 if a single L1 mutant that appears in a population of L2 has a
chance to reach fixation that is lower than 1/N .

(I) The fitness of a single mutant

Selection opposes L1 invading L2 if

F (L2 | 1, N − 1) > F (L1 | 1, N − 1); (13)

the fitness of a single mutant should be lower than the fitness of the regular
type, given the state of the population after the mutation has appeared. For
our linear fitness function we obtain

1

N − 1
f(L2, L1) +

N − 2

N − 1
f(L2, L2) >

N − 1

N − 1
f(L1, L2). (14)
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In a letter to the Journal of Theoretical Biology from 1988 Maynard
Smith uses condition (14), with a weak inequality sign, as a concept for
evolutionary stability in the framework of a finite population game (Maynard
Smith, 1988). Schaffer (1988) introduces the same condition as a general
concept for evolutionary stability in a finite population—independent of the
particular form of the fitness function.

For the sender–receiver game discussed here, condition (14) reduces to

f(L2, L2) > f(L1, L2), (15)

which comes from the fact that f(L2, L1) = f(L1, L2), and as a consequence
the factor (N − 2) cancels out on both sides of the inequality.

Condition (15) says that L2 has to be a unique best response to itself,
that is, the condition that L2 has to be a strict Nash strategy in the base
game. Note that this is generally true for games with a symmetric payoff
function.

Observation 1. For games with a symmetric payoff function, under the
assumption of a linear fitness function, Maynard Smith’s and Schaffer’s ESS
concept for finite populations,

F (L2 | 1, N − 1) ≥ F (L1 | 1, N − 1),

reduces to the condition of a Nash strategy in the base game; with a strict
inequality sign, it reduces to the condition of a strict Nash strategy.

In fact, this is not surprising. The concept of Nash equilibrium relies on
the very idea of a deviation—or what we call here a mutation—under the
hypothetical assumption that all other players do not change their strategy
choices. In the framework of a classical population game, this ceteris paribus
assumption translates into the assumption that a single player’s strategy
choice has a vanishing effect on the population’s average strategy. In a finite
population this is no longer true. Condition (14) compares the deviant’s
payoff to the payoff of a non–deviant, taking into account the effect of the
deviation. If the weight of the deviant vanishes, we are back to the classical
notion of a Nash–equilibrium strategy. But the same is true if the term that
reflects the deviation cancels out for some other reason—here the symmetry
of the payoff function.

For the two languages considered here, we have that

f(L2, L2) = 2 > 1 +
α

2
+

β

2
= f(L1, L2); (16)
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L2 is indeed the unique best reply to itself, and therefore a single L1 mutant
that appears in a population where all N − 1 other individuals speak L2 will
attain a strictly lower fitness than the regular type L2.

From (8), the payoff matrix, it is easily seen that L1 is also a unique best
reply to itself as 3 > 1. As a consequence, a single L2 mutant that appears
in a population where all other individuals speak L1 will also attain a strictly
lower fitness than the regular type L1.

This means that on the basis of condition (14) we cannot distinguish L1

from L2; both have a strict advantage in terms of relative fitness against a
single mutant that switches to the other strategy.

In the case of L1 this is not surprising. L1 is an efficient proto–language;
it is a strict Nash strategy in the complete strategy space P3×3 × Q3×3.
But L2 is not; due to its synonymous use of the first and second sign, and
its ambiguous interpretation of the third sign, it does not exploit the full
potential of communication that is in principle available given that there
are 3 objects of communication and 3 available signs. Note, though, that
L2 is a neutrally stable strategy if the game is played in an infinitely large
population. The population as a whole would be better off if it could directly
jump to the state where everybody used L1. But given that we start from a
state where everybody speaks L2, L2 has a strict advantage in relative fitness
against a single L1 mutant. For the deterministic replicator dynamics in an
infinitely large population this is enough to be blocked in such an inefficient
state. In a finite population, however, advantages in relative fitness are not
the only thriving force of evolution. There is also drift. Even though a single
mutant strategy has a lower fitness than the regular type, the frequency–
dependent Moran process can still favor the fixation of this mutant strategy.

(II) Fixation probabilities

The frequency–dependent Moran process in the style of Nowak et al. (2004)
allows us to introduce a parameter ω ∈ [0, 1] that measures the intensity of
selection. Instead of F (L1 | X1, X2) and F (L2 | X1, X2) as given by equations
(9) and (10), we use the modified fitness functions

Fω(L1 | X1, X2) = 1− ω + ωF (L1 | X1, X2) (17)

Fω(L2 | X1, X2) = 1− ω + ωF (L2 | X1, X2). (18)

If ω = 0, the payoffs of the game do not contribute to fitness at all, and we
are in the case of neutral evolution. If ω = 1 fitness is entirely determined by
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expected payoff; selection is strong. Note that for the deterministic replicator
dynamics in an infinitely large population, the parameter ω reduces to a
constant that does not alter the trajectories of the dynamics, but only the
speed of convergence.

The probability that a single L1 mutant becomes fixed in a population
of L2—that is, the probability that it generates a lineage that takes over the
whole population—is given by

ρ1 = 1/

(
1 +

N−1∑
k=1

k∏
X1=1

Fω(L2 | X1, X2)

Fω(L1 | X1, X2)

)
; (19)

see, for example, Nowak et al. (2004), or Nowak (2006). In the case of neutral
evolution, that is if ω = 0, ρ1 = 1/N . The idea of Nowak et at. (2004) for
assessing the stability of L2 in an evolutionary context is to compare the
fixation probability of a single L1 mutant under the frequency–dependent
Moran process to this neutral threshold 1/N . They say that selection opposes
L1 replacing L2 if ρ1 < 1/N . Similarly, we may say that selection favors L1

replacing L2 if ρ1 > 1/N .
In general it can be quite laborious to calculate fixation probabilities.

Weak selection characterizes the condition that the payoff of the game is just
a small component of the fitness of a type, ωN << 1. Nowak et al. (2004)
derive conditions for the comparison of fixation probabilities in the case of
weak selection for a game of the general form as represented by payoff matrix
(7). They find that

ρ1 >
1

N
⇔ a(N − 2) + b(2N − 1) > c(N + 1) + d(2N − 4). (20)

For different values of N this gives

N = 2 : b > c
N = 3 : a + 5b > 4c + 2d
N = 4 : 2a + 7b > 5c + 4d
...

In the limit for large N , we have

ρ1 >
1

N
⇔ a + 2b > c + 2d.
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Condition (20) is not only valid for the Moran dynamics, but for a variety
of other stochastic processes, such as the Wright–Fisher process (Imhof and
Nowak, 2006) and pairwise–comparison processes (Traulsen et al., 2005; or
Traulsen et al. 2006). Recently it has been shown that the limit condition
for large N is valid for any process in the domain of Kingman’s coalescent
(Lessard and Ladret, 2007).

Observation 2. If b = c, that is, in the case of a symmetric payoff function,
condition (20) reduces to

ρ1 >
1

N
⇔ a + b > 2d, (21)

for all N ≥ 3. For N = 2 we always have neutrality, ρ1 = 1/2.

This means that a mutant strategy (P1, Q1) that appears in an other-
wise monomorphic population (P2, Q2) can reach fixation with a probabil-
ity greater than 1/N even if it has a strict disadvantage in relative fitness
against the resident type when it first appears in the population—that is,
even if, b − d = f(L1, L2) − f(L2, L2) < 0, but only if this is outweighed
by a payoff advantage that the mutant strategy has against itself relative to
the payoff that the originally resident type gains from interaction with itself,
a− d = f(L1, L1)− f(L2, L2) > f(L2, L2)− f(L1, L2) = d− b.

For the game with the two languages considered here, from payoff matrix
(8), we easily see that a + b > 2d is fulfilled as α + β > 0. Thus, a single L1

mutant that appears in a population where all other individuals speak L2 has
a higher probability to reach fixation than in the case of neutral evolution. If,
on the other hand, we consider L1 as the resident type and L2 as the mutant,

ρ2 >
1

N
⇔ d + c > 2a, (22)

which is not fulfilled in our case, as we can, again, easily read off from payoff
matrix (8),

d + c = 2 + 1 +
α

2
+

β

2
< 6 = 2a.

Thus, the comparison of fixation probabilities—other than the compari-
son of the fitness of a single mutant—allows us to distinguish L1 from L2 in
terms of its stability from an evolutionary point of view: L1 has a fixation
probability in L2 that is higher than in the case of neutral evolution, but
L2 has a fixation probability in L1 that is lower than in the case of neutral
evolution. Selection favors L1 replacing L2, but it opposes L2 replacing L1.

Let us look at some other examples.
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Example 2

Consider the case of two efficient proto–languages. Let

L1 = (P1, Q1) =

 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1

 ,

and

L2 = (P2, Q2) =

 0 0 1
0 1 0
1 0 0

 ,

 0 0 1
0 1 0
1 0 0

 .

In this case the payoff matrix is

L1 L2

L1 3 1
L2 1 3

.

From this we directly see that both are unique best replies to themselves,

f(L1, L1) = 3 > 1 = f(L2, L1),

f(L2, L2) = 3 > 1 = f(L1, L2),

which is, of course, true as both are strict Nash strategies in the complete
strategy space, and therefore any single mutant that appears in an otherwise
monomorphic population of the other language has a strictly lower fitness
than the regular type. Assessing fixation probabilities, we find that

a + b = 4 < 6 = 2d ⇒ ρ1 < 1/N,

d + c = 4 < 6 = 2a ⇒ ρ2 < 1/N.

Therefore, selection opposes both, the fixation of L1 in L2 and vice versa.
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Example 3

Next we consider the case of an efficient proto–language against a simple
Nash language,

L1 = (P1, Q1) =

 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1

 ,

L2 = (P2, Q2) =

 1 0 0
0 0 1
0 0 1

 ,

 1 0 0
1 0 0
0 0 1

 .

In this case, the payoff matrix is

L1 L2

L1 3 2
L2 2 2

.

Of course, L1 is a unique best reply to itself. L2 is also best reply to itself,
but not unique—L1 is also a best reply to L2,

f(L2, L2) = 2 = f(L1, L2).

As a consequence, a single L1 mutant that appears in a population that
consists otherwise of L2 has the same fitness as the regular type L2. However,
as L1 is a unique best reply to itself, L1 will already have a higher fitness
than L2 as soon as there is a second L1 speaker. Not surprisingly, then, the
fixation probability of L1 in L2 is higher than in the case of neutral evolution,

a + b = 5 > 4 = 2d,

but the fixation probability of L2 in L1 is lower than in the case of neutral
evolution,

d + c = 4 < 6 = 2a.

Selection opposes L2 replacing L1, but selection favors L1 replacing L2.

Example 4

Finally we consider the case of two strategies that are neutrally stable in the
complete strategy space and that display the same type of multiplicity in
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object–to–sign and sign–to–object mappings. Let

L1 = (P1, Q1) =

 1− α α 0
0 0 1
0 0 1

 ,

 1 0 0
1 0 0
0 1− β β

 ,

L2 = (P2, Q2) =

 1− γ γ 0
0 0 1
0 0 1

 ,

 1 0 0
1 0 0
0 1− δ δ

 ,

with all parameters strictly between 0 and 1, but α 6= γ and β 6= δ. In this
case the payoff matrix is

L1 L2

L1 2 2
L2 2 2

,

and we are in the case of neutral evolution. Drift is the only evolutionary
force at work; ρ1 = 1/N and ρ2 = 1/N .

3.1 The complete strategy space

Eventually our aim is to uncover general patterns of the P and Q matrices
that emerge from a finite population in the complete strategy space Pn×n ×
Qn×n. The examples above suggest that efficient proto–languages are the
only strategies such that no mutant strategy has a fixation probability that
is higher than the neutral threshold 1/N . Indeed this can be shown. More
precisely we can show the following implications.

Proposition 1. Let (P, Q) ∈ Pn×n ×Qn×n. Under the frequency–dependent
Moran process with weak selection, for all N ≥ 3:

(a) If P is a permutation matrix and Q is the transpose of P—that is, if
(P, Q) is a strict Nash strategy in the complete strategy space Pn×n ×
Qn×n—then there is no (P ′, Q′) ∈ Pn×n×Qn×n, (P ′, Q′) 6= (P, Q) such
that ρ′ ≥ 1

N
.

(b) If (P, Q) is not of the form such that P is a permutation matrix and
Q is the transpose of P , then there is some (P ′, Q′) ∈ Pn×n × Qn×n,
(P ′, Q′) 6= (P, Q) such that ρ′ > 1

N
.

A proof is given in the Appendix.
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4 Interpretation and conclusions

The starting point for any evolutionary argument in a finite population is
that every mutant strategy has some positive probability to reach fixation—
simply by the chances of random drift. In the modeling framework used here,
what we call the payoff of the game is just short hand, or a convention of
language, for adding a fitness component to a birth–and–death process that
introduces an element of frequency–dependent selection in addition to drift.

As with every model, our model of language evolution considers just one
stylized aspect of reality, while abstracting from others. Of course, the overall
fitness of an individual does not depend only on its communicative strategy,
but on other cultural and biological traits. Weak selection, where the payoff
of the game is just a small component that is added to the background fitness,
therefore, seems to be the natural case.

Since evolution in a finite population can produce any result, the best we
can expect from adding a frequency–dependent fitness component to a birth–
and–death process is an evaluation of the direction of the effect in which this
modifies the outcome of the dynamics. As Nowak et al. (2004) say: Selection
opposes L1 replacing L2 if its fixation probability is lower than the neutral
threshold 1/N ; and selection favors L1 replacing L2 if its fixation probability
is higher than 1/N .

Under the deterministic replicator dynamics in a infinitely large popula-
tion, a mutant strategy can only spread if it has at least the same payoff as
the resident type—which is exactly what is reflected by the classical notion
of an evolutionarily stable strategy (Maynard Smith, 1982). Indeed, May-
nard Smith’s (1988) and Schaffer’s (1988) extension of evolutionary stability
to finite populations—condition (14) with a weak inequality sign—captures
exactly the same aspect: a mutant strategy should not do better than the
originally resident type, given the the post–entry state of the population. We
have seen that for games with a symmetric payoff function, this condition
reduces to the condition of a Nash–equilibrium strategy in the base game.

In Example 1, we have seen that a strategy (P, Q) that is of the form of a
neutrally stable strategy (in the sense of a game played in an infinitely large
population) satisfies Maynard Smith’s (1988) and Schaffer’s (1988) notion of
stability for finite populations, when tested against a mutant that switches
to an efficient proto–language (P ′, Q′). In fact, what makes a neutrally sta-
ble strategy of the game discussed here, is exactly that it has no alternative
best replies in terms of an efficient language; otherwise there would be an
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alternative best reply that does better against itself than the originally res-
ident type does against the alternative best reply (see Pawlowitsch 2006.)
Under the deterministic replicator dynamics that operates in an infinitely
large population this has the effect that evolution can be blocked in such an
inefficient state.

In a finite population, however, a mutant strategy can spread even if it
has a strict disadvantage in fitness relative to the resident type when it first
appears in the population. As we have seen in Example 1, its probability to
reach fixation can even be higher than the neutral threshold 1/N . In general,
Maynard Smith’s (1988) and Schaffer’s (1988) concept of evolutionary sta-
bility for finite populations is neither necessary nor sufficient for the notion
of stability in terms of fixation probabilities as introduced by Nowak and his
coauthors (see Nowak et al., 2004; or Nowak, 2006).

We have seen that for games with a symmetric payoff function, the con-
dition of Nowak et al. (2004) reduces in a very nice way and does no longer
depend on N , as soon as N ≥ 3. Condition (21) states that a mutant strat-
egy (P ′, Q′) that appears in an otherwise monomorphic population (P, Q) will
reach fixation with a probability greater than 1/N if and only if its disad-
vantage against the originally resident type f(L′, L)− f(L, L) is outweighed
by an advantage that the mutant strategy has against itself relative to the
payoff that the originally resident type has against itself f(L′, L′)− f(L, L).

Proposition 1 tells us that under a frequency–dependent Moran process
with weak selection, efficient proto–languages—that is, strategies that are
strict Nash in the complete strategy space—are the only strategies such that
no mutant strategy, out of the complete strategy space, has a fixation prob-
ability that is higher than 1/N . In this sense we may say that in a finite
population, efficient proto–languages are the only strategies that are both
protected and favored by selection.

The efficiency of a proto–language is not only interesting from a purely
optimality–oriented point of view; it also has important implications for bidi-
rectionality of concept–to–sign mappings. In the modeling framework used
here, efficient proto–languages are the only strategies that display perfect
bidirectionality: whenever a particular sign is used to communicate a par-
ticular concept, this sign will also evoke the image of this concept. Most
linguistic theories take bidirectionality as an innate property of language,
which is ultimately genetically determined. In an evolutionary framework
we can address the question of how this universal design feature of language
could evolve. Deterministic evolution in an infinitely large population does
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not necessarily lead to bidirectionality. Frequency–dependent selection in a
finite population provides one possible foundation for bidirectionality.

Appendix: proofs and methods

A1: Nash strategies and evolutionary stability

In evolutionary game theory, a strategy is usually called a Nash strategy if it
is a best response to itself. For the game discussed here that is,

f [(P, Q), (P, Q)] ≥ f [(P, Q), (P ′, Q′)] for all (P ′, Q′) ∈ Pn×m ×Qm×n.

And a strategy is called a strict Nash strategy if it is a unique best response
to itself, that is, if the inequality above holds with a strict inequality sign.

Let

B(P ) = {Q ∈ Qm×n : tr(PQ) ≥ tr(PQ′) ∀Q′ ∈ Qm×n},

be the set of best responses to P—in the sense of the asymmetric game—and
let

B(Q) = {P ∈ Pn×m : tr(PQ) ≥ tr(P ′Q) ∀ P ′ ∈ Pn×m}

be the set of best responses to Q. As a general property of symmetrized
games, in a Nash strategy the strategies played in two roles have to be best
responses to each other. That is, (P, Q) is a Nash strategy of the symmetrized
game if and only if P ∈ B(Q) and Q ∈ B(P ). In a strict Nash strategy P
has to be a unique best response to Q, and vice versa. Complementing
this with a characterization of best–response properties in terms of the P
and Q matrices gives us a good tool to characterize Nash strategies of the
symmetrized game.

Lemma 1 (Best–response properties). Let P ∈ P and Q ∈ Q.

(a) For any Q ∈ B(P )∑
i∈argmaxi(pij∗ )

qj?i = 1 and qj?i = 0 ∀ i /∈ argmaxi(pij∗);

18



(b) for any P ∈ B(Q)∑
j∈argmaxj(qji∗ )

pi?j = 1 and pi?j = 0 ∀ j /∈ argmaxj(qji∗).

Of course, if p̄i∗j∗ is the unique maximal element in the j∗–th column of
P̄ , then, for any Q that is a best response to P̄ , qj?i? = 1; and vice versa
for the roles of P and Q reversed. Note also that by the contrapositive of
Lemma 1,

(a) if Q ∈ B(P ), then

qj?i? 6= 0 ⇒ pi?j? = max
i

(pij∗) ⇒ pi?j? 6= 0 or pij∗ = 0 ∀i; and

(b) if P ∈ B(Q), then

pi?j? 6= 0 ⇒ qj?i? = max
j

(qji∗) ⇒ qj?i? 6= 0 or qji∗ = 0 ∀j.

The proof of Proposition 1 makes extensive use of earlier results on neutral
stability. It is therefore useful to state these results briefly here.

Definition 1 (Neutral stability). A strategy (P, Q) ∈ Pn×m ×Qm×n is neu-
trally stable if and only if

(i) it is a Nash strategy, and if

(ii) whenever F [(P, Q), (P, Q)] = F [(P ′, Q′), (P, Q)]
for some (P ′, Q′) ∈ Pn×m ×Qm×n, then

F [(P, Q), (P ′, Q′)] ≥ F [(P ′, Q′), (P ′, Q′)].

This is the classical notion of neutral stability (Maynard Smith, 1982),
only that we make use of the symmetry of the payoff function in the second
condition.

Lemma 2 (Pawlowitsch, 2006). Let (P, Q) ∈ Pn×m×Qm×n be a Nash strat-
egy. (P, Q) is a neutrally stable strategy if and only if

(i) at least one of the two matrices, P or Q, has no zero–column, and

(ii) neither P nor Q has a column with multiple maximal elements that are
strictly between 0 and 1.

19



A2: Proof of Proposition 1

Proof. Part (a) is easily seen from an indirect argument. Suppose that
there is some L′ ∈ Pn×n × Qn×n such that ρ′ ≥ 1

N
. Then f(L′, L′) +

f(L′, L) ≥ 2f(L, L). However, this cannot be true as f(L, L) > f(L′, L),
for all (P ′, Q′) ∈ Pn×n×Qn×n (L is a strict Nash strategy), and since (P, Q)
exploits already the maximally available potential of communication,

f(L, L) = tr(P, Q) = n ≥ tr(P ′, Q′) = f(L′, L′),

for all (P ′, Q′) ∈ Pn×n ×Qn×n.
For part (b), the only interesting case is where L = (P, Q) is a neutrally

stable strategy. If L = (P, Q) is not even a Nash strategy, that is, Q /∈ B(P )
or P /∈ B(Q), or both, there will always be a P ′ ∈ B(Q) and Q′ ∈ B(P )
with (P ′, Q′) 6= (P, Q). Say, Q /∈ B(P ), and consider L′ = (P, Q′) where
Q′ ∈ B(P ). Then

tr(PQ′) +

(
1

2
tr(PQ) +

1

2
tr(PQ′)

)
> 2tr(PQ),

and therefore,

f(L′, L′) + f(L′, L) > 2f(L, L) ⇒ ρ′ >
1

N
.

If L = (P, Q) is a Nash strategy, but not a neutrally stable strategy, we see
from the definition of neutral stability above that this means that there is
an alternative best reply P ′ ∈ B(Q) and Q′ ∈ B(P ) with P ′ 6= P or Q′ 6= Q,
such that

tr(P ′Q′) > tr(PQ).

As a consequence,

tr(P ′Q′) +

(
1

2
tr(P ′Q) +

1

2
tr(PQ′)

)
> 2tr(PQ),

that is,

f(L′, L′) + f(L′, L) > 2f(L, L) ⇒ ρ′ >
1

N
.
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Suppose then that L = (P, Q) is a neutrally stable strategy. From
Pawlowitsch (2006) we know that if (P, Q) is a neutrally stable strategy,
then (i) neither P nor Q can have a column with multiple maximal elements
that are strictly between 0 and 1, and (ii) at least P or Q has no zero col-
umn. Suppose without loss of generality that P is the matrix that has no
zero column. It then follows from the restrictions on P and Q—remember
also that P cannot be a permutation matrix—and the fact that they have
to be best responses to each other, that P has at least one row that has at
least two entries strictly between 0 and 1, such that they are unique maximal
elements of their respective columns in P . Let i? be that row in P .

Now, as Q is a best response to P , qji? must be equal to 1 whenever
its orthogonal element in P , pi?j is positive. As there are at least two such
positive elements in the i?–th row of P , the i?–th column of Q must have at
least two 1–entries. As on the other hand P is a best response to Q, the sum
over all pi?j such that j ∈ argmaxj(qji?) has to be exactly equal to 1.

A consequence of the multiple 1 entries in the i?–th column of Q is that,
Q has at least (i) one zero column or (ii) two columns, with unique maximal
elements strictly between 0 and 1. We consider each of these two cases in
turn.

(i) Suppose the elements of the i??–th column in Q are all equal to 0.
We now construct a potential mutant (P ′, Q′). For some j? ∈ argmaxj(qji?)
let p′i?j? = 1 and p′i?j = 0 for all j 6= j?. And for some j?? ∈ argmaxj(qji?),
j?? 6= j?, let p′i??j?? = 1, and p′i??j = 0 for all j 6= j??. Otherwise p′ij = pij.
That is we have constructed P ′ from P just by replacing its i?–th row with a
vector that has one 1 in its j? position, and by replacing its i??–th row with
a vector that has one 1 in its j?? position. To construct Q′ from Q it suffices
to exchange its j??–th row, such that q′j??i?? = 1 and q′j??i = 0 for all i 6= i??.

It is then just a matter of payoff comparison to see that (P ′, Q′) wins
more against itself than it loses against (P, Q)— compared to the payoff of
(P, Q) against itself. Summing over all i 6= i?, i??, and over all j we have∑
I\{i?,i??}

∑
j

p′ijq
′
ji =

∑
I\{i?,i??}

∑
j

p′ijqji =
∑

I\{i?,i??}

∑
j

pijq
′
ji =

∑
I\{i?,i??}

∑
j

pijqji,

which comes from the fact that in P ′ we did not change any row other than
i? and respectively i??, and that for any column i 6= i?, i?? in Q and in Q′ all
elements that are in the position of the i?–th or i??–th row are 0 anyway.
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For i? we have ∑
j p′i?jq

′
ji? = 1

∑
j pi?jqji? = 1,

and ∑
j p′i?jqji? = 1∑
j pi?jq

′
ji? = pi?j? ∈ (0, 1),

so the mutant (P ′, Q′) when playing against the resident type loses relative
to the resident type (P, Q) against itself in the i?–th row of P (column of Q).

But for i??, we have∑
j p′i??jq

′
ji?? = 1

∑
j pi??jqji?? = 0,

and ∑
j p′i??jqji?? = 0∑
j pi??jq

′
ji?? = pi??j?? ∈ [0, 1),

which means that in sum the mutant gains more against itself than it loses
against the resident type—compared to the payoff of the resident type against
itself. More explicitly,

f(L′, L′)− f(L, L) =
∑

i

∑
j

p′ijq
′
ji −

∑
i

∑
j

pijqji

= 1,

whereas

f(L, L)− f(L′, L) =
∑

i

∑
j

pijqji −

(
1

2

∑
i

∑
j

p′ijqji +
1

2

∑
i

∑
j

pijq
′
ji

)

=
1− pi?j? − pi??j??

2
< 1,

and therefore,

f(L′, L′) + f(L′, L) > 2 f(L, L),

which means that

ρ′ >
1

N
.
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(ii) If Q has no zero column, then it has at least two columns with a unique
maximal column element strictly between 0 and 1. Suppose that these are
the i??–th and i???–th column of Q. These unique column maxima can only
appear in some row j??? /∈ argmaxj(qji?)—as for all j ∈ argmaxj(qji?) the
full mass of 1 is already at its element in the i?–th position. As P is a best
response to Q, both pi??j??? and pi???j??? are maximal elements of the j???–th
column in P . As P has no multiple maximal elements that are not equal to
1, both pi??j??? and pi???j??? are equal to 1.

In constructing P ′ from P , and Q′ from Q, we proceed as above for the
i?–th and the i??–th row in P ′, and the j??–th row in Q′. Upon that we
exchange the j???–th row in Q′ such that q′i???j??? = 1 and p′j???i = 0 for all
i 6= i???. Otherwise the entries in P ′ and Q′ stay the same as in P and
respectively Q. Note that pi???j??? is already equal to 1. It is then again just
a matter of tedious payoff comparisons to find that

f(L′, L′)− f(L, L) =
∑

i

∑
j

p′ijq
′
ji −

∑
i

∑
j

pijqji

= 1,

but

f(L, L)− f(L′, L) =
∑

i

∑
j

pijqji −

(
1

2

∑
i

∑
j

p′ijqji +
1

2

∑
i

∑
j

pijq
′
ji

)

=
1− pi?j?

2
+

1− pi???j???

2
< 1

As before, the mutant wins 1 against itself relative to the payoff that the
resident type gets gainst itself; it loses against the resident type, but this loss
is strictly less than 1, and therefore,

f(L′, L′) + f(L′, L) > 2 f(L, L),

which implies that,

ρ′ >
1

N
.
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Illustration of the proof:

P =

j? j??

i?

i??

 1− α α 0
0 0 1
0 0 1

 Q =

i? i??

j?

j??

 1 0 0
1 0 0
0 0 1



P ′ =

j? j??

i?

i??

 1 0 0
0 1 0
0 0 1

 Q′ =

i? i??

j?

j??

 1 0 0
0 1 0
0 0 1


(i) Q has a zero column

P =

j? j?? j???

i?

i??

i???

 1− α α 0
0 0 1
0 0 1

 Q =

i? i?? i???

j?

j??

j???

 1 0 0
1 0 0
0 β 1− β



P ′ =

j? j?? j???

i?

i??

i???

 1 0 0
0 1 0
0 0 1

 Q′ =

i? i?? i???

j?

j??

 1 0 0
0 1 0
0 0 1


(ii) Q has no zero column
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