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In order to learn grammar from a finite amount of evidence, children must begin
with in-built expectations of what is gmmatical. They clearly are not born, how-
ever, with fully developed grammars. Thus early language development involves
refinement of the grammar hypothesis until a target grammar is learnt. Here we
address the question of how much evidence is required for this refinement pro-
cess, by considering two standard learning algorithms and a third algorithm which
is presumably as efficient as a childr feome valie of its memorycapacity. We
reformulate this algorithm in the context of Chomsky’s ‘principles and parameters’
and show that it is possible to bound the amount of evidence required to almost
certainly speak almost grammatically.

© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

A basic problem in the study of language is how children acquire grammar. In
other words, how do they learn to distinguish sentences whose structures are allow-
able in their language from those which are not? Chomsky argued, and indeed it
is logically provable Gold, 1967, that if children start with absolutely no precon-
ceptions about what is allowable, then they will not be able to infer the correct
grammar from a finite amount of evidence (in the form of example grammatical
sentences heard). Thus they must start with some built-in restrictions on the types
of allowable structures. Chomsky dubbed these preconceptions ‘Universal Gram-
mar’ (UG) (Chomsky 1965. Children are not, however, born with a complete
grammar hard-wired, as can be seen from their ability to learn a variety of different
grammars, corresponding to different languages, as well as the mistakes they make
in their early language usage. Thus in their early years they refine their hypothesis
from that dictated by UG to a fully developed grammar. Here we study the amount
of evidence required for this refinement process, as decisions are made in response
to hearing positive evidence.
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Three factors are of importance in estimating the amount of evidence required.
These are (1) the initial assumptions that the child has (UG), (2) the learning algo-
rithm that the child employs in the refinement process and (3) the distribution of
the evidence the child hears.

Weassume that a child’s UG corresponds to a finite set of possible full grammars,
between which the child must choose. [lt is, in fact, also possible for the child to
learn from an infinite set, provided that she/he has a sufficiently restrictive prior
expectation of the probability distribution on the component grammars. We do not
consider this possibility her&@pnik, 1998.] Grammar learning then corresponds
to whittling down the number of possible grammars in response to evidence heard,
until the child is left with a single grammar.

In this context the important features of the distribution of evidence are the pro-
portions of sentences heard (which are examples of the target/parental grammar)
which are contained in each of the child’s hypothesis grammars and their various
intersections. Thus we need to define a measure on the set of sentences generated
by the target grammar to determine the size of the intersection of this grammar
with any other grammar/intersection of grammars.

Finally, considering the learning algorithm that the child employs, in this paper
we consider two standard algorithms, the batch and memoryless leaNigog)i
1998, frequently used as examples because of their simplicity and because the
batch learner is presumably about as fast a learner as could be employed by the
child and the memoryless learner is about as unsophisticated as one could imagine.
We also discuss a new algorithm which we show can be about as fast as the batch
learner, if it makes extensive use of memory, and about as slow as the memoryless
learner, if it does not. Thus this last algorithm is likely to learn at the rate of a child
for some value of its memory capacity.

We estimate in each case how much evidence will be required for convergence to
the target grammar. The amount of evidence needed depends crucially on the sizes
of overlaps between grammars.

We reformulate the third algorithm in the context of ‘principles and parameters’
(Chomsky 1981, as a parameter-setter. In this framework, the overlap between
grammars depends on the frequency of sentences which determine each parameter.
We derive results on the amount of evidence needed to learn the target grammar
when certain assumptions are made about the frequency of usage of the parame-
ters. For a general parameter frequency distribution, we show that it is possible to
bound the amount of evidence needed to almost certainly produce a given propor-
tion (almost one) of sentences grammatically correctly.

2. LEARNING ALGORITHMS

First, we describe the three learning mechanisms that we will study. We assume
that the UG consists of a set afgrammars. The memoryless learner starts by
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choosing one of these at random. On hearing a sample sentence from a teacher,
the learner stays with the initial grammar if the sentence heard is consistent with
that grammar, otherwise she/he picks a different grammar at random. This process
is then repeated with the new grammar. Once the learner has picked the target
grammar, she/he will never leave it, since all sentences should be consistent with
this grammar (we assume, for now, that the teacher speaks perfectly grammati-
cally). If the learner has picked another grammar then eventually she/he should
hear evidence which conflicts with this grammar and move on. Thus the target
grammar is the only fixed point of the process. Since random picking of the new
grammar implies that there is always a nonzero probability of picking the target
grammar, the learner will eventually converge on the target. The learner has no
memory and so at angtage can pick a grammar which she/he has previously
rejected.

The batch learner remembers all the evidence presented to him/her and rejects
hypothesis grammars if she/he has ever heard evidence which conflicts with the
grammar. Thus in time the set of hypothesis grammars decreases until the learner
has heard evidence which conflicts with all but the target grammar and so has learnt
this grammar. In order to assign a grammar to the learner at any given time, we
assume that she/he picks one at random from the remaining set.

We call the last type of learner the ‘pairwise learner’. We list the hypothesis
granmarsGg, ..., G,. On receiving evidence, she/he compateswith G,, G3
with Gy, ..., G,_1 with G, until at least one of each pair is rejected. Then, rela-
belling in the set of remaining grammars (which has siza/2), she/he repeats
the process over and over, each time at least halving the number of remaining
grammars, until only the target is left. Once again, at any one time, the learner’s
grammar is chosen at random from the remaining hypothesis grammars.

3. THE AMOUNT OF EVIDENCE REQUIRED FOR A GIVEN LEARNER
TO CONVERGE ON THE TARGET GRAMMAR

3.1. Memorylesslearner. First we consider the memaoryless learner. The proba-
bility that the learner has not yet converged to the target grammar is given by

M+1
Z P(have rejectedt — 1 granmars)
k=1

x P(target grammar is not one of tkgrammars picked first)

ML K
= < - ) x P(have rejectet — 1 grammars) Q)
k=1

whereM is the number of sentences that the child has heard.
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Now the worst case scenario will be if all the overlaps are large. )i & the
overlap letweenG; and the target grammar and Jet= 1 — Ymax, Whereymax =
Maxiy;. Theny; > 1— u, Vi. So considering the worst case, when= 1— u, Vi,
the probability that the learner has rejectegrammars after hearinil sentences
is given by

P(rejected afterM) = ( '\r/l ) w (1= M. (2)

Thus

P(not reached target) 3

ML Nk S M

_ Z <nT> <k_ 1) WKL — MK 4)
k=1

_n—l'vI MY « n—17 M—k

T () w5 asw ©)

k=0
:ngl[(l—M)Jrn;lu}M (6)
R -

Now we require that this probability should be less tharthis will be true if
[l_%]M<ni18' ®

Therefore, in order for the probability of not having reached the target to be less
thanég, we requre approximately that

logs logs log 1
> S A — =N .
ool % " u

9)

Thus if all the overlaps are bounded away from 1, the memoryless learner will
learn the target afteD(n) sentences. Otherwise, defiaén), by «(n) = 1/(1 —
vYmax(N)) [for a uniform distribution of overlap&(n) ~ n (Komarovaand Rivin
2007]. Intuitively, a(n) is the average number of sentences that one has to sam-
ple in order to find one which distinguishes between the two most closely related
grammars. The memoryless learner can learn the target grammar after hearing
O(nax(n)) sentences.

By considering the best case scenapio,= 0, Vi, we can see that we require
M > nlog(1/§), so the memoryless learner is always liable to require at least
O(n) sentences to learn the target.
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Now
E(M) = Z P(target igth grammar picked)
r=1
x E(number of sentences required to reject first
r — 1 granmarg they are not target) (20)
and
= 1
E (number of sentences required to rejggt = » k(1 — )y * = T
— Y
k=1
(11)

Hence

E (number of sentences required to reject first gramtds not the target

1 =
=n—1

1
1
12)
.11—m

where, without loss of generality, we tak®, to be the target grammar. The same
is true for the rejection of the second, third, , rth grammars picked. Thus

X1 /n—-1\"" 1 &1
E(M) = _( ) (r—1)|: } (13)
;n n n—ligl:l—yi
15 1 & /n-1\"*
=ﬁi=1—1_y.§r( =) (14)
L |
_ 1 15
ey H T Y
n-1
-y (16)
i:ll_y'

Thisis clearly less than or equal ©(n«(n)), see alsdRivin (2002. If we know
more about the distribution of overlaps, then we may be able to obtain a more
definite bound.

3.2. Batch learner. Now we mnsider the batch learner. The probability that
the learner has not rejected all but the target grammar after hedrsgntences is
equal to the probability that at least one of the incorrect grammars is still remaining.
Now the probability that grammaris remaining is given by;M so the probability
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that there exists an incorrect grammar remaining is given by
n—1
1-TJa-u"1 (17)
i=1

Thus if we want the probability of having learnt the target grammar to exceetl 1
then we must demand that

n-1
1-[a-»Mr<s (18)
i=1
n—-1
@H[l—yiM]>l—8 (29)
i=1
n—1
& [Jlogl1 — M1 > log(1 — 8) ~ —s. (20)

i=1

Now log[1 — »M] > log[1l — yM ], where ymax(n) is the maximal proportion
overlap between an incorrect hypothesis grammar and the target grammar, which
we assume to be almost 1; so the above inequalities will hold if

(n—1log[l— yM ] > —3. (21)

This will only be true ify,M_is small and hence if

8

M —_—
Vmax < T (22)
- log(8) — log(n — 1)
l09(Vmax) '

Thus the batch learner requir€(logn/|10g(¥max]). NOW ymax € (0, 1), so
[ 109[Ymaxd] > 1—¥max- Thus a bath learner requires at modt(logn/(1—ymax) =
O(a(n) logn) sentences to learn the grammar.

If we know more about the distribution of overlaps, we can obtain a tighter
bound. Let us assume that the overlaps are independently uniformly distributed
in [0, 1].

Now from (18), we have

(23)

n—-1
> “logl1 — 411 > —s. (24)
i=1

Thisimplies that all thex™ must be vey small and hence

log[1 — ViM] ~ —)/iM- (25)
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So,
n-1
> oyM <. (26)
i=1
Now
= 1 (n—1
E (Z yiM> =(—DEFM) = (- 1)/ Mdx = ——=,  (27)
i=1 0
SO 1
M>21"=2 28)

Thus with a uniform distribution of overlaps, the learner requibgg) sentences
to learn the target grammar.

3.3. Pairwise learner. Lastly, we consider the pairwise learner. First it is clear
that if the learner has an unlimited memory capacity and can reuse sentences used
to compare early pairs in the later comparisons, then the learner is equivalent to
a bath learner, since all comparisons between grammars are effectively made
at once.

Secondly, we consider what happens when the learner has no memory for sen-
tences and can only use a given sentence to compare the two grammars that she/he
is currently considering. In this case, she/he must takel conparisons between
grammars. The comparison betwggnandG; will be over with probability 1— &
afterr sentences where

vioxy] <9 (29)

log(s)

> (30)
(log(y) + log(y;))

this will be the case it > Iolgo(?/(nf;x)' Thus the target grammar will be learnt in
O(n/log(vmax)) sentences. As we have been before this is (at most, with equality
if « is large)O(na(n)).

The expcted number of sentences required to make the comparison beByeen
andG; is clearly less than or equal to the expected number of sentences to reject
Gj, where (without loss of generality®; has an overlap with the target which is
less than or equal to that &f;. Now the exjgcted number of sentences to rejéct
is 17—1% and hence the expected number of sentences required to performa-tthe
comparisons necessary for the pairwise algorithm

n—1 1
E(M) < Zl— (31)
i=1

_Vl’

since ifG; appears more than once as the minimally overlapping grammar of a pair
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then it means that it has been compared more than once with a more overlapping
grammar, which means that it has not been rejected at least once in such a com-
parison and hence it substitutes for another grammar in the sum which has a larger
overlap and hence would have made a larger contribution to the sum.

Thus the expected number of sentences required for the pairwise algorithm with
no memory for sentences to converge to the target grammar is less than or equal to
the number required by the memoryless algorithm.

Now the expected number of sentences required to compare granmraadsj is
given by ;yj and hence

1—

EM)= > _t (32)

1— vy
pairs(i, j ) compared VYi

Suppose the overlaps are close to one andset 1 — ¢ andy; = 1 — ¢;j, then
— ]1”/ N = e e.ie Now if y; is close to 1, then the probability that it will

be rejected ina comparlson with a grammar with a significantly smaller overlap
with the target is infinitesimal. Hence, with probability almost 1, the comparison
which results in the rejection dB; will require O(%) sentences. Thus(M) will

be of the order of

n—1 1 n—-1 n—-1 1
Z ZI y ~ 1] + Z 11 [y; bounded away from]l= O (Z 1——) ., (33)

i=1 ! i=1 i—1 Y

wherel [...]is the indicator function (taking value 1.if. is true and O otherwise).
Hence the pairwise learner (with no memaory for sentences) takes the same order
of number of sentences to converge to the target as the memoryless learner does.

It has thus been shown that the pairwise algorithm can be as fast as the batch or
as slow as the memoryless learner depending on its memory capacity and so for
some capacity it is presumably as fast as a real human learner.

4, PARAMETER SETTING IF THE PARAMETER FREQUENCIES FOLLOW
CERTAIN SPECIFIC DISTRIBUTIONS

We assume that the grammar is determinedrblyinary parameters,, ..., an.
Thus there are = 2™ candidate grammars. We assume that a given sample sen-
tence determineg; with probability«;, where 1> a3 > o, > - -+ > o > 0. Thus
the parameters are listed in descending order of frequency. We assume that if the
setting of parametes; depends on the prior setting af, thena; will be less fre-
guent tharg; and hencg > i. Thus more accurately, we defingto be the proba-
bility that a random sentence determimggiven that the values @, ..., a_; are
known. We thus set parameters in turn starting waith[This fits in with what is
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observed in real children’s learning of grammar. ‘It would make sense if children,
too, instinctively work their way down the (parameter) hierarchy, ... overall these
results are encouraging for the view that the parameter hierarchy provides a logical
flowchart that children use in the process of language acquisit®eker, 2007).]
Each parameter-setting corresponds to a halving of the number of remaining gram-
mars and thus the algorithm is equivalent to the pairwise algorithm where the pairs
in the first round of comparisons correspond to grammars differing only in the first
parameter, in the second round to grammars differing in the second parameter (and
maybe the first, but not the others) and so on.

Sdting the first parameter takes a mean number of sente&gss, given by

E(s) = Z kP(firstk — 1sentences do not determiag butkth does)

k=1
- k—1 1

- Z k(1—a) oy = —. (34)
k=1

o1

Similarly, setting parametes; takes a mean number of sentences givel k)

= 1| . Thus the expected number of sentences required to learn the target grammar

(0%

is given by
m
1
EM) =) —, (35)
i=1

for any distribution of frequencies. In particular if the frequency of sentences deter-
mining a given parameter, given that earlier parameters have already been learnt,
is given by a constant, thenE(M) is given bym/v = O(logn). If the parameter
frequencies follow Zipf's law, that is the; = «/i, thenE(M) = 13" i =
£2(m—1) = O(m?) = O((logn)?).

5. THE AMOUNT OF EVIDENCE REQUIRED FOR A CHILD TO LEARN
TO SPEAK ALMOST GRAMMATICALLY FOR GENERAL PARAMETER
FREQUENCY DISTRIBUTIONS

Suppose that a learner has hediidsentences from his/her teacher. We assume
now for simplicity that the learner has batch-style unlimited memory capacity, so
that although she/he must fix parametays. . ., a,_; before parameted;,, she/he
can reuse the same sentences as were used dg, fix., a._; in order to fixa,.
She/heill have learnt the first Gz m" < m parameters with probability

1 — P(have not received a sentence determiginfgr some < m’)

m/

>1-) (1-a)" =1-md—am". (36)
i=1
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So a karner will have learnt the first' parameters with probability 1 — § if
m(1l — am)M < 6.

The probability that a learner who has learnt the finstparameters (and only
these) speaks a randomly selected sentence correctly is

> (1—am) [] @80, (37)

i=m+2

whereg; is the probability that a random sentence determaégsven thatay, .. .,

a,y are known. Now all sentences which determiépegiven thata,, ..., a,y are
known also determing; given thatay, ..., g_; are known, provided that— 1 >

m'. Herce,o; > B fori > m' 4+ 1 and so the probability that a learner who has
learnt the firsm' parameters (and only these) speaks a randomly selected sentence
correctly is

m
> l_[ 1—o) > 1 —amwe)™ (38)
i=m'+1
Thus a learner who has learnt the firstparameters will speak at least a propor-
tion 1 — ¢ correctly if
A—ome)" >1—e. (39)
This will be true if

log(1 — otpy41) > 1/mlog(l —€) =~ —e/m, (40)

that is ifany 1 < €/m. Thus a learner will produce at least a proportion & of
sentences correctly #r such thaty, > ¢/m, the learner has learnt parameggt
This will be true with probability -8 if m(1—e/m)M < §. Thus with probability
> 1—4 alearner will make mistakes in a proportiene of sentences provided that

M > log <%>/Iog (1 — %) ~ ?[Iogm —log($)]. (42)

Thus a learner will probably produce almost all sentences correctly after hearing
O(lognlog(logn)) sentences.

6. CONCLUSIONS

We have looked at the amount of evidence that a child requires to learn a tar-
get grammar from a (finite) set of hypothesis grammars (UG). We consider three
learning algorithms: the memoryless learner, the batch learner and the ‘pairwise
learner’. The memoryless learner is about as unsophisticated an algorithm as we
can imagine and requird®(«(n)n) sentences to choose framhypothesis gram-
mars, wnerex (n) = 1/(1—ymax(N)) andymax(n) is the maximal proportion overlap
between the grammars. The batch learner, which is as fast a learner as could be
employed, require® (x(n) logn) sentences. The pairwise algorithm can be about
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as slow as the memoryless learner or as fast as the batch learner, depending on the
memory capacity. Thus for some value of the memory capacity, we assume that it
will learn at the same speed as a child does.

We consider the pairwise algorithm in the context of principles and parameters.
It is equivalent to a parameter-setter. We find that if the frequency with which
parameter is determined by a random sentences tends to zerbesomes large,
then the learner will tend with probability 4+ § to produce grammatically cor-
rect sentences with probability-1 ¢ when~x m/e[logm — log §] sentences have
been heard. Herm is the number of parameters and hence is, itggvheren
is the number of hypothesis grammars. Note that this is an example of ‘Proba-
bly almost correct’ learning\Maliant, 1984 Vapnik, 1998. If the frequency with
which paeameteri is determined by a random sentence is given by a constant
then the learner will have converged on the target grammar after he@ting n)
sentences. If instead the frequencies follow Zipf's law, then the learner will have
converged on the target grammar after heafglogn)?) sentences.

It would be interesting to look at the distribution of frequencies of parameters
from real language data and see what conclusions could be drawn about the amount
of evidence need to learn these real languages.

It would also be interesting to investigate the effects on not-quite-perfect gram-
ma learning on the population dynamics of the grammar. [For a review of the
population dynamics of grammar siewaket al. (2002.] For instance, a hetero-
geneity in the values of rare parameters could presumably lead to slow language
change over time. Also, if different members of the population have subtly differ-
ent grammars, then it clearly matters who your teachers are. It would be interesting
to study the dynamics of learning from multiple teachers. This would necessitate a
device for the learner to reconcile conflicting evidence. Such evidence could lead
in the cases of batch or pairwise learners to an empty set of remaining grammars,
thus halting the learning process. It would not, however, halt the implementation
of a memoryless algorithm, but would mean that the learner would never converge
upon a grammar.

Here we consider only learners that choose between a restricted set of hypothe-
ses. Other learning algorithms akin to neural networks have been applied to lan-
guage learning. It is claimed that such algorithms, with much less structured UGs,
may be capable of learning language if the evidence presented to them is of a very
simplistic nature. It is possible that the kind of evidence presented to children
in very early language acquisition (so-called ‘Motherese’) is of this nature. Thus
the question of how much grammar must be already present in the infant’s brain
remains open.
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