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Abstract

Recentyearshave beenmarkedby thedevelopmentof robotic
petsor partnerssuchassmall animalsor humanoids.People
interactwith themusingnaturalhumansocialcues,in particu-
lar emotionalexpressions.It is crucial thatrobotcandetectthe
emotionalinformationcontainedin speechusingonly prosodic
features,sincethis is often the only informationthat they can
measure.We presentherethe first large scaleexperimentin
whicha largefeaturesetspaceanda largemachinelearningal-
gorithmspacearesearchedconcurrently. We describenew fea-
tureswhichprove to bemuchmoreefficient thanthetraditional
featuresusedin thelitterature.

1. Introduction
Recentyearshave beenmarkedby theincreasingdevelopment
of personalrobots,eitherusedasnew educationaltechnologies
or for pureentertainment/Typically, theserobotslook like fa-
miliar petssuchasdogsor cats(e.g. the Sony AIBO robot),
or sometimestake theshapeof youngchildrensuchasthehu-
manoidsSDR-5(Sony).

Amongthecapabilitiesthatthesepersonalrobotsneed,one
of themostbasicis theability recognizehumanemotions.In-
deed,not only emotionsare crucial to humanreasoning,but
they arecentralto socialregulation.Emotionalcommunication
is atthesametimeprimitiveenoughandefficientenoughsothat
weuseit alot whenweinteractwith pets,in particularwhenwe
tamethem.This is alsocertainlywhatallows childrento boot-
straplanguagelearningandshouldbeinspiringto teachrobots
naturallanguage.

In this paper, we presenta setof experimentsthat formed
thebasisof atechnologyfor automaticallyrecognizingtheemo-
tions in speechbasedon prosodicfeatures,and usednow in
certainentertainmentrobotssuchastheSony AIBO or SDR-4.
Thiswork is thefirst (to ourknowledge)largescaledatamining
experimentin whichwecomparemostof thestandardmachine
learningalgorithmsandexplorethevalueof two hundreddiffer-
ent features.As shown below, we foundsomenew featuresof
which efficiency seemsto besignificantlyhigherthantheones
traditionally usedin the literature. Besides,all the work pre-
sentedhereis basedontheuseof freelyavailablesoftwaresand
thuscanbereproducedwith minordifficulties.

2. The acoustic correlates of emotions in
human speech

It is possibleto achieve our goalonly if therearesomereliable
acousticcorrelatesof emotion/affect in the acousticcharacter-
istics of the signal. A numberof researchershave alreadyin-
vestigatedthis question([3]). Their resultsagreeon thespeech

correlatesthat comefrom physiologicalconstraintsandcorre-
spondto broadclassesof basicemotions,but disagreeandare
unclearwhenonelooksat thedifferencesbetweentheacoustic
correlatesof for instancefearandsurpriseor boredomandsad-
ness.Indeed,certainemotionalstatesareoftencorrelatedwith
particularphysiologicalstates([6] which in turnhavequiteme-
chanicaland thuspredictableeffectson speech,especiallyon
pitch, (fundamentalfrequency F0) timing andvoicequality.

3. The recognition of emotions in human
speech

3.1. Goal

As interestinginteractionsneedto be 2-ways, it is necessary
thatroboticpetscanalsorecognizetheemotionsof thehumans
who areinteractingwith them.Humangenerallydo thatby us-
ing all thecontext andmodalities,rangingfrom linguistic con-
tent to facial expressionand intonation. Unfortunately, using
appropriatelycontext is not easyfor a machinein an uncon-
trolled environment: for instancerobust speechrecognitionin
suchsituationsis outof reachfor nowadayssystems,andfacial
expressionrecognitionneedsbothcomputationalresourcesand
videodevicesthatroboticcreaturesmostoftendonothave. For
this reasonwe investigatedhow far we can go by usingonly
theprosodicinformationof thevoice. Furthermore,thespeech
weareinterestedin is thekind thatoccursin everydayconversa-
tions,whichmeansshortunformalutterances,asopposedto the
speechproducedwhenoneis askedto reademotionallya para-
graphof for examplea newspaper. Four broadclassesof emo-
tional contentwerestudied:joy/pleasure,sorrow/sadness/grief,
angerandcalm/neutral.

3.2. Existing work

The first studiesthat were conducted(e.g. [8]) were not so
muchtrying to getanefficient machinerecognitiondevice, but
ratherweresearchingfor generalqualitative acousticcorrelates
of emotionin speech(for example: happinesstendsto make
the meanpitch of utteranceshigher than in calm sentences).
More recently, the increasingawarenessthataffective comput-
ing hadan importantindustrialpotential([6]) pushedresearch
towardsthe questof performancein automaticrecognitionof
emotionsin speech.Unfortunately, to our knowledge,no large
scalestudyusingthe moderntoolsdeveloppedin the machine
learningcommunityhave beenconducted.Indeed,mostoften,
eitheronly oneor two learningschemesaretested(for e.g. in
[7], [2]) or very few andsimple featuresare used( [7], [2]),
or only small databasesareused- lessthan100 examplesper
speaker(likefoee.g.in [2], [4], [7]) whichmakesthatthepower
of somestatisticallearningschemesmayhavebeenoverlooked.



Only ([4]) havetried to make somesystematicdatamining,
usingmorethanthetraditional/standardsetof featuresusedby
therestof theliterature:mean,max,min, max-min,varianceof
thepitchandintensitydistributions,andof thelengthsof phone-
mic or syllabic segments,or of pitch rising segments. Unfor-
tunately, this work lacksmany experiments:1) only 3 kindsof
learningschemeswereused- supportvectormachines,gaussian
mixturesandlineardiscriminants- whicharefarfrom beingthe
bestat dealingwith datain which therearepossiblymany unr-
relevant features,andin particulardo not allow to derive auto-
maticallysmallersetof featureswith optimalefficiency; 2) the
featuresetwasexploredby choosingonelearningschemeand
iteratively removing lessuseful featuresfor classification:on
onehandthis is ratheradhocsinceit is linkedto averyparticu-
lar learningschemesandselectionprocedure,on theotherhand
it doesnot allow to detectthefitnessof groupsof features.Fi-
nally, theirwork is basedonspeechgeneratedby askinghuman
subjectsto readnewspapertextsin anemotionalmanner, which
doesnotcorrespondto our constraints.To ourknowledge,only
two researchgroupshave tried to build automaticrecognition
machinesof everydayspeechare([2], [7]). Yet,they couldonly
useverysmalldatabases,very few simplefeaturesand2 differ-
entlearningalgorithms.Finally, ageneralconclusionof thisal-
readyexistingcorpusof researchis thatrecognitionratesabove
60 percenteven with only 4 basicemotionsseemsimpossible
if thereareseveralspeakers. Theenormousspeaker variability
hasbeendescribedin ([7]). As a conclusion,we choseto fo-
cusonly onspeaker dependantemotionrecognition.This is not
necessarilya badpoint from an industrialpoint of view since
it is targetedto roboticpetsthatmayinteractmainly only with
their caretaker (andthe fact that robotsonly manageto recog-
nizetheirownercouldevenbeapositive feature,becauseit is a
sourceoccomplicitybetweena robotandits caretaker).

Our methodologyis an extensionof the work of ([4]) in
which we usemorefeatures(including new andcrucial ones),
morelearningschemes,andmorestandardfeaturespaceexplo-
ration tools. A very large databaseof 2 speakers containing
unformalshortemotionalutterancesis used. All experiments
wereconductedusingthefreelyavailabledataminingsoftware
Weka1 , which implementsmostof thestandardsdatamining
techniques.

3.3. The database

In order to have sufficiently large databases,we had to make
somecompromises(the recordingconditionsas describedin
([7]) or ([2]) areratherpoorandunpractical).Sowe usedtwo
japaneseprofessionalspeakers(a mananda woman),who are
both voice actor/actressand worked on many radio/TV com-
mercials,Japanesedub of movies andanimations.They were
asked to imitate everyday speechby pronouncingshort sen-
tencesor phraselike “Umm, I don’t know”, “Exactly!”, “See”,
“Hello”, “I see”,“How areyou?”, “What kind of food do you
like?”, “Wonderful!”, “D’know”. Beforeeachutterance,they
hadto imaginethemselvesin a situationwherethey could ut-
ter it, and which would correspondto one of the four emo-
tional classes:joy/pleasure,sorrow/sadness/grief,anger, nor-
mal/neutral.If severalemotionswerecompatiblewith thesen-
tencemeaning,thenthey wereallowed to utter eachof them.
We endedwith a databaseof 200 examplesper speaker and
per emotions,which makes 2000 samplesin total. We know
thathaving only two speakersrestrainsthegeneralityof there-

1Wekawebpage:http://www.cs.waikato.ac.nz/ml/

sults,but to ourknowldegenoonesofar hadtheopportunityto
have somany examples,evenfor onespeaker, andsoto usethe
power of modernstatisticallearningalgorithms.Nevertheless,
themakingof moredatabasesis planned.

3.4. Using data mining techniques

3.4.1. Features

Thetwo mainmeasuresthatcanbedoneconcerningtheintona-
tion arepitch andintensity, which we did, like in all theworks
reportedabove. For eachsignal,we alsomeasuredthe inten-
sity of its low-passedandhigh-passedversion,thecutting fre-
quency beingchosenat250Hz (theparticularvalueappearsnot
to be crucial), the ideabeingto separatethesignalinto a pure
prosodiccomponentanda pure“spectral”component.Finally,
for sake of exhaustivity, we madea spectralmeasureconsist-
ing in computingthenormof theabsolutevectorderivative of
thefirst 10 MFCC components(mel-frequency ceptralcompo-
nents). All thesemeasurewereperformedat each0.01stime
frame, using the Praatsoftware,which is a signal processing
toolkit freelyavailable2.

Eachof thesemeasuresprovidesa serieof valuesthat we
hadto transformto provide differentpointsof view uponthe
data.Soeachserieof valueswastransformedinto 4 series:the
serieof its minimas,the serieof its maximas,the serieof the
durationsbetweenlocal extremaof the 10Hz smoothedcurve
(which modelsrhytmic aspectsof the signal),andthe serieit-
self. Finally, to get featuresout of theseseries,we computed
for eachone:themean,themaximum,theminimum,thediffer-
encebetweenthemaximumandtheminimum,thevariance,the
median,thefirst quartile,thethird quartileandtheinterquartile
range,andthemeanof theabsolutevalueof thelocalderivative.
In totalwe used5*4*10 = 200features.

3.4.2. Learning algorithms

Therearemany learningschemesthathave beendevelopedin
the last 20 years(see[9], and they are often not equivalent:
someare more efficient with certain types of classdistribu-
tionsthanothers,andsomearebetterat dealingwith many un-
relevant features(which is the casehere,asseena posteriori)
or with structuredfeaturesets(in which this is the “syntactic”
combinationof thevaluesof featureswhich is crucial). As by
definition we do not know the structureof our dataand/orthe
(ir-)relevanceof features,it would be a mistake to investigate
our problemwith only very few learningschemes.As a conse-
quence,we choseto usea setof themostrepresentative learn-
ing schemes,rangingfrom neuralnetworksto rule inductionor
classificationby regression.Also,weusedoneof thebestmeta-
learningscheme,i.e. AdaBoostM1([9]), which allows gener-
ally thesignificantimprovementin generalizationperformance
for unstablelearningschemeslike decisiontrees(an unstable
learningalgorithmis onethatcansometimesproducevery dif-
ferent recognitionmachineswhenonly a slight changein the
learningdatabasehasbeenperformed). We choseto usethe
Wekasoftware,of which codeandexecutablearefreely avail-
able so that the experiment,thoughbeing large scale,can be
easilyreproduced.This softwarealsoprovidesmeanslike au-
tomatic cross-validation, or the searchof featurespaceswith
for e.g. geneticalgorithmsaswe will seelater. The list of all
learningalgorithmsis givenin table4. Moredetailsaboutthese
algorithmscanbefoundin [9].

2Praatwebpage:http://www.praat.org



name description
1-NN 1 nearestneighbours
5-NN voted2 nearestneighbours
10-NN voted10 nearestneighbours
DecisionTree/C4.5 C4.5decisiontrees
DecisionRules/PART PART decisionrules
KernelDensity RadialBasisFunctionNeuralNet.
KStar KStar
LinearRegression classificationvia linearregression
LWR classificationvia locally weightedregression
VotedPerceptrons commiteeof perceptrons
SVM 1 polynomial(deg. 1) SupportVectorMachine
SVM 2 polynomial(deg. 2) SupportVectorMachine
SVM 3 polynomial(deg. 3) SupportVectorMachine
VFI Votedfeaturesinterval
M5Prime clsiificationvia M5PRimeregressionmethod
NaiveBayes Naive Bayesclassificationalgorithm
AdaBoostM1/C4.5 Adaboostedversionof C4.5
AdaboostM1/PART Adaboostedversionof PART

Table1: Learningschemes

name speaker1 speaker2
1-NN 82 87
5-NN 84 87
10-NN 83 87
DecisionTrees/C4.5 84 93
DecisionRules/PART 84 94
KernelDensity 84 90
Kstar 81 85
LinearRegression 88 91
LWR 87 90
VotedPerceptrons 70 76
SVM degree1 88 94
SVM degree2 89 94
SVM degree3 88 94
VFI 80 93
M5Prime 86 96
Naive Bayes 84 90
AdaBoostM1/C4.5 90 96
AdaBoostM1/PART 91 97

Table2: Usingall features

3.4.3. All features/All algorithms

In a first experiment,evaluationwas conductedin which all
algorithmsweregiven all the (normalized)features,andwere
trainedon 90 percentof thedatabaseandtestedon theremain-
ing 10 percent. This was repeated10 times with eachtime
a different90/10percentsplit (we performeda 10-fold cross-
validation). Table 5 gives the averagepercentageof correct
classificationfor the10 folds.

We seefrom theseresultsthat very high successrate(be-
tween92 and 97 percent,which is higher than any other re-
portedresultin theliterature3. canbeobtainedthanksto theuse
of certainalgorithms. Yet, the differenceamongalgorithmsis
striking: whereasthebestresultsareobtainedwith adaboosted
decisiontreesand rules, someothersperform 10 percentbe-
low (likenearestneighbours,RBFneuralnetsor SupportVector
Machines,which arethe onestypically usedin otherstudies),
or even 20 percentbelow (commiteesof perceptrons).This il-
lustratesour initial claim thatonemustbe carefulto try many
differentlearningschemeswhenonewantsto solve a problem
aboutwhich we have very few prior or intuitive knowledge. It
is not surprisingthatthebestresultsareobtainedwith decision
treesand rules sincethesekinds of algorithmsare known to
be very goodat dealingwith many unrelevant features,which
seemsto be thecasehere(if not, therewould be lessdisparity
betweenresults).

3Of course,it is difficult to comparebecausedatabasesaredifferent,
but at leastthefeaturesandthealgorithmsusedelsewhereareall strictly
includedin thisstudy

feature informationgain
1: MEDIANINTENSITYLOW 1.44
2: MEANINTENSITYLOW 1.40
3: THIRDQUARTINTENSITYLOW 1.35
4: ONEQUARTINTENSITYLOW 1.34
5: MAXINTENSITYLOW 1.23
6: MININTENSITYLOW 1.14
7: THIRDQUARTMINIMASPITCH 0.72
8: THIRQUARTMAXIMASPITCH 0.72
9: THIRDQUARTPITCH 0.69
10: MAXMINIMASPITCH 0.67
11: MAXMAXIMASPITCH 0.67
12: MAXPITCH 0.67
13: MINMINIMASPITCH 0.59
14: MEDIANMINIMASPITCH 0.57
15: MEDIANMAXIMASPITCH 0.57
16: MINPITCH 0.52
17: MEDIANPITCH 0.52
18: MEANMINIMASPITCH 0.48
19: MEANMAXIMASPITCH 0.48
20:MEANPITCH 0.48

Table3: InformationGainof 20bestfeatures

3.5. Feature selection

After this first experiment,onenaturallywould like to seehow
thefeaturesetcouldbereducedfor threereasons:1) smallfea-
turessetprovide bettergeneralizationperformancein general
(see[9]); 2) obviously, it is computationallycheaperto com-
pute lessfeatures;3) it is interestingto seeif the mostuseful
featuresfor the machinelearningalgorithmsarethe onesthat
aretraditionallyput forwardin thepsychoacousticliterature.

A first way of exploring the featureset is to look at the
resultsof learningschemeslike decisionrules(PART), which
areoftenusedmainlyasknowledgediscovery devices:

If MEDIANINTENSITYLOW > 0.48 and
MINIMASPITCH <= 0.07 and
THIRDQUARTINTENSITY > 0.42 ==> CALM

ELSE If MEANINTENSITYLOW <= 0.58 and
MEDIANINTENSITYLOW <= 0.29 ==> ANGRY

ELSE If THIRDQUARTINTENSITYLOW > 0.48 ==> SAD

ELSE ==> HAPPY

Thesefour and surprisingly simple rules allow a percentage
of correctclassificationin generalizationof 94 percentfor the
speaker 2 database! The striking fact is the repeateduseof
featuresrelatedto theintensityof thelow-passsignal.

In orderto quantify the individual relevanceof featuresor
attributes,thereisameasureoftenusedin thedatamininglitera-
ture,whichis theexpectedinformationgain,or mutualinforma-
tion betweenclassandattribute. It correspondsto thedifference
betweentheentropiesH(class)andH(class—attribute)(see[9],
for detailsabouthow it is computed).Table6 givesthe20 best
attributesaccordingto theinformationgainthey provide.

This tableconfirmsthegreatvalueof thefeaturesconcern-
ing the quartilesof the distribution of intensity valuesin the
low-passedsignals. It alsoshow somethingrathersurprising:
amongthe 20 most individually informative features,only 3
(the 12, 16 and20) arepart of the standardsetput forward in
psychoacousticstudies([5], [3], Williams 1972)or usedin most
of moreapplicationorientedresearchasin (Slaney et al. 1998,
Breazal2000).

Yet, onehasto be awarethat individual salienceof a fea-
tureis only partially interesting:it is notrarethatsuccesscomes
from thecombinationof features.So in a first experiment,we
tried to comparea featuresetcontainingonly the features1 to
6 relatedto low-passedsignal intensity (LPF), with a feature



learningscheme (LPF) sp.1 (LPF)sp.2 (SF)sp.1 (SF)sp.2
1-NN 78 83 70 72
5-NN 84 82 72 75
10-NN 84 82 73 73
DecisionTrees/C4.5 80 84 72 71
DecisionRules/PART 78 83 72 74
KernelDensity 82 85 71 74
Kstar 80 84 70 72
LinearRegression 63 68 72 78
LWR 75 71 75 80
VotedPerceptrons 51 70 60 58
SVM degree1 63 68 73 78
SVM degree2 71 70 77 50
SVM degree3 76 85 78 82
VFI 78 76 64 70
M5Prime83 85 76 80
Naive Bayes 82 81 74 72
AdaBoostM1/C4.5 80 81 80 78
AdaBoostM1/PART 80 83 79 78

Table4: Comparing“standard”featuresand“low-passedsignal
intensity” features

set composedof the standardfeatures(SF) usedin (Breazal
2000,or Slaneyet al. 1998): mean,min, max, max-min,and
varianceof pitch andintensityof unfilteteredsignal,plusmean
lengthof syllabic segments(Resultsaresimilar if we add jit-
ter andtremorassometimesalsoused). TableN summarizes
theseexperiments(eachnumbercorrespondsagainto themean
percentageof correctclassificationin generalizationin 10-fold
cross-validation).

This tableshows that if oneusesonly the quartilesof the
low-passedsignalintensity, onestill outperformsthecombina-
tion of featuresusedtraditionally. Becauseherewe have only
few speakers this result has to be taken with caution, but it
seemsto indicatethatpreviouswork missedsomethingcrucial.

Finally, aswe saw on this table,usingonly low-passedin-
tensityfeaturesyieldssubstantiallylower resultsthatwhenone
usedall featureswith decisionrules.In orderto attainour goal
of finding a very efficient smallsetof features,we usedanau-
tomaticsearchmethod:geneticalgorithms.Populationsof fea-
tures(limited to 30)weregeneratedandevolvedusingasfitness
the10-foldcross-validationwith 2 algorithms:NaiveBayesand
5-NearestNeighbours(we chosethesemainlybecausethey are
fast to train). The outcomeof this experimentwas not obvi-
ous:within theselectedfeatureset,not surprisingly, therewere
featuresrelatedto the quartilesof low-passedsignal intensity
andfeaturesrelatedto the quartilesof pitch, but alsofeatures
with relatively low individual informationgain: thoserelatedto
thequartilesof theminimasof theunfilteredsmoothedintensity
curve. Also, we cannotethatagain,themachinelearningalgo-
rithmstendto alwaysneglectfeaturesrelatedto thevarianceor
therangeof distributions,whatever themeasure.A final exper-
imentusingthese15featuresalongwith all learningalgorithms
wasconducted(max,min, median,3rdquartileand1stquartile
of low-passedsignal intensity, pitch andminimasof unfilterd
signalintensity).Resultsaresummarizedin table8.

We observe that we get very similar bestresultsthan ini-
tially, with more than 10 times less features. Moreover and
interestingly, the variation betweenlearning schemesis less
importantandalgorithmswhich performedbadly like nearest
neighboursor Naive Bayes,behave now in a moresatisfaying
manner.

4. Conclusion
Weshowedthatusingonalargescalemoderndataminingtech-
niquesallowedto find non-obviousfeatureswhichweremissed
in precedentstudies.In particular, it is interestingto seethatthe
featuresput forwardin thepsychoacousticlitteraturearenotthe

name speaker1 speaker2
1-NN 87 92
5-NN 90 92
10-NN 87 91
DecisionTrees/C4.5 85 92
DecisionRules/PART 86 93
KernelDensity 87 91
Kstar 86 90
LinearRegression 83 89
LWR 87 89
VotedPerceptrons 65 78
SVM degree1 87 91
SVM degree2 90 96
SVM degree3 89 94
VFI 83 92
M5Prime 88 95
Naive Bayes 89 93
AdaBoostM1/C4.5 90 96
AdaBoostM1/PART 90 96

Table5: Usingthe“optimal” featureset

preferredonesof machinelearningalgorithms. As precedent
studiesseemedto show thatmulti-speaker emotionrecognition
wasa very difficult taskin principle, thepresentwork suggest
thatspeaker dependantrecognitioncanreachvery high scores,
if adequatefeaturesandlearningschemesareused.This work
shouldserve as a basisfor necessaryadditionalexperiments
with more databasesincluding speakers of very different lan-
guages.Theuseof only freelyavailablesoftwaresshouldallow
otherpeoplewhoalreadyposessthesedatabasesto helpto pur-
suethis research.
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