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Abstract

Recentyearshave beenmarked by the developmentof robotic
petsor partnerssuchas small animalsor humanoids. People
interactwith themusingnaturalhumansocialcues,in particu-
lar emotionalexpressionslt is crucialthatrobotcandetectthe
emotionalinformationcontainedn speectusingonly prosodic
features sincethis is often the only informationthatthey can
measure. We presentherethe first large scaleexperimentin

which alargefeaturesetspaceandalarge machindearningal-

gorithmspacearesearcheaoncurrently We describenew fea-
tureswhich prove to bemuchmoreefficientthanthetraditional
featuresusedin thelitterature.

1. Introduction

Recentyearshave beenmarked by the increasingdevelopment
of personalobots,eitherusedasnev educationatechnologies
or for pureentertainmentTypically, theserobotslook like fa-
miliar petssuchasdogsor cats(e.g. the Sory AIBO robot),
or sometimegake the shapeof youngchildrensuchasthe hu-
manoidsSDR-5(Sory).

Amongthecapabilitieshatthesepersonatobotsneed.one
of the mostbasicis the ability recognizehumanemotions.In-
deed,not only emotionsare crucial to humanreasoning but
they arecentralto socialregulation. Emotionalcommunication
is atthesametime primitive enoughandefficientenoughsothat
we useit alot whenwe interactwith pets,in particularwhenwe
tamethem. This is alsocertainlywhatallows childrento boot-
straplanguagdearningandshouldbe inspiring to teachrobots
naturallanguage.

In this paper we presenta setof experimentsthat formed
thebasisof atechnologyfor automaticallyrecognizingheemo-
tions in speechbasedon prosodicfeatures,and usednow in
certainentertainmentobotssuchasthe Sory AIBO or SDR-4.
Thiswork is thefirst (to our knowledge)large scaledatamining
experimentin which we comparemostof thestandardnachine
learningalgorithmsandexplorethevalueof two hundrediffer-
entfeatures.As shavn belav, we found somenew featuresof
which efficiency seemsgo be significantlyhigherthanthe ones
traditionally usedin the literature. Besides,all the work pre-
sentechereis basedntheuseof freely availablesoftwaresand
thuscanbereproducedvith minor difficulties.

2. Theacoustic correlates of emotionsin
human speech

It is possibleto achieve our goalonly if therearesomereliable
acousticcorrelatesof emotion/afect in the acousticcharacter
istics of the signal. A numberof researcherbave alreadyin-

vestigatedhis question([3]). Their resultsagreeonthe speech

correlategshat comefrom physiologicalconstraintsand corre-
spondto broadclassef basicemotions but disagreeandare
unclearwhenonelooks at the differencedetweerthe acoustic
correlateof for instancdearandsurpriseor boredomandsad-
ness.Indeed,certainemotionalstatesare often correlatedwith
particularphysiologicalstateq[6] whichin turn have quite me-
chanicalandthus predictableeffects on speechgspeciallyon
pitch, (fundamentafrequeng FO) timing andvoice quality.

3. Therecognition of emotionsin human
Speech

3.1. Goal

As interestinginteractionsneedto be 2-ways, it is necessary
thatrobotic petscanalsorecognizehe emotionsof thehumans
who areinteractingwith them. Humangenerallydo thatby us-
ing all the context andmodalities,rangingfrom linguistic con-
tent to facial expressionand intonation. Unfortunately using
appropriatelycontet is not easyfor a machinein an uncon-
trolled ervironment: for instancerobust speechrecognitionin
suchsituationss out of reachfor nowvadayssystemsandfacial
expressiorrecognitionneedsothcomputationatesourcesind
videodevicesthatroboticcreaturesnostoftendo not have. For
this reasonwe investigatedhow far we cango by usingonly
the prosodicinformationof the voice. Furthermorethe speech
weareinterestedn is thekind thatoccursin everydaycorversa-
tions,whichmeansshortunformalutterancesasopposedo the
speectproducedvhenoneis asledto reademotionallya para-
graphof for examplea newspaper Four broadclassef emo-
tional contentwerestudied:joy/pleasuresorrav/sadness/grief,
angerandcalm/neutral.

3.2. Existingwork

The first studiesthat were conducted(e.g. [8]) were not so
muchtrying to getan efficient machinerecognitiondevice, but
ratherweresearchindor generalgualitatve acousticcorrelates
of emotionin speech(for example: happinesgendsto make
the meanpitch of utteranceshigherthanin calm sentences).
More recently the increasingawarenesshat affective comput-
ing hadan importantindustrial potential([6]) pushedresearch
towardsthe questof performancen automaticrecognitionof
emotionsin speech.Unfortunately to our knovledge,no large
scalestudy usingthe moderntools developpedin the machine
learningcommunityhave beenconducted Indeed,mostoften,
eitheronly oneor two learningschemesaretested(for e.g. in
[7], [2]) or very few and simple featuresare used( [7], [2]),
or only small databaseare used- lessthan 100 examplesper
speakr (likefoee.g.in [2], [4], [7]) whichmakesthatthepower
of somestatisticalearningschemesnayhave beenoverlooked.



Only ([4]) have tried to make somesystematiclatamining,
usingmorethanthetraditional/standardetof featuresusedby
therestof theliterature:mean max, min, max-min,varianceof
thepitchandintensitydistributions,andof thelengthsof phone-
mic or syllabic segments,or of pitch rising segments. Unfor-
tunately this work lacksmary experiments:1) only 3 kinds of
learningschemesvereused- supportvectormachinesgaussian
mixturesandlineardiscriminants which arefarfrom beingthe
bestat dealingwith datain which therearepossiblymary unr
relevantfeaturesandin particulardo not allow to derive auto-
matically smallersetof featureswith optimal efficiengy; 2) the
featuresetwasexploredby choosingonelearningschemeand
iteratively remaoving lessuseful featuresfor classification:on
onehandthisis ratheradhocsinceit is linkedto avery particu-
lar learningschemesindselectionprocedurepntheotherhand
it doesnot allow to detectthe fithessof groupsof features.Fi-
nally, theirwork is basecn speectgeneratedy askinghuman
subjectgo readnewvspapetextsin anemotionaimanner, which
doesnot correspondo our constraintsTo our knowvledge,only
two researchgroupshave tried to build automaticrecognition
machineof everydayspeechare([2], [7]). Yet,they couldonly
usevery smalldatabasesjery few simplefeaturesand? differ-
entlearningalgorithms.Finally, a generakonclusionof this al-
readyexisting corpusof researclis thatrecognitionratesabove
60 percenteven with only 4 basicemotionsseemsmpossible
if thereareseveral speakrs. The enormousspeakr variability
hasbeendescribedn ([7]). As a conclusion,we choseto fo-
cusonly on spealer dependanemotionrecognition.Thisis not
necessarilya bad point from an industrial point of view since
it is targetedto robotic petsthat may interactmainly only with
their caretalkr (andthe factthatrobotsonly manageo recog-
nizetheir ownercouldevenbea positive feature becausé is a
sourceoc complicity betweerarobotandits caretaler).

Our methodologyis an extensionof the work of ([4]) in
which we usemorefeatureg(including new andcrucial ones),
morelearningschemesandmorestandardeaturespacesxplo-
ration tools. A very large databaseof 2 spealkrs containing
unformal shortemotionalutterancess used. All experiments
wereconductedisingthefreely availabledatamining software
Weka? , which implementsmostof the standardslatamining
techniques.

3.3. Thedatabase

In orderto have suficiently large databasesye hadto malke
somecompromisegthe recordingconditionsas describedin
([7]) or ([2]) areratherpoorandunpractical).Sowe usedtwo
japanes@rofessionabpealkrs(a manandawoman),who are
both voice actor/actresand worked on mary radio/TV com-
mercials,Japanesédub of movies andanimations. They were
asled to imitate everyday speechby pronouncingshort sen-
tencesor phrasdike “Umm, | don't know”, “Exactly!”, “See”,
“Hello”, “I see”,“How areyou?”, “What kind of food do you
like?”, “Wonderful!”, “D’know”. Before eachutterancethey
hadto imaginethemselesin a situationwherethey could ut-
ter it, and which would correspondo one of the four emo-
tional classes:joy/pleasure sorrav/sadness/griefanger nor
mal/neutral.If severalemotionswerecompatiblewith the sen-
tencemeaning,thenthey were allowed to utter eachof them.
We endedwith a databaseof 200 examplesper speakr and
per emotions,which makes 2000 samplesin total. We know
thathaving only two speakrsrestrainghe generalityof there-

lwekaweb page:http://iwwwcs.waikato.ac.nzml/

sults,but to our knowldege no onesofar hadthe opportunityto
have somary examplesgevenfor onespealer, andsoto usethe
power of modernstatisticallearningalgorithms. Nevertheless,
themakingof moredatabaseis planned.

3.4. Using data mining techniques
3.4.1. Features

Thetwo mainmeasurethatcanbedoneconcerningheintona-
tion arepitch andintensity which we did, like in all the works
reportedabore. For eachsignal, we also measuredhe inten-
sity of its low-passedand high-passedersion,the cutting fre-
queng beingchoserat250Hz (theparticularvalueappearsot
to be crucial), theideabeingto separatehe signalinto a pure
prosodiccomponentinda pure“spectral”componentFinally,
for sale of exhaustvity, we madea spectralmeasureconsist-
ing in computingthe norm of the absolutevectorderivative of
thefirst 10 MFCC componentgmel-frequeng ceptralcompo-
nents). All thesemeasurewere performedat each0.01stime
frame, using the Praatsoftware, which is a signal processing
toolkit freely available?.

Eachof thesemeasureprovidesa serieof valuesthat we
hadto transformto provide differentpoints of view uponthe
data.Soeachserieof valueswastransformednto 4 series:the
serieof its minimas, the serieof its maximas,the serieof the
durationsbetweenlocal extremaof the 10Hz smoothedcurve
(which modelsrhytmic aspectf the signal),andthe serieit-
self. Finally, to getfeaturesout of theseseries,we computed
for eachone:themean themaximum theminimum,thediffer-
encebetweerthemaximumandtheminimum,thevariancethe
median thefirst quartile,thethird quartileandthe interquartile
range andthemeanof theabsolutevalueof thelocal derivative.
In total we used5*4*10 = 200features.

3.4.2. Learning algorithms

Therearemary learningschemeghat have beendevelopedin
the last 20 years(see[9], andthey are often not equivalent:
someare more efficient with certaintypes of classdistribu-
tionsthanothers,andsomearebetterat dealingwith mary un-
relevant features(which is the casehere,as seena posteriori)
or with structuredfeaturesets(in which this is the “syntactic”
combinationof the valuesof featureswhich is crucial). As by
definition we do not know the structureof our dataand/orthe
(ir-)relevanceof features,t would be a mistale to investigate
our problemwith only very few learningschemesAs a conse-
guencewe choseto usea setof the mostrepresentate learn-
ing schemestangingfrom neuralnetworksto rule inductionor
classificatiorby regression Also, we usedoneof thebestmeta-
learningschemej.e. AdaBoostM1([9]), which allows gener
ally the significantimprovementin generalizatiorperformance
for unstablelearningschemesdik e decisiontrees(an unstable
learningalgorithmis onethatcansometimegproducevery dif-
ferentrecognitionmachineswvhenonly a slight changein the
learningdatabaséasbeenperformed). We choseto usethe
Wekasoftware,of which codeandexecutablearefreely avail-
able so that the experiment,thoughbeing large scale,can be
easilyreproduced.This software alsoprovidesmeandik e au-
tomatic cross-alidation, or the searchof featurespaceswith
for e.g. geneticalgorithmsaswe will seelater Thelist of all
learningalgorithmsis givenin table4. More detailsaboutthese
algorithmscanbefoundin [9].

2Praatweb page:http://wwwpraat.og



name description

1-NN 1 nearesheighbours
5-NN voted2 nearesheighbours
10-NN voted10 nearesheighbours

DecisionTree/C4.5 C4.5decisiontrees
DecisionRules/ART PART decisionrules
KernelDensity RadialBasisFunctionNeuralNet.
KStar KStar

classificatiorvia linearregression

LinearRegression

LWR classificationvia locally weightedregression
VotedPerceptrons commiteeof perceptrons

SVM 1 polynomial(deg. 1) SupportVectorMachine
SVM 2 polynomial(deg. 2) SupportVectorMachine
SVM 3 polynomial(deg. 3) SupportVectorMachine
VFI Votedfeaturesnterval

M5Prime clsiificationvia M5PRimeregressiormethod
Naive Bayes Naive Bay ificatioralgorithm
AdaBoostM1/C4.5 Adaboc ionof C4.5

AdaboostM1/ART Adaboosted’ersionof PART

Tablel: Learningschemes

name speaketl speake@
1-NN 82 87
5-NN 84 87
10-NN 83 87
DecisionTrees/C4.5 84 93
DecisionRules/ART 84 94
KernelDensity 84 90
Kstar 81 85
LinearRegression 88 91
LWR 87 90
VotedPerceptrons 70 76
SVM degreel 88 94
SVM degree2 89 94
SVM degree3d 88 94
VFI 80 93
M5Prime 86 96
Naive Bayes 84 90
AdaBoostM1/C4.5 90 96
AdaBoostM1/PART 91 97

Table2: Usingall features

3.4.3. All featureg/All algorithms

In a first experiment, evaluation was conductedin which all

algorithmswere given all the (normalized)featuresandwere
trainedon 90 percentof the databas@andtestedon the remain-
ing 10 percent. This was repeatedl0 times with eachtime
a different90/10 percentsplit (we performeda 10-fold cross-
validation). Table 5 gives the averagepercentageof correct
classificatiorfor the 10folds.

We seefrom theseresultsthat very high successate (be-
tween 92 and 97 percent,which is higherthanary otherre-
portedresultin theliterature®. canbeobtainethanksto theuse
of certainalgorithms. Yet, the differenceamongalgorithmsis
striking: whereaghe bestresultsareobtainedwith adaboosted
decisiontreesand rules, someothersperform 10 percentbe-
low (likenearesheighboursRBF neuralnetsor SupportVector
Machines which arethe onestypically usedin otherstudies),
or even 20 percentbelowv (commiteesof perceptrons)This il-
lustratesour initial claim thatonemustbe carefulto try mary
differentlearningschemesvhenonewantsto solve a problem
aboutwhich we have very few prior or intuitive knowledge. It
is not surprisingthatthe bestresultsare obtainedwith decision
treesand rules sincethesekinds of algorithmsare known to
be very goodat dealingwith mary unrelevant featureswhich
seemdo bethe casehere(if not, therewould be lessdisparity
betweerresults).

30f courseit is difficult to comparebecauselatabasearedifferent,
but atleastthefeaturesandthealgorithmsusedelsevhereareall strictly
includedin this study

feature informationgain
1: MEDIANINTENSITYLOW 1.44
2: MEANINTENSITYLOW 1.40
3: THIRDQUARTINTENSITYLOW 1.35
4: ONEQUARTINTENSITYLOW 1.34
5: MAXINTENSITYLOW 1.23
6: MININTENSITYLOW 1.14
7: THIRDQUARTMINIMASPITCH 0.72
8: THIRQUARTMAXIMASPITCH 0.72
9: THIRDQUARTPITCH 0.69
10: MAXMINIMASPITCH 0.67
11: MAXMAXIMASPITCH 0.67
12: MAXPITCH 0.67
13: MINMINIMASPITCH 0.59
14: MEDIANMINIMASPITCH 0.57
15: MEDIANMAXIMASPITCH 0.57
16: MINPITCH 0.52
17: MEDIANPITCH 0.52
18: MEANMINIMASPITCH 0.48
19: MEANMAXIMASPITCH 0.48
20:MEANPITCH 0.48

Table3: InformationGainof 20 bestfeatures

3.5. Featuresdection

After thisfirst experiment,onenaturallywould like to seehow
thefeaturesetcouldbereducedor threereasonsi) smallfea-
turessetprovide bettergeneralizatiorperformancen general
(see[9]); 2) obviously it is computationallycheaperto com-
putelessfeatures;3) it is interestingto seeif the mostuseful
featuresfor the machinelearningalgorithmsare the onesthat
aretraditionally putforwardin the psychoacoustititerature.

A first way of exploring the featuresetis to look at the
resultsof learningschemedike decisionrules (PART), which
areoftenusedmainly asknowledgediscovery devices:

I f MEDI ANl NTENSI TYLOW > 0. 48 and
M NI MASPI TCH <= 0. 07 and
THI RDQUARTI NTENSI TY > 0. 42 ==> CALM

ELSE I f MEANI NTENSI TYLOW <= 0. 58 and
VEDI ANl NTENSI TYLOW <= 0. 29 ==> ANGRY

ELSE | f THI RDQUARTI NTENSI TYLOW > 0. 48 ==> SAD

ELSE ==> HAPPY

Thesefour and surprisingly simple rules allow a percentage
of correctclassificationin generalizatiorof 94 percentfor the
speakr 2 databasé The striking factis the repeateduse of
featuregelatedto theintensityof thelow-passsignal.

In orderto quantify theindividual relevanceof featuresor
attributes thereis ameasureftenusedn thedatamininglitera-
ture,whichis theexpectednformationgain,or mutualinforma-
tion betweerclassandattribute. It correspondso thedifference
betweertheentropiedH(class)andH(class—attrilite) (see[9],
for detailsabouthow it is computed).Table6 givesthe 20 best
attributesaccordingto theinformationgainthey provide.

This tableconfirmsthe greatvalueof the featuresconcern-
ing the quartilesof the distribution of intensity valuesin the
low-passedsignals. It alsoshav somethingrathersurprising:
amongthe 20 mostindividually informative features,only 3
(the 12, 16 and 20) are part of the standardsetput forward in
psychoacoustistudieq[5], [3], Williams 1972)or usedin most
of moreapplicationorientedresearchasin (Slang etal. 1998,
Breazal2000).

Yet, onehasto be awvarethatindividual salienceof a fea-
tureis only partiallyinteresting:t is notrarethatsuccessomes
from the combinationof features.Soin afirst experiment,we
tried to comparea featuresetcontainingonly the featuresl to
6 relatedto low-passedsignal intensity (LPF), with a feature



learningscheme (LPF)sp.1 (LPF)sp.2 (SP)sp.1 (SF)sp.2
1-NN 78 83 70 72
5-NN 84 82 72 75
10-NN 84 82 73 73
DecisionTrees/C4.5 80 84 72 71
DecisionRules/ART 78 83 72 74
KernelDensity 82 85 71 74
Kstar 80 84 70 72
LinearRegression 63 68 72 78
LWR 75 71 75 80
VotedPerceptrons 51 70 60 58
SVM degreel 63 68 73 78
SVM degree2 71 70 7 50
SVM degree3 76 85 78 82
VFI 78 76 64 70
M5Prime83 85 76 80

Naive Bayes 82 81 74 72
AdaBoostM1/C4.5 80 81 80 78
AdaBoostM1/PART 80 83 79 78

Table4: Comparing‘standard“featuresand“low-passedaignal
intensity” features

set composedof the standardfeatures(SF) usedin (Breazal
2000, or Slangret al. 1998): mean,min, max, max-min,and
varianceof pitch andintensityof unfilteteredsignal,plusmean
length of syllabic segments(Resultsare similar if we addjit-
ter andtremoras sometimesalsoused). Table N summarizes
theseexperimentgeachnumbercorrespondagainto themean
percentagef correctclassificationin generalizatiorin 10-fold
cross-alidation).

This table shaws thatif oneusesonly the quartilesof the
low-passedsignalintensity onestill outperformsthe combina-
tion of featuresusedtraditionally Becauseherewe have only
few speakrs this result hasto be taken with caution, but it
seemgo indicatethatpreviouswork missedsomethingecrucial.

Finally, aswe saw on this table,usingonly low-passedn-
tensityfeaturesyields substantiallylower resultsthatwhenone
usedall featureswith decisionrules. In orderto attainour goal
of finding a very efficient small setof featureswe usedanau-
tomaticsearchmethod:geneticalgorithms.Populationof fea-
tures(limited to 30) weregenerate@ndevolvedusingasfitness
the10-fold cross-alidationwith 2 algorithms:Naive Bayesand
5-NearestNeighbourgwe chosethesemainly becauséhey are
fastto train). The outcomeof this experimentwas not obvi-
ous:within the selectedeatureset,not surprisingly therewere
featuresrelatedto the quartilesof low-passedsignalintensity
andfeaturesrelatedto the quartilesof pitch, but alsofeatures
with relatively low individualinformationgain: thoserelatedto
thequartilesof theminimasof theunfilteredsmoothedntensity
cune. Also, we cannotethatagain,the machindearningalgo-
rithmstendto alwaysneglectfeatureselatedto the varianceor
therangeof distributions,whatever the measureA final exper
imentusingthesel5 featuresalongwith all learningalgorithms
wasconductedmax, min, median,3rd quartileand1stquartile
of low-passedsignalintensity pitch and minimasof unfilterd
signalintensity). Resultsaresummarizedn table8.

We obsenre that we get very similar bestresultsthanini-
tially, with more than 10 times lessfeatures. Moreover and
interestingly the variation betweenlearning schemess less
importantand algorithmswhich performedbadly like nearest
neighboursor Naive Bayes,behae now in a more satisfying
manner

4. Conclusion

We shavedthatusingonalargescalemoderndataminingtech-
niguesallowedto find non-olviousfeaturesvhichweremissed
in precedenstudies.In particular it is interestingo seethatthe
featureputforwardin the psychoacoustilitteraturearenotthe

name speaketl speake@
1-NN 87 92
5-NN 90 92
10-NN 87 91
DecisionTrees/C4.5 85 92
DecisionRules/ART 86 93
KernelDensity 87 91
Kstar 86 90
LinearRegression 83 89
LWR 87 89
VotedPerceptrons 65 78
SVM degreel 87 91
SVM degree2 90 96
SVM degree3 89 94
VFI 83 92
M5Prime 88 95
Naive Bayes 89 93
AdaBoostM1/C4.5 90 96
AdaBoostM1/PART 90 96

Table5: Usingthe“optimal” featureset

preferredonesof machinelearningalgorithms. As precedent
studiesseemedo shav thatmulti-spealker emotionrecognition
wasa very difficult taskin principle, the presentwork suggest
thatspealer dependantecognitioncanreachvery high scores,
if adequatdeaturesandlearningschemesreused. This work
shouldsene as a basisfor necessaryadditional experiments
with more databasecluding speakrs of very differentlan-
guagesTheuseof only freely availablesoftwaresshouldallow
otherpeoplewho alreadyposesshesedatabaset helpto pur
suethisresearch.
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