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Abstract

How do humans (or other animals) acquire those cultural acoustic codes which are finite discrete repertoires
of vocalizations as well as categorization systems (e.g. vowel systems in humans) ? How do these acoustic
codes, shared by each speakers of a given language and possibly very different from one language to the other,
appeared? It has been proposed in the litterature (e.g. de Boer, 2000) that some form of non-trivial imitation
was the mechanism which gave a solution to both questions. We show in this paper that a much simpler
mechanism is able to account for the same phenomena. It is based on the self-organization of the coupling
between perception and production both within and across agents. The assumptions on which the mechanism
relies only deal with local properties of neural units as well as the ability to learn a mapping between two
modalities in an unsupervised manner. No social skills or functional pressures related to communication are
required. Yet, a structured discrete acoustic code shared by the society appears.

1 Introduction

Humans as well as other animals like some species of
birds or whales, use acquired acoustic codes. This means
that they share repertoires of sounds that they can pro-
duce and categorize. For example, humans speaking a gi-
ven language produce the same set of vowels (e.g. [a], [e],
[i], [o], [u]), and categorize the vowel space in the same
manner. This is a cultural code because the way the vowel
space is carved into categories and prototypes is arbitrary
and particular to each language community (there are of
course statistical regularities in human languages, but the
number of existing, and so possible, vowel systems is very
large). Note that there are two aspects to these acoustic
codes: they are discretization of the continuous acoustic
space into distinct discrete categories/modes, and this dis-
cretization is shared by all agents in the society.

How does an individual acquire an acoustic code? How
do cultural discrete acoustic codes shared by populations
of individuals appeared ? (de Boer, 2000) proposed an
answer in the case of the modelisation of the origins of vo-
wel systems: this is the same mechanism which explains
the acquisition of an acoustic code and its formation; this
mechanism is imitation. He built a simulation in which
agents were given a model of the vocal tract as well as a
model of the ear. Agents played a game called the imi-
tation game. Each of them had a repertoire of prototypes,
which were associations between a motor program and its
acoustic image. In a round of the game, one agent called
the speaker, chose an item of its repertoire, and uttered
it to the other agent, called the hearer. Then the hearer
would search in its repertoire the closest prototype to the
speaker’s sound, and produce it (he imitates). Then the

speaker categorizes the utterance of the hearer and checks
if the closest prototype in its repertoire is the one he used
to produce its initial sound. He then tells the hearer whe-
ther it was “good” or “bad”. Each item in the repertoires
have scores which are used to promote items which lead
to successful imitations and prune the other ones. In case
of bad imitations, depending on the scores of the item
used by the hearer, either this item is modified so as to
better match the sound of the speaker, or a new item is
created, as close as possible to the sound of the speaker.

By the description of the game, it is clear that to per-
form this kind of imitation game, a lof of computatio-
nal/cognitive power is needed. First of all, agents need to
be able to play a game, involving successive turn-taking
and assymetric changing roles. Second, they need to be
able to voluntarily try to copy the sound production of
others, and be able to evaluate this copy. Finally, when
they are speakers, they need to recognize that they are
being imitated intentionnally, and give feed-back/re-inforcement
to the hearer about the success or not. The hearer then has
to be able to understand the feedback, i.e. that from the
point of view of the other, he did or did not manage to
imitate successfully. As a consequence, it seems not very
controversial that agents need to be able to perform some
form of non-trivial imitation to play the “imitation game”.

We propose in this paper that “something simpler” than
imitation (Noble and Todd, 2002) might explain the so-
cial formation of sound codes. As a point of convergence
with de Boer, the mechanism we present is the same for
the acquisition and the formation of acoustic codes. Yet,
it requires much less cognitive resources. It has similari-
ties with what has sometimes been called “response faci-
litation” (Byrne and Russon, 1998): “the observer is co-



pying a motor act that is already in its repertoire, and,
as a result of copying, the frequency of the particular be-
havioural act increases” (Miklosi, 1999). The similarity
is that the observation of a behavioural act (vocalization
here) increases the frequency of the production of a simi-
lar vocalization in the future, but the dissymilarity is that
here agents do not copy what they hear (the increase in
frequency is a distributed statistical effect). Also, all vo-
calizations (in a continuous space) are potentially in the
repertoires of all agents initially, but this does not mean
that they produce all of them.

The mechanism relies on a coupling of perception and
production within and across agents. It is a generalization
and abstraction of the lower-level mechanism presented
in (Oudeyer, 2002a), which used two neural maps, one
acoustic/percepual map and one motor map. The mecha-
nism can be summarized by 5 assumptions that we will
describe, defining local properties of neural units, and will
be shown to be sufficient to generate macro-properties
qualitatively different, i.e. emergent, at the society level 1.

2 The method of the artificial

The mechanism we present here is not intended to be a
model of reality. Its assumptions are not based on existent
knowledge in neuroscience or ethology or speech research
(though they are inspired by it). The goal is to show a
kind of mechanism that may lead to the kind of acous-
tic codes we observe in nature. It proceeds by abductive
reasoning (Peirce, 1958), and its main use is to be a cau-
tionary tale which helps to avoid uncertain intuitive rea-
soning which are very current in verbal theories (Steels,
2001). The claim of this paper is that complex digital
acoustic codes shared by a population of agents can be
formed without complex social and imitative capabilities,
and without a pressure to develop a system for communi-
cation. Yet, we do not claim that the artificial system pre-
sented in this paper describes a mechanism that actually
happens in nature.

3 The artificial system

This paper will remain theory neutral in terms of the
variables that describe the perception and production of
sounds. The perception of acoustic signals will be coded
as points in abstract continuous spaces of dimension N,
and the production will be coded as points in other abs-
tract continuous spaces of dimension D. To simplify, we
consider in this paper that vocalization are static confi-
gurations, and not trajectories in time. The extension to
complex sounds will be describred in a further paper. For

1. The concept of “self-organisation” and “emergence” that we use
in this paper characterizes systems whose global properties are qualita-
tively different from its local properties; we do not include any notion
of “surprise”, which we believe is very subjective: the results we present
are not claimed to be surprising
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FIG. 1 One neural unit and its tuning function, the input is an
N-dimensional space (e.g. 4 first formants); for ease of repre-
sentation, here we show the projection of the projection of the
tuning function on one dimension.
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FIG. 2 The activation of a neural unit by the “inhibit/activate”
module allows to retrieve the motor commands that produce the
sound to which the unit reacts maximally.

example, these points for perception could correspond to
the formants, i.e. the frequencies of the peaks in the power
spectrum, but also to points in the cochlea membrane acti-
vation space, in the MFCC space. For production, abstract
points might be configurations in the articulator spaces,
muscular spaces, proprioceptive spaces.

The mechanism relies on 5 assumptions that we are
now presenting.

3.1 Assumption 1: Neural units

We suppose that there are neural units Ni which have
broadly tuned gaussian-like receptive fields. What we call
“neural unit” could be in the brain one neuron as well as
a complex neural network. The receptive field of a neural
unit is the function which maps inputs to activation of the
unit. Gaussian-like tuning function make that there is an
input for which the unit responds maximally, which we
call its preferred vector, and then when inputs get further
from this preferred vector, the activation decreases along
a gaussian function. When a receptive field is broadly tu-
ned, it implies that it is not very specific, i.e. there are
many inputs for which it reacts substantially (the gaus-
sian has a large variance). Figure 1 describes one neural
unit. If we note li;t the tuning function of Ni at time t, f
one input vector, fp;i the preferred vector of Ni, then:
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1

2
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FIG. 3 There are many neural units, no architecture is needed.
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FIG. 4 When an input activates a neural unit, the preferred vec-
tor of this unit is modified so that the unit will be more respon-
sive to this input in the future; this modification is ponderated
by the current level of activation of the unit.

The parameter � determines the width of the gaussian,
and so if it is large the neurons are broadly tuned (a va-
lue of 0.05, as used below, means that a neuron responds
substantially to 10 percent of the input space).

3.2 Assumption 2: Motor commands retrie-
val

We assume that upon the activation of one neural unit
Ni by a control system noted “inhibit/activate” on the fi-
gures, the brain is able to retrieve a set of motor com-
mands that produce a sound corresponding to the prefer-
red vector of Ni. There are possibly several motor com-
mands for one sounds, we suppose that the brain can re-
trieve at least one. This kind of inverse-problem is known
to be very difficult in general, but is possibly simpler for
speech since the sounds that one agent produces are not
“reversed” for other agents hearing it. “Reverse” means a
symmetry like when someone moves its left hand, others
in front of him see the hand at their right. Thus, several
papers in the litterature have already showed that reaso-
nable neural architectures could learn this mapping, most
often with the use of mirror neurons. Note that these mir-
ror neurons can be the result of learning, as shown in (Ou-
deyer, 2002a; Bailly et al., 1997). Also, this assumption
does not imply that an agent is able to produce the mo-
tor commands for any sound it hears, but just for the one
covered by their receptive fields centers. Figures 2 and 3
summarizes this assumption.

3.3 Assumption 3: Plasticity

The receptive fields of neural units adapt to the input.
What changes is their preferred vector, their width does
not evolve (they remain broad). For each input, the acti-
vation of each Ni is computed, and their receptive field
updated so that if the same stimulus comes again next
time, it will respond a little bit more (this is ponderated
by their current activation). Basically, adaptation is an in-
crease in sensitivity to stimuli in the environment. Figures
4 explains the process. The formula is:

li;t+1(f) = c1 � e
kM(fp;i;t;li;t(f);f)k=c2

where f is the input vector corresponding to the current
segment, and M is:

M(v;a;s) = v + a � (s� v)

From a geometrical point of view, the preferred vector of
each neural unit is shifted towards the input vector, and
the shift is higher for unit which respond a lot than for
unit which do not respond very much. 2

3.4 Assumption 4: Production

The production of a sound is achieved through the acti-
vation of a random Ni by the control system noted “inhi-
bit/activate” on the figures. Activating one neural unit at a
given time makes that the motor variables (e.g. the articu-
lators) take the value of the motor vector corresponding to
the preferred vector of Ni. For example, if perception is
coded as formant trajectories and production as articulator
movements, then producing a sound amounts to choosing
a formants target, which correspond to an articulatory tar-
get, and let the control system adjust the articulators. The
crucial point of this assumption is that neural units N i are
both used in the perception process and in the produc-
tion process. As a consequence, the distribution of targets
which are used for production is the same than the distri-
bution of receptive fields, which themselves adapt to in-
puts in the environment. This implies for example that if
an agent hears certain sounds more often than others, he
will tend to produce them also more often than others. It is
important to see that this is not realized through imitation,
but is a side effect of an increase of sensitivity of neurons,
which is a very generic local low-level neural mechanism.
Agents do not imitate each other in this artificial system
(but they will develop neural networks that give them the
“knowledge” of how to imitate).

3.5 Assumption 5: Initial distribution

The preferred vectors of all the neural units are random
along a uniform distribution in the basic form of the sys-

2. The neural network that we use is technically very similar to Self-
Organizing Feature Maps. In our case, the input space is of the same
dimensionality than the output space, so we do not use it to make di-
mensionality reduction. Feature maps are normally used to extract some
regularities in high dimensional input data. Here, there is no regularity
in the input data initially, which is generated also by other neural net-
works of the same kind. Regularities are rather created through self-
organization as explained in the “dynamics” section.



tem. This means that initially they produce sounds that
are randomly distributed across the space.

3.6 Non-assumptions

Among the things we do not assume is the fact that
agents do not play any language game in the sense used
in the literature (Hurford et al., 1998). In fact, they need
not have any social skill at all. They are just in a world in
which they wander around and sometimes produce sounds
and adapt to the sounds they hear around them. They do
not have any notion of otherness, and in particular do not
imitate each other.

4 The dynamics

Now we describe what happens when a population of
agents which have biological properties corresponding to
the assumptions cited above. For easier visualization, the
input space will be here 1-dimensional. Results extend
without any change to higher dimensions. In this part,
� = 0:05 and there are 150 neural units.

Figure 5 shows the distributions of preferred vectors
of 2 agents at the beginning of one simulation. We see
that they are approximately uniformly distributed. As the
adaptive law of neural units makes that agents tend to pro-
duce the same distribution of sounds as the one they hear
around them, and as initially they all produce roughly the
same uniform distribution, the initial situation is an equi-
librium. Now, because there is stochasticity in the mecha-
nism, there will be fluctuations. We now show that this
equilibrium is not stable: the fluctuations drive the sys-
tem in a very different state. Figure 6 shows the distri-
bution of preferred vectors of the same two agents 2000
time steps later. We see that now they are clustered, and
that these clusters are the same in the two agents. Their
new distribution of preferred vectors is multi-modal. This
means that the targets they use to produce sounds are
now from one of several well defined modes. This cor-
responds to the appearance of the discretization of the
space of sounds, i.e. some sort of digitalness since they
produce sounds belonging to a finite discrete set (modulo
the influence of noise) whereas initially they produced
sounds belonging spanning a continuous space. Moreo-
ver, all the agents share this speech code. In each simu-
lation, the exact set of modes at the end is different. The
number of modes also varies, with exactly the same set of
parameters. This is due to the inherent stochasticity of the
process.

The evolution does stabilize at some point. To moni-
tor the evolution along with time, the mean entropy of
distributions was computed at each time step as well as
the mean distance between agent’s distributions (this was
done using the KL-distance). Figures 7 and 8 shows the
evolution of these two measures. On the one hand the en-
tropy first decreases and then stabilizes, which shows the
crystallization; on the other hand the distance between
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FIG. 5 Initial distribution of preferred vectors with a one-
dimensional input space; we show here the distributions of two
agents, who produce sounds spread along the complete conti-
nuum of the space (there is no code).
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FIG. 6 The distribution of neural units of the same two agents
than in previous figure, after several thousands time steps: they
are multi-modal, which means that the sounds that they produce
now belong to one of several modes, and moreover these modes
are the same for the two agents (the space is discretized in the
same manner by all agents: this is a shared code)

distributions does not increase (initially, they already have
similar distributions since they are all uniform !), and even
decreases, which shows that the peaks which appear are
the same for all agents.

The reason why there is crystallization is that the na-
tural stochasticity of the mechanism makes that initially,
from times to times, some sounds get produced a little
bit more by the population of agents. This can create de-
viations which are amplified by the adaptive mechanism
through positive feedback.

Finally, if there is only one agent that adapts to its own
vocalizations, then it will crystallize also on a multi-modal
distribution of target. This means that there are two se-
parable results: digitalness is explained by the coupling
between production and perception through the N i, and
can be obtained with only one agent; but putting agents
together makes that they synchronize their repertoires of
modes. If they were to adapt to their own vocalizations
without interactions, then they would end up with un-
correlated repertoires of modes.



FIG. 7 To monitor the evolution in time of the distributions
of preferred vectors, their mean entropy was computed; in this
simulation, we see that it decreases, which correspond to the
formation of modes, and then stabilizes, which correspond to a
state of convergence (with multiple modes). This curve is for a
simulation with 10 agents.

FIG. 8 Mean distance between the distributions of preferred
vectors of the agents; in this simulation, we see that they re-
main the same, which means that the modes are identical in each
agents (this is always the case). This curve is for a simulation
with 10 agents

5 Playing with the parameters

The number of agents was changed from 2 to 50, which
does not bring qualitative differences, only the conver-
gence time is modified. If the number of neurons is too
low, i.e. less than 50, then if there are too many agents,
the simulation sometimes does not crystallize with sha-
red repertoires. But if the number of neurons is increased,
then nothing is modified (1000 neurons gives the same
result as 150 neurons for example).

A parameter which is more crucial to the outcome of
the simulation is the � which determines the width of
the gaussian which defines the tuning function. If this
width is very large (¿ 0.25), then the simulation ends up
with one cluster, generally in the middle of the space, for
all the agents. On the contrary, if the width is too small
(¡ 0.005), then the initial uniform distribution is a stable
equilibrium: it stays uniform and no symmetry breaking
appears. As seen in those values, the range of “interes-
ting” width for the gaussian is large. Also, if one makes
the width of the tuning functions stochastic, varying ran-
domly around a mean value plus or minus 10 percent, the
simulation also crystallizes on shared digital modes.

Another variation of the simulation deals with the ini-
tial distribution of preferred vectors. Above, they were
uniformly distributed. What does happen if they have biases?
We have investigated this using the constraints of the map-
ping from articulations to acoustics of the human vowel
production system. This means that we have used the mo-
del of de Boer describing how values of lip height, lip
rounding and position of the tongue map to two effec-
tive formant values (de Boer, 2000). To generate the ini-
tial distribution of preferred vectors, a uniform explora-
tion of the articulatory space is performed, and for each
articulatory configurations, the acoustic image is compu-
ted. The values of these images form the set of preferred
vectors of the neural units. Hence, our initial distribution
is the image of a uniform distribution in the articulatory
space mapped into the acoustic space. Figure 9 shows an
example of a initial distribution. Then we have studied
what kind of vowel systems were generated. First of all,
like in the above simulations, each run leads the society of
agents to a shared digital code. Now, if we look at which
vowel systems they build, we discover that they prefer 5
vowel systems, but they also generate vowel systems of
different sizes (see Figure 10). This is similar to human
vowel systems. If we look even closer, we discover that
the frequency of each vowel system type is quite similar
to the human vowel system distribution, as described in
the UPSID database of 451 languages (Maddison, 1984).
Figure 11 gives an example of a vowel system generated
by the simulation, which correspond to the most frequent
vowel system in human languages (/i/, /u/, /e/, /o/ and /a/).
Figure 12 gives the distribution of all systems generated
by the system, and their frequency in human languages.
We see that not only do we get shared digital acoustic
codes, but also with the use of the adequate bias, we are
able to predict both the regularities and diversity of human
vowel systems.

FIG. 9 Example of initial distribution of preferred vec-
tors when we use the model of vowel articulator. The right
square shows their density (it increases in the direction of
arrows)

6 Conclusion

We showed that the formation of shared digital acous-
tic codes appear in societies of agents with only a very
primitive form of social learning, very different from any



FIG. 10 Distribution of vowel inventories sizes in
emergent and UPSID human vowel systems

FIG. 11 The distribution of preferred vectors of the same
agent than on previous figure several thousands interac-
tions later. Other agents have of course the same distri-
bution in this simulation. Five vowels appear. This cor-
responds to the most frequent 5 vowel system in human
languages.

FIG. 12 Distribution of vowel inventories structures in
emergent and UPSID human vowel systems

non-trivial form of imitation. This contrasts with previous
work which pre-supposed that imitation was a pre-requisite
to build similar kind of complex socially shared systems.
In fact, here there are no social pre-requisites at all. Agents
need not be aware of others, they are just adapting lo-
cally their neural maps in an unsupervised manner to the
sounds in their environment. Through the coupling bet-
ween perception and production both within and across
agents, a process of self-organization with positive feed-
back loops takes place and global order appears. This is an
example of macro-structure which appears spontaneously
and independantly from any function, from the local inter-
actions of micro-structures with very different qualitative
properties. This happens often in nature, for example with
the formation of snow flakes, which are macro-structures
with symmetrical recursive design, from the interactions
of water molecules, which are micro-structure with assy-
metrical non-recursive design. We believe this paper pro-
vides an original example of how some necessary building
blocks to communication might bootstrap from scratch.
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