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Abstract This paper presents computational experi-
ments that illustrate how one can precisely conceptu-
alize language evolution as a Darwinian process. We
show that there is potentially a wide diversity of rep-
licating units and replication mechanisms involved in
language evolution. Computational experiments allow
us to study systemic properties coming out of popula-
tions of linguistic replicators: linguistic replicators can
adapt to specific external environments; they evolve
under the pressure of the cognitive constraints of their
hosts, as well as under the functional pressure of
communication for which they are used; one can ob-
serve neutral drift; coalitions of replicators may ap-
pear, forming higher level groups which can themselves
become subject to competition and selection.
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Mapping biology to language

Biological evolution happens through the differential
replication and selection of genes, with variation

coming from mutations or cross-over. Cultural evolu-
tion, and in particular language evolution, happens
through the social interactions between people, medi-
ated by many different kinds of behaviours and con-
texts. While these two processes seem at first sight
rather different, researchers have in fact considered
strong parallels between the two since the invention of
the theory of natural selection by Charles Darwin
(1859). As a matter of fact, soon after Darwin pub-
lished his book On the Origins of Species, describing
how mechanisms of inheritance, variation, and selec-
tion could explain the evolution of biological organ-
isms, August Schleicher published a book using very
similar concepts to describe the birth and death of
languages, and even the phenomena of language spe-
ciation (Schleicher 1863). Interestingly, Schleicher had
developed the notion of language trees, representing
their genealogy, which inspired the biologists’ clado-
gram or phylogenetic trees (Mufwene 2005).

This mapping between biological evolution and
language evolution was put forward again and made
more detailed when the substrate and the structure of
the genetic code was discovered (Watson and Crick
1953). There are two strands of correspondences that
were developed. A first strand tried to map units and
structures in the genetic space directly to units and
structures in the linguistic space. It was based on the
observation that genetic information was organized as
a sequence of discrete nucleotides, forming DNA
molecules. The particularity of this organization is that
there is a molecular system for reading the sequence, in
which nucleotides are read three by three (these groups
are called codons) and command the formation of a
corresponding sequence of amino-acids, which will
then fold up and form a three-dimensional protein. The
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association between triplets of nucleotides and amino-
acids seems to be largely arbitrary. The discovery of
these structures led researchers to think of nucleotides
as an alphabet, codons as words, and genes as sen-
tences whose meaning would be the proteins associated
to the genes (Berlinski 1972). This led to the proposal
that the genetic code itself was a language (Searls
2002). Nevertheless, this mapping is controversial and
a number of strong arguments against the relevance of
these detailed correspondences at the levels of units
were developed (Stegmann 2004; Tsonis et al. 1997).

A second kind of parallel was developed in which
the focus was on the process of evolution rather that on
the units themselves (Mufwene 2005; Croft 2000,
2002; Steels 2004). This was in fact a continuation of
the nineteenth century view of language evolution as
a (neo-)Darwinian process. The common process
between genome and language evolution was here the
following: (1) there exists a population of units capable
of replication, (2) replication is not perfect: modifica-
tions can appear, (3) the units have different levels of
efficiency in replication, which produces differential
replication. This high-level formulation, sometimes
conceptualized as a generalization of Darwin’s theory
of natural selection (Hull 1988), has the advantage of
specifying neither the structure of units nor the
mechanisms of replication and variation. And indeed,
researchers found ways to instantiate it into biological
or language evolution by filling in those missing slots
with the corresponding specific structures and mecha-
nisms (Croft 2000). As far as biology is concerned, the
units are genes, the mechanisms of replication are
those associated with meiosis/mitosis, and the mecha-
nisms of variation are mutations and cross-over. As far
as language is concerned, a wide variety of instantia-
tions have been proposed. The units of replication
were conceived as ideas, mnemotypes, idene, culture-
type, socio-genes, tuition (van Driem 2003), ranging
from simple abstract concepts like words or expres-
sions to complex neural structures implementing
associations between phonological forms and meaning.
Perhaps the most well-known notion of cultural unit of
replication is the meme introduced by (Dawkins 1976):

Examples of memes are tunes, ideas, catch-phra-
ses, clothes fashions, ways of making pots or of
building arches. Just as genes propagate them-
selves in the gene pool by leaping from body to
body via sperms or eggs, so memes propagate
themselves in the meme pool by leaping from
brain to brain via a process which, in the broad
sense, can be called imitation. If a scientist hears,

or reads about, a good idea, he passed it on to his
colleagues and students. He mentions it in his
articles and his lectures. If the idea catches on, it
can be said to propagate itself, spreading from
brain to brain. As my colleague N.K. Humphrey
neatly summed up an earlier draft of this chapter:
‘... memes should be regarded as living structures,
not just metaphorically but technically. When you
plant a fertile meme in my mind you literally
parasitize my brain, turning it into a vehicle for
the meme’s propagation in just the way that a
virus may parasitize the genetic mechanism of a
host cell. And this isn’t just a way of talking—the
meme for, say, ‘belief in life after death’ is actu-
ally realized physically, millions of times over, as
a structure in the nervous systems of individual
men the world over’. (Chapter 11 from Richard
Dawkins, ‘‘The Selfish Gene’’)

Linguistic memes, sometimes called linguemes
(Croft 2000), are themselves a population of very di-
verse kinds of units: phonological features, phonemes,
syllables, rules of phoneme sequencing, lexicons, rules
of syntax, semantic categories, systems of world cate-
gorization, constructions mapping combinations of
words and complex meanings, prosodic structures, so-
cial conventions involving gestures and gaze to coor-
dinate linguistic interactions, etc. Dawkins gives
imitation as an example of mechanism of replication
for units of language evolution. As a matter of fact, all
kinds of linguistic activities, which can be much more
complex than just imitation, like conversation or
reading, provoke the replication of linguistic units. The
consequence is that ‘‘leaping from brain to brain’’ is a
very complex process that can happen through a vari-
ety of mechanisms. What provokes variation is there-
fore also very diverse: bad perception, erroneous
interpretation, exaggeration, etc.

This shows that the conceptualization of language
evolution as a Darwinian process may take quite
different forms for different authors and is often
presented only at a rather general level. Yet, in order
to be useful, this conceptualization must be precise,
detailed and operational. A first attempt to do so is
to focus on particular linguistic examples, typically
particular phonemes or words for which we have
good data about their evolution in the past, and to
find out a detailed and causal explanation in terms of
Darwinian processes (Croft 2000; Blevins 2004, 2006).
Nevertheless, if language evolution is a Darwinian
process, then it means that many of its features are
systemic: they are the outcome of the complex
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interactions between replicators and environment.
But this kind of system is extremely complicated, and
this is why in biology the use of mathematical and
computational modelling, in particular in population
genetics, has been crucial in order to test and develop
the neo-Darwinian theory of evolution (Crow and
Kimura 1970; Maynard-Smith 1982; Ancel and Fon-
tana 2000). These kinds of models could also be used
for the study of language evolution as a Darwinian
process. Computational models of the origins of
language have been flourishing in the recent years
(Cangelosi and Parisi 2002; Kirby 2002; Steels 2003).
They allow us to develop intuitions about the com-
plex phenomena characterizing language dynamics.
Thus, they should be considered as tools for thought,
and a number of them already had a significant im-
pact on the debates and theories of the origins of
language (Cangelosi et al. 2006). Some of them were
designed to model the origins of particular features
of language in a cultural Darwinian perspective.
Nevertheless, there exists to our knowledge no gen-
eral description focusing on the cultural Darwinian
perspective and showing how a range of computa-
tional models presented in the light of Darwinian
concepts can illustrate the diverse properties of the
associated mechanisms. This is the purpose of this
paper. A number of experimental studies will now be
presented, showing operational implementations of
linguistic replicators and their associated mechanisms
of differential replication. These computational stud-
ies are tools for thought. We will try to show how
they can help articulate the possible similarities and
the differences between linguistic and genetic repli-
cators. The common point of all experiments is that
they consist of populations of agents initially devoid
of linguistic convention, and that will progressively
and culturally build each time a new (simple) lin-
guistic system. A first series of examples will focus on
the coherence constraints imposed on linguistic re-
plicators due to their use as communication systems
by their hosts. In particular we will see that only very
specific mechanisms of replication allow for the effi-
cient formation of shared linguistic conventions.
Then, we will present an experiment showing how
linguistic replicators can adapt and evolve under the
specific constraints due to the external environment.
We will then review an experiment studying the role
of learning biases in the replication process and see
how it can influence language evolution. Finally, we
will describe an experiment in which we can observe
the formation of coalition of replicators, forming
groups which are themselves subject to competition
and selection.

Viewing language evolution as a Darwinian process:
experimental studies

Linguistic replicators have specific properties com-
pared to biological replicators: they form a system that
permits communication. For instance, in a vocabulary
in which words are associated to concepts/meanings
and are used to draw the attention of several speakers
towards a particular referent in a given context, syn-
onymy and homonymy tend to be reduced ensuring
efficient communication. We will see that not every
differential replication process permits the emergence
of such communication systems. Typically, each lin-
guistic interaction involves the semiotic triangle: there
is a form (e.g. a word), an associated meaning, and an
associated referent in a particular context. This entails
that three kinds of entities can be replicated through
communication: forms, meanings, and associations
within certain forms and certain meanings. As a matter
of fact, each of these macro-entities consists itself of a
variety of entities which are also replicators. For
example, words are composed of syllables which are
themselves composed of vowels and consonants
through phonotactic rules, and all these hierarchical
entities can replicate differentially. Although all these
replicators are constantly interacting, the experiments
we will now present make a number of simplifications
that allow us to develop a better understanding of the
fundamental dynamics associated to various functional,
internal and environmental constraints. For example,
in the first experiment we will describe, we suppose
that there is only one meaning in the world that agents
inhabit, and that two possible words can be associated
to this meaning. This experiment will show some basic
properties of the replication mechanism so that a
simple convention can be adopted by a population, i.e.
so that linguistic coherence can be reached (speakers
associate the same word to the same meaning).
This experiment will then be made more complex in
following sections, allowing to study progressively
more complex phenomena like linguistic distinctive-
ness (speakers associate different words to different
meanings).

Basic dynamics of linguistic coherence

Let us consider a simple problem: N agents have to
choose between two conventional names c1 and c2. We
will consider three simple models representative for
many more complex ones studied in the field. The first
model is an imitation-based model (model A) and the
two others are frequency-based (model B and C). In
model A (last heard policy), the speaker simply
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produces the conventional name he heard last as a
listener. In model B (most frequently heard policy), the
speaker produces the name that he has heard most
frequently as a listener. In model C (proportional to
the frequency heard policy), the speaker produces any
name that he has heard with a frequency f as a listener
with a probability proportional to f. These three types
of replication processes could be seen a possible
models of how cultural replication occurs.

Figures 1, 2, 3 present four representative sample
evolutions respectively for models A, B and C. With
imitation-based model A, the population eventually
converges to a state of complete co-ordination. How-
ever, convergence happens only after a long series of
oscillations. With model B, convergence towards a
single conventional name also occurs. However, the
oscillations observed are much smaller. As soon as a
convention spreads more in the population than the
other, its domination seems to amplify even more over
time. For model C, on the contrary, dynamics tend to
maintain the distribution of c1 and c2 over time, after
an initial drift.

An in-depth study of these three models reveal
that despite their apparent similarity the types of
dynamics they create are extremely different. Among
the three models studied, only model B creates self-
reinforcing dynamics that permit a fast coordination
of the entire population towards the use of a single
conventional name. Model A is approximatively
similar to a random walk, converging in quadratic
time. On the contrary, the dynamics of model C tend

to maintain the distribution of the convention at a
fixed level.1

What we must remember from these results is that
not all cultural transmission systems create a differen-
tial replication process that ensures the domination of
some linguemes over others. Simple models of cultural
transmission solely based on imitation are not suffi-
cient to permit linguistic co-ordination. In that sense
the dynamics of linguistic replication are likely to be
different from the ones characterizing epidemiological
processes, which have often been presented as a pos-
sible metaphor for cultural transmission (Sperber
1984).

Implicit evaluation

The positive feedback loop introduced in model B
creates a winner-take-all situation where one conven-
tional name dominates. The replicator that eventually
wins has no special properties and any new run of the
simulation would lead to the selection of a different
one. Let us now consider a set of replicators of unequal
qualities, i.e. for example words which sounds are more
or less prone to be deformed when transferred from
one agent to the other due to noise. We model these
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Fig. 1 Model A (last heard
policy). The speaker simply
produces the conventional
name he heard last as a
listener. Competition
between two conventional
names c1 and c2 in a
population of 100 agents. N1
and N2 represent,
respectively, the number of
agent using c1 and c2. Initially,
50 agents choose c1 and 50
other agents choose c2.
Several oscillations are
observed before convergence
(reprinted from Kaplan 2005)

1 Experimental results and qualitative interpretations suggest
that self-reinforcing dynamics of model B converge in N!log(N),
where N is the population size. These experimental results can
also be interpreted using various formalisms including Markov
chains, stochastic games and Polya processes (see Kaplan 2005
for a review).
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differences in a crude way by associating to each re-
plicator a mutation probability Pm(ci) between 0 and
100%. During each interaction, a random test is done
to check whether the replicator has been transmitted
successfully or not. In case of failure, the replicator is
transformed to another replicator randomly picked
among all the possible ones.

More precisely, let us consider a new experiment in
which there is still only one meaning possible, but this
time there are 50 possible words/replicators that can be
associated to it by individuals. Replicators have a
mutation probability that grows linearly with their in-
dex.2 Figure 4 shows, for 1,000 simulations, the distri-
bution of the winning replicator for a population of 50
agents. Thirty-nine percentage of the runs converge
towards the three best replicator (replicators with low
mutation rates). The agents perform a collective opti-
mization: they spontaneously converge towards the
best names. The phenomena is based on an implicit
evaluation of the solutions similar to the one described
for foraging behaviour in ant colonies (Dorigo et al.
1997). It means that the agents are not evaluating
individually the quality of each convention for choos-
ing the more robust ones. Ill-adapted replicators simply

mutate more often and cannot propagate as easily as
the others (Croft 2000).

Reorganization in the presence of a population flux

Figure 4 shows that although there is a clear tendency
to focus towards the most robust replicators, subop-
timal solutions are sometimes collectively chosen.
This is due to premature convergence. If, for instance,
a very good replicator appears in the population later
during the experiment, it is probable that it will not
be picked up because the positive feedback loop
would have already caused the agents to converge
towards a suboptimal one. The situation is different in
an open system where agents are entering and leaving
the population. Indeed, new agents entering the
population have no special preference for the domi-
nant replicator. They can discover a better replicator
and maybe, if it is really more robust than the one
currently dominating, such an ‘‘outsider‘‘ might
eventually win.

However, introducing new agents in the population
is not without risk. Intuitively, we can imagine that if
the flux of new agents is too big, convergence towards a
shared system of replicators may not be possible any-
more. Let us define Pr as the probability of replacing
an old agent before every new interactions during an
experiment. Figure 5 summarizes the results of a large
number of experiments investigating the relationship
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Fig. 2 Model B (most
frequently heard policy). The
speaker produces the name
that he has heard most
frequently as a listener.
Competition between two
conventional names c1 and c2
in a population of 100 agents.
N1 and N2 represent
respectively the number of
agent using c1 and c2. Initially,
50 agents choose c1 and 50
other agents choose c2.
Dominance of one name over
the other tends to increase
over time (reprinted from
Kaplan 2005)

2 Thus for replicator ci, the probability of mutation can be ex-
pressed by the following formula:

PmðciÞ ¼
i

Number of replicators
: ð1Þ
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between the average convergence time Tc over 100
simulations for different population size and agent re-
newal rate Pr. The results suggests the existences of a
threshold over which convergence is either not possible
or extremely long. This threshold depends on the
population size.

It can be argued that this behaviour shows some
analogies with phase transitions occurring in certain
physical systems, for instance in experiments about
ferromagnetism. The renewal rate Pr plays the role of
the temperature in such systems. A too high tempera-
ture leads to a complete disorganization of the ferro-
magnetic system. In the same manner, if the renewal
rate is too important the cultural transmission process
is broken and convergence towards a shared set of
replicators is not obtained any more. In physics, this

threshold is called critical temperature. By analogy we
can use the term critical flux (Kaplan 2001).

High temperatures have both good and bad effects
on physical systems. They can lead to their disorga-
nization but also they can permit restructurations
leading to more optimal configurations (optimization
techniques such as simulated annealing are based on
this effect). Following our initial remark and in order
to see if an agent flux can lead to a better selection of
the replicator, we can measure for several values of Pr

the proportion of simulation runs that end up with
one of the three best replicators dominating in the
experiment similar to the one of Fig. 4. Figure 6 plots
the proportion of simulation runs converging toward
one of the three best solutions for different popula-
tion flux Pr before the critical flux is reached.
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Fig. 3 Model C (proportional
to the frequency heard
policy). The speaker produces
a name that he has heard as a
listener with a probability
proportional to the frequency.
Competition between two
conventional names c1 and c2
in a population of 100 agents.
N1 and N2 represent
respectively the number of
agent using c1 and c2. Initially,
50 agents have a bias toward
c1 and 50 others a bias toward
c2. After an initial drift
period, the distribution tends
to be maintained (reprinted
from Kaplan 2005)

Fig. 4 Implicit evaluation of
linguistic replicators.
Distribution for 1,000
simulation runs of the
winning replicator for a
population of 50 agents.
Thirty-nine percent of the
runs converge towards the
three best replicators
(replicators with low
mutation rates)
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Although the effect is small, the results suggest that
reorganization is optimal near the edge of this
threshold. In these cases, the flux permits to decrease
suboptimal convergences.

To summarize, if each agent uses the most widely
spread replicator from its own point of view, then a
positive feedback loop is created, leading to the
domination of one replicator. This dynamic is ‘‘blind’’
and does not prefer any replicator per se. But if some
replicators are more difficult to transmit, they will
implicitly be left aside. Thus, the best replicator tends
to be chosen by the population. Finally, the presence
of a flux of agents in the system avoids premature
convergence. Better replicators (more robust, easier
to learn) tend to be selected. The arrival of new
agents enables a continuous parallel search for solu-
tions that can replace the ones currently dominating.
If needed it can cause reorganization in the linguistic
system.

Basic dynamics of linguistic distinctiveness

For efficient communication, it is better that different
words are associated with different meanings and vice
versa. This obvious remark actually constrains systems
of linguistic replicators in many important ways. In-
deed, the replication process must not only address the
issue on linguistic coherence but also permit linguistic
distinctiveness. Let us consider a model in which
individuals have to establish conventionalized associ-
ations between several words and several meanings.
Each agent is now equipped with an associative
memory, which is a list of word-meaning pairs with a
numeric score. It is used to find the best word associ-
ated to a given meaning and reversely to find the best
meaning associated to a given word. As in the models
of the previous section, agents choose the association
with the highest score when several solutions are pos-
sible. The associative memories of the agents are ini-
tially empty. Associations are progressively created as
the agent interacts with other agents.

Studies of such systems were initiated by Steels
(1996) in the mid 1990s. Several other experiments
rapidly showed how collective dynamics could permit
that each name eventually becomes associated with a
single context and each context with a single conven-
tion (Hutchins and Hazlehurst 1995; Oliphant 1997;
Arita and Koyama 1998; Kaplan 2001; De jong and
Steels 2003; Vogt 2005; Baronchelli et al. 2006).

Some of the most interesting dynamics of such self-
organizing lexicons are obtained in the presence of
noise. Let us consider that each word/replicator ci is
modelled with an integer value between 0 and 1,000.
Each time a word/replicator is transmitted, a random
number between –B/2 and + B/2 is added to its value.
Thus, B is a measure of the global noise level. Each

Fig. 6 Proportion of simulation runs (100 trials) converging
toward one of the three best solutions for different population
flux Pr for a population of N = 100 agents. Although the effect is
small, the results suggest that reorganization is optimal near the
edge of this threshold. In these cases, the flux permits to decrease
suboptimal convergences

Fig. 5 Comparison of mean
convergence time Tc for
different population flux Pr

and for different population
size N. The results suggest the
existence of a threshold
depending on the population
size N above which
convergence is either not
possible or extremely long.
This threshold characterizes
the maximal renewal rate that
the system can tolerate
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agent is equipped with a filter permitting to select all
the words/replicators in its associative memory of
which the values are at a distance D less than D = B.
The structure of an interaction is the following: agent 1
randomly chooses a meaning s1 among the different
meanings available and uses a word c1 to express this
meaning. If it does not have words associated with this
meaning, the agent creates a new one (a random
integer between 0 and 1,000). Then, c1 is transmitted to
agent 2 with an alternation between –B/2 and + B/2.
Then, agent 2 selects all the possible associations with a
word close to the integer received (at a distance less
than B). If several associations are possible, agent 2
chooses the one with the highest score: (c2, s2). If
s1 = s2 the interaction is a success, in the other cases the
interaction is a failure. If no association is close enough
in agent 2’s memory, the agent creates a new associa-
tion between the received integer and the meaning s1.
In case of success, agent 2 increases the score of the
association (c2, s2) with + d and diminishes the score of
competing associations ((c2, *) and (*, s2)) where * is
any meaning or word in the memory of the agent) with
–d. In case of failure, agent 2 decreases the score of
(c2,s2) with –d (see Kaplan 2001; De jong and Steels
2003; Vogt 2005 for discussions of the importance of
such forms of lateral inhibition). Associations are ini-
tially created with a 0 score.

We have previously shown that collective implicit
evaluation led to choose the ‘‘best‘‘ word/replicator
associated to a given meaning. What are the best
words/replicators in the current model? A good word/
replicator is a replicator that an agent will not confuse
with another one that has a different usage. A ‘‘good’’
lexical system should have sets of words clearly distinct

from one another depending on the meanings they
associated to. Figure 7 shows the evolution in the word
space (i.e. an idealized acoustic space) of the words
associated with five meanings in an experiment
involving ten agents with a noise level B = 100. After
an initial ambiguity period, five well separated bands in
the word space are clearly identifiable. Agents do not
converge towards a unique value for each context.
Each agent uses a different one. But these values tend
to be very close. The ‘‘band’’ for one context is clearly
distinct from bands associated with other contexts. No
confusion is possible. Figure 7 plots also the ‘average’
value of each band. Thus, it is easier to see the col-
lective optimization of distinctivity leading to a solu-
tion compatible with the level of noise present in the
environment. We also see on this graph that with this
level of noise we approach the limit of expressiveness
possible in this medium. If the agents had to commu-
nicate about a larger number of distinct meanings,
ambiguity will inevitably arise.

Compromise between distinctivity and robustness

Words are certainly not well modelled as integers.
Some words are long and difficult to transmit, others
are short but can be easily be confused with one an-
other. To study this issue, let us now consider a model
where each word/replicator is now a numeric chain of
variable length. Each character of the chain is a num-
ber between 1 and 9. Noise is modelled by a probability
of alteration Pm equal for each character. When a
character mutates, it is simply replaced by a random
character between 1 and 9. As in the previous model,
agent 2 can look up the chains that are ‘‘close‘‘ to the
transmitted word in its memory. We can define a dis-
tance Dc between chains, similar to the traditional
Hamming distance.3 In the interaction agent 2 selects
the chains which are at a distance less than the
threshold D.

Fig. 7 Evolution in the word space (idealized acoustic space) of
the words associated with five meanings in an experiment
involving ten agents with a noise level B = 100. After a first
period of ambiguity, five well separated bands appear associated
with each meaning. Evolution of the ‘average’ values (in the
population) of the words associated with each meaning is
highlighted in the middle of each band

3 Let c1 and c2 be two chains the length of c1 being either smaller
or equal to the length of c2. Let k1(i) and k2(i) be the character in
position i in each of the chain. We define Df as being the sum of
the distance between the character of both chains to which is
added ten times their length difference, l2–l1.

Dcðc1; c2Þ ¼
X

i

kk1ðiÞ % k2ðiÞk þ 10:ðl2 % l1Þ ð2Þ

For instance the chains 1-4-5-2 and 1-4-5-7-3 are at a distance
5 + 10 = 15. The arbitrary details of this particular distance are
not important for the dynamics characterized. They are provided
here only to permit a reproduction of the experimental results
described.
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With such a model, too long or too short chains are
naturally less adapted. Indeed, the longer a chain is,
the more risk it has to be altered during transmission.
In a previous model, we have seen that such conven-
tions generally lose the competition. But on the other
side, if the conventional system is only composed of
very short words, a single mutation might very often
lead to confusion. Short words are robust but easily
confused, long words are easy to distinguish but diffi-
cult to transmit correctly. A compromise between
robustness and distinctivity must be found (for a longer
discussion of this aspect refer to Kaplan 2001). We
have analysed the distribution of all the words used by
the agents after 5,000 games (at this point, we have
observed experimentally that the replicator system
reaches a stable state). The results of the distribution of
the chain length are shown in Fig. 8. The distribution
has a ‘‘peak‘‘ around chains of length 3. As expected,
words/replicators that are too long or too short are less
present in the final lexical systems.

These types of compromise is commonly observed in
natural languages. Language typically contain a small
set of short words used very frequently (e.g. auxilia-
ries). On the contrary, long words tend to have very
specific meanings, used rarely.

Neutral drift

External factors like language contact between popu-
lations are often cited as a major cause of language
evolution. But it is also known that language can
change spontaneously based on internal dynamics
(Labov 1994). We have seen with the previous model
that in a noisy environment, agents can converge on a
stable system in which distinct bands in the word/
acoustic space are associated with distinct contexts. As
we see in Fig. 7, this repartition in separated bands

does not evolve anymore once a stable solution has
been found. Figure 9 shows the evolution of the aver-
age word in the presence of an agent flux defined by a
probability of replacing an old agent by a new one
Pr = 0.01, for a population of 20 agents and with two
possible meanings. The centre of the bands are spon-
taneously evolving as new agents are entering the
system. This is an example of a neutral drift.

This effect is easily understandable. A new agent
tends to converge on words belonging to the existing
bands for each meaning to express. But within this
band, it does not converge towards the exact centre of
the band. Thus the centre is moving as the flux of new
agents enters the system. The higher the agent toler-
ance on noise, the higher the amplitude of this drift
(see Steels and Kaplan 1998 for a first description of
this phenomenon).

In this experiment, words/replicators are evolving
spontaneously without any functional drive. However,
external pressures can direct these dynamics in one
direction or another. This neutral drift provides nov-
elty and thus can lead to a more efficient reorganiza-
tion if needed. In some way, this effect is similar to the
role of neutral mutation in evolution (Kimura 1983).

Experiments on computational models of phono-
logical systems have shown how similar collective
dynamics in the presence of noise lead a population of
agents to converge towards a set of vowels optimally
distributed in the phonological space in order to favour
distinctiveness between them (de Boer 1997; De Boer
1999; Oudeyer 2005b). Such emerging phonetic sys-
tems have high similarity with real ones as observed in
natural languages.

To summarize, noise during word transmission fa-
vours sets of words that are clearly distinct from one
another when they are associated with different
meanings. When words can have different complexi-
ties, a compromise must be found between distinctivity
and resilience to noise. Short words are easy to trans-
mit but easily confused, long words are difficult to
transmit correctly but are easily distinguishable from
one another. We experimentally observe the conver-
gence towards words of intermediary sizes. Finally, in
the presence of noise and agent flux, we experimentally
observe a spontaneous non functional evolution. This
continuous exploration can lead to a more efficient
reorganization of the replicator system if needed.

Linguistic replicators adapt to particular
environments

Until now, we have only considered simple models
of linguistic replication. Linguistic phenomena are
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obviously more complex. The previous experiments
have focused on the replication of words, but their
associated meanings and semantic categories are also
entities that can replicate from brain to brain through
linguistic interactions. In many computational models,
these categories are modelled as points in category
space. But more complex systems of meanings, also
referred as categories or concepts, were also investi-
gated (Steels and Belpaeme 2005). The Talking Heads
experiment conducted between 1999 and 2000 by Steels
and co-workers have provided a large set of data on
how systems of categories can adapt to particular
environments (Steels and Kaplan 2002; Kaplan 2001).
In this experiment robotic agents were capable of seg-
menting the image perceived through the camera into
objects and of collecting various sensory data about
each object, such as the colour, position, size, shape, etc.
A couple of robots were placed in front of a white board
on which various types of objects were placed. At each
interaction, the speaker chose one object from this
context, reused or constructed a category that would
identify this object from the other object present in the
background and uttered a word associated with that
category. Based on this word, the other robot had to
guess which object was named (Fig. 10).

In the first run of the experiment, a total of 8,000
words and 500 concepts were created, with a core
vocabulary consisting of 10 basic words expressing
concepts like up, down, left, right, green, red, large,
small, etc. The dynamics that pushed the population
towards coherence and distinctivity ensured the col-
lective choice of a set of word-category associations
adapted to the environment that the robots were per-
ceiving. Interestingly, some features like shape were
used very rarely to specify categories whereas position,
colour and size categories were preferred. Interpreting
such type of ‘‘preferences’’ is not always easy as they

can result both from the categorization mechanism
used by the agents and the specific types of environ-
ments that they encounter. In the present case, to refer
to specific objects in the types of scenes the robots
perceived, position and colours were largely sufficient.
Moreover, shapes were more difficult to distinguish
than colour and position based on the features avail-
able to the agents, and given the kinds of objects
present in their environment.

Such types of indirect competitions between per-
ceptual categories were observed during the whole
experiment. Some categories were general and other
specific (e.g. one was used to describe a particular
shade of green, and another one to describe green
contexts in general). Usually, general categories were
preferred because they were both easier to learn by the
agent and adapted to a larger number of contexts (see
also Smith 2005 for another series of experiments in
this line). However, in several cases, a precise category
adapted to reoccurring specific context survived as
other categories were present to ‘‘back it up‘‘. There-
fore, when analyzing these types of complex dynamics,
considering competition between isolated categories is
not always sufficient. The quality of a category needs to
be evaluated regarding the category set to which it
belongs and the adaptivity of the whole to particular
environments.

Another interesting phenomenon was observed.
Most of the words of the core vocabulary were
coherently interpreted as having distinct meanings.
However, in some cases, two competing meanings

Fig. 9 Example of a neutral drift: spontaneous evolution of the
‘average’ forms in presence of an agent flux

Fig. 10 The Talking Heads set up. Two robotic cameras are
placed in front of white board. On the board, objects of various
shaped and colours are placed. The robots have to construct
categories and words to name the objects on the board and have
the other agent guess the right object based on that word.
Categories referring to colour, position, size or shape can be used
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co-occurred for a long time. For instance the word
‘bozopite’ was associated concurrently with two types
of categories: large area (large) and large width (wide).
This co-occurrence was due to the fact that in the types
of environments that the robotic agents encountered
most objects that were large in area were also large in
width. This is an example of residual polysemy.

This brings us to a remark. As collective dynamics
select sets of replicators that are well adapted to the
environment in which the agents are communicating,
we might be tempted to say that the ‘‘quality’’ of the
replicators increases. But, like for species in natural
evolution, optimization stops once adaptation is
reached. We have seen in the previous section that in
the presence of noise, well separated bands of repli-
cators were emerging. However, once a stable solution
was found, this optimization of distinctivity stops. The
same effect occurs in more complex architectures
where residual polysemy is observed. In all these sit-
uations, there is no absolute optimization, only the
search for stable adapted solutions.

Linguistic replicators adapt to the cognitive
constraints of their hosts

When linguistic replicators leap from brain to brain,
they in fact do so through perpetual cycles of produc-
tion, perception and learning. Whatever these replica-
tors are, they need to go through a representation in the
brain of speakers and hearers at some point. The pro-
cess of updating one’s brain to incorporate some new
information defines learning. Learning theory, and in
particular machine learning theory (Mitchell and
Weinmann 1997), has shown that all learning systems
are characterized by a number of biases which mean
that every single system will be good at learning certain
things and bad at learning other things. For example,
learning algorithms such as recurrent neural networks
are good to learn to predict complex time series but they
are quite inefficient to learn fine categorical distinctions
in high-dimensional static spaces, whereas support
vector machines are good in high-dimensional static
spaces but pretty bad when they have to learn time-
dependent phenomena (Duda et al. 2001). Learning
biases also apply to human brains. For example, when
the human brain learns a new concept or a new sound, it
will do so typically by using the representation of an
already known concept or sound and modify it a little
bit. The consequence is that learning a new concept or a
new sound will only be effective if the corresponding
brain already knows not too dissimilar concepts or
sounds. This imposes strong constraints on the replica-
tion of linguistic memes, which are not only defined by

the generic cognitive constraints of all human brains,
but also by the particular cognitive structures that were
built during the ontogeny of each of them. This means
that for a given brain, some linguistic memes will be
easily learnt and replicated, but some other linguistic
memes will be strongly deformed often to the point that
no replication at all takes place. And the linguistic
memes which are easy to learn and replicate for this
brain may prove to be difficult for another brain which
had a different history.

What is then the consequence of all this on the
dynamics of language evolution? We will now present
the outline of a computational model of the origins of
syllable systems which provides an answer (this model
is described in detail in Oudeyer 2005a). This model
involves a population of agents which can produce,
hear, and learn syllables, based on an auditory and a
motor apparatus that are linked by abstract neural
structures. These abstract neural structures are imple-
mented as a set of prototypes or templates, each of
them being an association between a motor program
that has been tried through babbling and the corre-
sponding acoustic trajectory. Thus, agents store in their
memory only acoustic trajectories that they have al-
ready managed to produce themselves. The set of these
prototypes is initially empty for all agents, and grows
progressively through babbling. The babblings of each
agent can be heard by nearby agents, and this influ-
ences their own babbling. Indeed, when an agent hears
an acoustic trajectory, this activates the closest proto-
type in its memory and triggers some specific motor
exploration of small variation of the associated motor
program. This means that if an agent hears a syllable S
that it does not already know, two cases are possible:
(1) he already knows a quite similar syllable and has a
great chance to stumble upon the motor program for S
when exploring small variations of the known syllable,
(2) he does not already know a similar syllable and so
there is little chance that he incorporates in its memory
a prototype corresponding to S. This process means
that if several babbling agents are put together, some
islands of prototypes, i.e. networks of very similar
syllables, will form in their memory and they will de-
velop a shared skill corresponding to the perception
and production of the syllables in these networks.
Nevertheless, the space of possible syllables was large
in these experiments, and so the first thing that was
studied was whether agents in the same simulation
could develop a large and shared repertoire of sylla-
bles. This was shown to be the case (Oudeyer 2005a).
Interestingly, if one runs two simulations, the popula-
tion of agents will always end up with their own par-
ticular repertoire of syllables.
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Then, a second experiment was run: some fresh
agents were tested for learning syllable systems that
were formed by another population of interacting
agents, and some other fresh agents were tested for
learning a syllable system which was generated artifi-
cially as a list of random syllables. The results, illus-
trated in Fig. 11, were that the fresh agents were
always good at learning the syllable systems developed
by other similar agents, but on the contrary rather bad
at learning the random syllable systems. In other terms,
the syllable systems developed culturally by agents
were adapted to their cognitive biases, and the random
systems were not. Thus, the replicators constituted by
syllables evolved and were selected in a cultural Dar-
winian process so as to fit to the ecological niche de-
fined by the cognitive structures of agents, fitness being
here learnability.

Several other computational systems have been
developed to study the mechanisms that allow the
cultural selection for learnability of linguistic replica-
tors. Zuidema (2003) presented abstract simulations of
the formation of syntactic structures and detailed the
influence of cognitive constraints upon the generated
syntax. Brighton et al. (2005) presented a thorough
study of several simulations of the origins of syntax
(Kirby 2001) which were re-described in the light of
this paradigm of cultural selection for learnability.

The self-organization of higher-level replicators:
from individuals to groups

In the last section, we saw how it was possible that the
ability of a linguistic replicator to replicate from one
brain to another depended on the presence of other
replicators in the receiving brain. As a consequence,
this allows in principle for the formation of groups or
coalition of mutually reinforcing replicators. In this
section, we will illustrate with a related computer
simulation how these groups can themselves become
units subject to competition and selection.

This simulation is based on the same general prin-
ciples as the simulation presented in the last section but
the neural substrate was implemented in a lower-level
and more realistic manner (Oudeyer 2006). In partic-
ular, prototypes were represented directly in terms of
bundles of artificial neurons, and one of the crucial
characteristics of these neurons was that their survival
depended on their activation: neurons often activated
were kept alive and neurons with low activation were
pruned. Another difference was that initially there was
a phase of generation of a large number of random
neurons which then were progressively modified and
recruited to represent particular acoustic or motor
patterns. This implied that a given syllable could pos-
sibly recruit many redundant bundles of neurons, and
another syllable could be encoded only by very few
neurons. This introduces two interacting sources of
competition for syllables: (1) competition for activa-
tion, (2) competition for neural resources. Indeed, the
activity of agents was here merely babbling, which
amounted to the random activation of neurons. The
consequence was that the more a syllable got neural
resources, the more it was produced, and so the more
the neural resources were activated, both within the
speaker’s network and in the hearer’s network. This
activation was of course at the expense of other sylla-
ble’s neural resources activation, and thus contributed
to their progressive death. This introduced a positive
feedback loop: the more a syllable was produced, the
higher the probability to produce it again. Now, an
interesting point was that the production of a syllable
did not only activate the corresponding neural struc-
ture in agents, but also the neural structures of rather
similar syllables, i.e. syllables which shared parts of the
acoustic or motor trajectory. This made the formation
possible of mutually re-inforcing groups of syllables.

Now, what happened precisely? Some systematic
experiments were conducted in abstract and simple
acoustic/motor spaces, so that they could be depicted
as in Fig. 12. Here, we represent only the articulatory
space, which is one-dimensional, and syllables are

Fig. 11 Evolution of the rate of successful imitations for a child
agent which learns a syllable system established by a population
of agents (top curve), and for a child agent which learns a syllable
system established randomly by the experimenter (bottom
curve). The child agent can only perfectly learn the vocalization
systems which evolved in a population of agents. Such vocaliza-
tion systems were selected for learnability (reprinted from
Oudeyer 2005a)
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defined by a beginning and an end point in this space.
The beginning points are represented on the x-axis,
and the ending points are represented on the y-axis.
The little crosses in the middle represent neural bun-
dles corresponding to particular syllables. Figure 12
shows the set of these neurons in two agents at the
beginning of a simulation: they are randomly spread
across the space, meaning that the syllables that agents
produce cover uniformly the space of possible syllables
in that space. Figure 13 shows what happens if one lets
agents interact a few thousands times. We observe that
lines and columns have appeared, which means that
agents do not produce all possible syllables anymore
but only a small subset, which is the same in both
agents, and which is structured in a very particular
manner. Indeed, now agents produce syllables com-
posed of systematically re-used beginning or end
points. In other terms, this corresponds to the transi-
tion from holistic to phonemically coded syllable

systems. The lines and columns show coalitions of
syllables either sharing their beginning point or their
end point, which have entered into competition with
single syllables or other groups that died meanwhile.
The state shown on Fig. 13 is in fact a convergent state
in which the population of lines and columns has
reached a threshold such that there is enough activa-
tion for all neurons (and thus their corresponding
syllables) to survive.

A last point is that in these simulations, not all self-
organized phonemes get re-used in the same manner:
for example, on Fig. 13, if we call the self-organized
phonemes

p1; p2; . . . ; p8

then we can summarize the repertoire of allowed
sequences by:

ðp6; 'Þ; ðp8; 'Þ; ð';p7Þ

Fig. 12 The neural maps of
two agents at the beginning of
the simulation. The neural
map of one agent is
represented on the left, and
the neural map of the other
agent is represented on the
right

Fig. 13 The neural maps of
the same two agents after
1,000 interactions. We
observe that many neurons
have died and the surviving
ones are organised into lines
and columns: this means that
phonotactic rules have
appeared, that the repertoire
of vocalisation can be
organised into patterns, and
that some phonemes get re-
used systematically for
building vocalisations, i.e.
vocalisations are now
combinatorial
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where * means ‘‘any phoneme in p1,...,p8’’. This cor-
responds to the formation of rules of sound syntax
regulating the possible phonemic combinations, and is
called the phonotactics of a syllable system in pho-
nology: this is indeed a feature present in all human
syllable systems. What is interesting here is that this is
a self-organized side-effect of the process of coopera-
tion/competition between groups of syllables: there
was no functional pressure in the system that forced it
to appear. Nevertheless, it has been widely described in
the linguistics literature how phonotactics are used as
constraints that help speakers in multiple ways: for
example, it is useful for better speech recognition and
for morpho-syntactic analysis. So one can envision
easily an evolutionary scenario of language in which
phonotactics appeared first as a side effect of a more
fundamental process, i.e. the formation of a shared set
of speech sounds, and was recruited later to constrain
various linguistic processing functions: this corresponds
to the well-known concept of exaptation in biology
(Gould and Vrba 1982).

Conclusion

In this paper, we have shown how computational
experiments could allow us to elaborate and refine the
scientific understanding of language evolution as a
Darwinian process. In particular, we have seen that
there is potentially a wide variety of linguistic repli-
cators, different both in nature and in replication
mechanisms, and interacting at multiple levels. This
shows that the most relevant analogy between lan-
guage and biological evolution is probably neither at
the level of units nor at the level of replication mech-
anisms, but rather at the general level of systems de-
fined as unspecified sets of units subject to differential
replication with inheritance and variation. Using
computational experiments allows us to validate the
coherence of this view of language evolution as a
Darwinian process, which in turn participates in the
refoundation of linguistics (Croft 2000). Indeed, in the
last 50 years language has been mainly considered as a
fixed and idealized system which could be studied
independently of its use and of its users. In this tradi-
tional body of theories, individual variation, and more
broadly language evolution were either ignored or left
unsolved, and biological evolution was used to explain
the particularly good adaptation of our brains to the
learning of nowadays idiosyncratic languages. On the
contrary, viewing language as a system of replicators
constantly replicating from particular brains to partic-
ular brains, with variation as a central concept, allows

one to understand how languages change over time,
why there is so much linguistic diversity, and provides a
different account of the ease with which children learn
languages. Indeed, as we showed in ‘‘Linguistic repli-
cators adapt to the cognitive constraints of their hosts’’,
this framework allows to understand that languages
themselves probably evolved in a cultural Darwinian
manner so as to become easily learnable by their users.
And the peculiarities of the pre-existing learning sys-
tems of these users can explain the apparent idiosyn-
cratic properties of languages. The paradigm shift
induced by viewing language evolution as a Darwinian
process also sets up new problems to be solved. In
particular, it highlights the fact that the sharing of
complex and intricate linguistic conventions must be
explained: how can a system of competing replicators
interacting at the level of individuals converge to a
coherent and distinctive system adopted by all the
population? We have shown with several computa-
tional experiments how this problem could be solved
for lexical systems, thanks to the use of specific repli-
cation mechanisms based on positive feedback loops
and self-organization. Yet, future work will have to
show how several interacting levels of conventions,
ranging from phonology to grammar and pragmatics,
can be formed through a cultural Darwinian process.
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