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Abstract

This paper shows how a society of agents can self-organise a shared

vocalisation system which is discrete, combinatorial, and has a form of

primitive phonotactics, starting from holistic inarticulate vocalisations.

The originality of the system is that: 1) it does not include any explicit

pressure for communication; 2) agents do not possess capabilities of co-

ordinated interactions, in particular they do not play language games; 3)

agents possess no specific linguistic capacities; 4) initially there exist no

convention that agent can use. As a consequence, the system shows how

a primitive speech code may bootstrap in the absence of a communication

system between agents, i.e. before the appearance of language.
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1 The complexity of human vocalisations

Human vocalisations have a complex organisation. They are characterized

by a number of properties which need to be explained:

Discreteness and combinatoriality: speech sounds are phonemi-

cally coded as opposed to holistically coded. This implies two aspects:

1) in each language, the continuum of possible vocalisations is broken

into discrete units (this is discreteness) 2) these units are systematically

re-used to build higher level vocalisation structures like syllables (this is

combinatoriality).

For example, in articulatory phonology (Browman and Goldstein, 1986),

a vocalisation is viewed as multiple tracks in which gestures are performed

in parallel (the set of tracks is called the gestural score). A gesture har-

nesses several articulators (e.g. the jaw, the tongue) to produce a con-

striction somewhere in the mouth. The constriction is defined by the

place of obstruction of the air as well as the manner. While for example,

given a sub-set of organs, the space of possible places of constrictions is

a continuum (for example the vowel continua from low to high, executed

by the tongue body) each language uses only a few places to perform ges-

tures. This is what we call discreteness. Furthermore, gestures and their

combinations, that may be called “phonemes”, are systematically re-used

in the gestural scores who specify the syllables of each language. This is

what we call combinatoriality. Some researchers call the combination of

discreteness and combinatoriality “phonemic coding”.

Phonotactics and patterns: The way phonemes are combined is

also very particular: 1) only certain phoneme sequences are allowed to
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form a syllable in each language, the set of which defines the phonotactics

of the language (for example, “spink” is a possible syllable in English,

but “npink” and “ptink” are not possible; in Tashliyt Berber, “tgzmt”

and “tkSmt” are allowed, but impossible in French); 2) the set of allowed

phoneme combinations is organised into patterns. This organisation into

patterns means that for example, one can summarize the allowed phoneme

sequences of Japanese syllables by the patterns “CV/CVN/VN”, where

“CV” for example defines syllables composed of two slots, and in the first

slot only the phonemes belonging to a group that we call ”consonants”

are allowed, while in the second slot, only the phonemes belonging to the

group that we call ”vowels” are allowed (and N stands for “nasals”).

Universal tendencies: re-occurring units of vocalisation systems are

characterized by universal tendencies. For example, our vocal tract makes

it possible to produce hundreds of different vowels. Yet, each particular

vowel system uses most often only 3, 4, 5 or 6 vowels, and extremely

rarely more than 12 (Schwartz et al., 1997a). Moreover, there are vowels

that appear much more often than others. For example, most languages

contain the vowels [a], [i] and [u] (87 percent of languages) while some

other vowels are very rare, like [y], [oe] and [ui] (5 percent of languages).

Also, there are structural regularities: for example, if a language contains a

front unrounded vowel of a certain height, for example the /e/ in “pet”, it

will also usually contain the back rounded vowel of the same height, which

would be here the /o/ in “pot”. There are also regularities concerning the

allowed sequences of phonemes. For example, all languages allow “CV”

syllables, but many disallow clusters of consonants at the beginning of
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syllables.

Sharing: the speakers of a particular language use the same phonemes

and they categorize speech sounds in the same manner. Yet, they do not

necessarily pronounce each of them exactly the same way. They also share

the same phonotactics.

Diversity: At the same time, each language categorizes speech sounds

in its own way, and sometimes does it very differently from other lan-

guages. For example, Japanese speakers categorize the “l” of “lead” and

the “r” or “read” as identical. Different languages may also have very

different phonotactics.

Where does this organisation come from? There are two complemen-

tary kinds of answers that must be given (Oudeyer, 2003). The first kind is

a functional answer that makes a hypothesis about the function of systems

of speech sounds, and then shows that systems having the organisation

that we described are efficient for achieving this function. This has for

example been proposed by (Lindblom, 1992) who showed that discrete-

ness and statistical regularities can be predicted by searching for the most

efficient vocalisation systems in terms of compromise between perceptual

distinctiveness and articulatory cost. This kind of answer is necessary,

but not sufficient: it does not say how evolution (genetic or cultural)

might have found this optimal structure. In particular, naive Darwinian

search with random mutations (i.e. plain natural selection) might not be

sufficient to explain the formation of this kind of complex structures: the

search space is just too large (Ball, 2001). This is why there needs a second

kind of answer stating how evolution might have found these structures.
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In particular, this amounts to show how self-organisation might have con-

strained the search space and helped natural selection. This can be done

by showing that a much simpler system can spontaneously self-organise

into the more complex structure that we want to explain.

Self-organisation is a phenomenon complicated to understand. The

computer happens to be the most suited tool for its exploration and its

understanding (Steels, 1997). It is now an essential tool in the domain of

human sciences and in particular for the study of the origins of language

(Cangelosi and Parisi, 2002). One of the objectives of this paper is to

illustrate how it can help to develop our intuitions about the role of self-

organisation in the origins of language, and speech in particular.

Examples of works using this methodology have already been devel-

oped: for example (Browman and Goldstein, 2000), (de Boer, 2001), and

(Oudeyer, 2001) concerning speech, and (Steels, 1997), (Kirby, 2001), (Ka-

plan, 2001) or (Cangelosi, 2003) concerning lexicons and syntax. As far as

speech is concerned, (Browman and Goldstein, 2000) showed how the con-

tinuum of gestures could be discretized, (de Boer, 2001) showed how a so-

ciety of agents could develop a shared vowel systems, and (Oudeyer, 2001),

building upon the work of de Boer, showed how a society of agents could

develop a shared syllable system with basic phonotactic rules. Works like

(Steels, 1997; Kirby, 2001; Kaplan, 2001; de Boer, 2001; Oudeyer, 2001)

provide an explanation of how a convention like the speech code can be

established and propagated in a society of contemporary human speakers.

They show how self-organisation helps in the establishment of society-level

conventions only with local cultural interactions between agents. But they
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share a number of strong assumptions as far as the capabilities of agents

are concerned. Indeed, the interactions between their agents follow the

rules of a game which is a complex set of structured conventions. This

game is called the “imitation game” in the case of (de Boer, 2001; Oudeyer,

2001). It includes for example the ability to play changing roles, to under-

stand when one is being imitated or given a feed-back or to understand

the meaning of a feed-back signal. They also share the assumption that

agents are provided with the motivation to communicate and form a large

repertoire of distinctive vocalisations (there are repulsive forces between

the items of their repertoires). These assumptions are interesting and al-

ready permit to show a number of crucial results. But they imply that

these models deal rather with the cultural evolution of languages than

with the origins of language. Indeed, if one wants to understand the

origins of language and speech sounds in particular, one needs to under-

stand how the capabilities of the agents that these models assume could

have appeared, which is not obvious since they are evolutionarily complex

(Oudeyer, 2003).

A way to attack this question of the origins of language (speech in par-

ticular) is to show how speech codes with the above mentioned properties

could be formed without such complex assumptions. The work described

in (Browman and Goldstein, 2000) was a step in this direction, showing

how agents who attuned the distributions of their vocalisations to each

other could come to a shared discretisation of the articulatory continuum.

Yet, it did study static vocalisations (these were points in an abstract

one-dimensional space) and involved only two agents which self-organised
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a repertoire of two different vocalisations. Furthermore, the discretisation

of the articulatory continuum required the presence of non-linearities in

the function which mapped articulatory configurations to perceptions.

(Oudeyer, 2005) presented another system with evolutionarily simple

assumptions, based on the coupling of generic neural devices which were

innately randomly wired and implanted in the head of artificial agents.

He showed how this system could self-organise so that the agents develop

a shared vocalisation system with discreteness and statistical regularities,

starting from holistic inarticulate vocalisations. The originality of the

system was that: 1) it did not include any explicit pressure for commu-

nication (for example, there was no pressure to keep sounds distinctive

from each other as opposed to (de Boer, 2001; Oudeyer, 2001)); 2) agents

did not possess capabilities of coordinated interactions, in particular they

do not play language games (as opposed to (Kaplan, 2001; Steels, 1997;

de Boer, 2001; Oudeyer, 2001)); 3) agents possessed no specific linguis-

tic capacities; 4) initially there exists no convention that agent can use

(as opposed to (Kaplan, 2001; Kirby, 2001) where agents already share

a system of strings or literals that they can pass to each other with no

ambiguity); 5) there was no need for non-linearities in the function which

maps articulatory configurations to perceptions in order to account for the

discretisation of the articulatory continuum (as opposed to (Browman and

Goldstein, 2000)).

This system addressed the questions of discreteness, universal tenden-

cies of phoneme repertoires, sharing and diversity. In particular, it pre-

dicted the major statistical tendencies characterizing the vowel systems
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of human languages. However, it did address the question of combinato-

riality only superficially, and did not address at all the questions related

to phonotactics and phonological patterns. The goal of this paper is to

present an extension of this system which gives an account of the sys-

tematic re-use of speech sounds in the building of complex vocalisations,

and of the formation of cultural rules and patterns of sound combination.

The extension is based on the addition of a map of neurons with temporal

receptive fields. These are initially randomly pre-wired, and control the

sequential programming of vocalisations. They evolve with local adaptive

synaptic dynamics.

2 The system

We are going to make a summary of the architecture presented in details in

(Oudeyer, 2005), before presenting the extension. The system is composed

of agents which are themselves composed of an artificial brain connected

to an artificial vocal tract and an artificial ear. Agents can produce and

hear vocalisations. As described in (Oudeyer, 2005), one can model each

component from the most abstract to the most realistic manner. In this

paper, our goal is to explore the principles of the formation of phonotactics

and of phonological patterns, rather than to build a realistic predictive

model. Thus, we will use the most abstract version of the components

presented in (Oudeyer, 2005). In particular, this means that agents pro-

duce two-dimensional vocalisations (one articulatory dimension and one

temporal dimension). We use only one space to represent vocalisations:
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the perceptual space is bypassed and only the motor space is used. So, we

pre-suppose that agents can translate a vocalisation from the perceptual

space to the motor space, which is acceptable since in (Oudeyer, 2005) we

showed how this mapping could be learnt by the agents. The articulatory

dimension that we use is also abstract, but one could imagine that it rep-

resents the place or the manner of constriction for example. Finally, the

agents are put in a virtual space in which they wander randomly, and at

random times they generate vocalisations which are heard by themselves

as well as the closest agent.

The brain of the agent is organised into two neural maps: 1) one

“spatial” neural map coding for static articulatory configurations; 2) one

“temporal” neural map coding for the sequences of activations of the

neurons in the static neural map (this constitutes the extension of the

system presented in (Oudeyer, 2005)).

2.1 The spatial neural map

The spatial neural map contains neural units Ni which have broadly tuned

gaussian receptive fields. We denote vi,t the centre of the gaussian related

to Ni, which we call its “preferred vector” since it corresponds to the

stimulus which activates maximally the neural unit. If we note Gi,t the

tuning function of Ni at time t, s one input vector, vi,t the preferred

vector of Ni at time t, then:

Gi,t(s) =
1√
2πσ

e−
1
2 (vi,t−s)2/σ2

The parameter σ determines the width of the gaussian, and so if it is large

the neurons are broadly tuned (a value of 0.05, as used below, means that
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a neuron responds substantially to 10 percent of the input space).

All the spatial neural units have initially a random preferred vector,

following a uniform distribution. Each neural unit codes for an articu-

latory configuration, defined by the value of its preferred vector. If the

neural unit is activated by the agent and a GO signal is sent to the neural

map, then there is a low-level control system which drives the articulators

continuously from the current configuration to the configuration coded by

the activated neuron1. A vocalisation is thus here a continuous trajectory

in the articulatory space, produced by the successive activation of some

neural units in the spatial neural map, combined with a GO signal. As we

will see later on, this activation is controlled internally by the temporal

neurons.

As we explained earlier, we use only one space to represent vocalisa-

tions. Thus, when an agent produces a vocalisation, defined by its trajec-

tory in the articulatory space, the agent that can perceive this vocalisation

has direct access to the trajectory in the articulatory space. The percep-

tion of one vocalisation produces changes in the spatial neural map. The

continuous trajectory is segmented in small samples corresponding to the

cochlea time resolution, and each sample serves as an input stimulus to

the spatial neural map. The receptive fields of neural units adapt to these

inputs by changing their preferred vector (the width of the gaussian does

not evolve). For each input, the activation of each Ni is computed, and

1There is always only one spatial neuron activated at a time when an agent produces a

vocalisation, as we will explain later on. When a vocalisation is perceived by the agent, all

spatial neurons are activated, but no GO signal is used in that case to trigger a response to

the perceived vocalisation.
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their receptive field updated so that if the same stimulus comes again next

time, it will respond a little bit more (this is weighted by their current

activation). Basically, adaptation is an increase in sensitivity to stimuli

in the environment. The formula is:

Gi,t+1(s) =
1√
2πσ

e−
1
2 (vi,t+1−s)2/σ2

where Gi,t+1 is the tuning function of Ni at time t + 1 after the update

due to the perception of st at time t, and vi,t+1 the updated preferred

vector of Ni:

vi,t+1 = vi,t + 0.001.Gi,t(st) · (st − vi,t)

From a geometrical point of view, the preferred vector of each neural unit

is shifted towards the input vector, and the shift is higher for unit which

respond a lot than for unit which do not respond very much2.

2.2 The temporal neural map

In (Oudeyer, 2005), the production of vocalisations was realized by ac-

tivating randomly neurons in the spatial map. There was no possibility

to encode the order in which the neurons were activated, and as a con-

sequence agents ended up producing vocalisations in which all phoneme

2The neural network that we use is technically similar to Self-Organising Feature Maps

(Kohonen, 1982). In our case, the input space is of the same dimensionality than the output

space, so we do not use it to make dimensionality reduction. Feature maps are normally

used to extract some regularities in high dimensional input data. Here, there is no regularity

in the input data initially. Input data is generated by other neural networks of the same

kind. Regularities are rather created through self-organisation as explained in the “dynamics”

section.
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combinations were allowed (but of course only the phonemes that ap-

peared as a result of the self-organisation of the neural map were used).

On the contrary, we will use here a temporal neural map which can encode

the order of activations of spatial neurons, and is also used to activate the

spatial neurons.

Each temporal neuron is connected to several spatial neurons. A tem-

poral neuron can be activated by the spatial neurons through these con-

nections. The tuning function of temporal neurons has a temporal dimen-

sion: their activation depends not only on the amplitude of the activation

of the spatial neurons to which they are connected, but depends also on

the order in which they are activated, which itself depends on the partic-

ular vocalisation which is being perceived. The mathematical formula to

compute the activation of the temporal neuron i is:

GTi =
T∑

t=0

N∑

j=1

1√
2πσ

· e‖t−Tj‖2/σ2 · 1√
2πσ

.e‖Gj,t‖2/σ2

with T denoting the duration of the perceived vocalisation, N the number

of spatial neurons to which it is connected (which is here 2, and each tem-

poral neuron is initially connected to 2 randomly chosen spatial neurons),

Tj a parameter which determines when the temporal neuron i is sensitive

to the activation of the spatial neuron j, and Gj,t the activation of the

spatial neuron j at t. Here, the Tj values are such that the temporal neu-

ron that they characterize is maximally activated for a sequence of spatial

neuron activation in which two neurons are never maximally activated at

the same time and for which the maximal activation is always separated

by a fixed time interval. In brief, this means that rhythm is not taken
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into account in this simulation: we just consider order. Mathematically,

T1 = 0, T2 = τ, t3 = 2 · τ, ..., TN = (N − 1) · τ

where τ is a time constant.

As stated in the first paragraph, the temporal neurons are also used

to activate the spatial neurons. The internal activation of one temporal

neuron, coupled with a GO signal, provokes the successive activation of

the spatial neurons to which it is connected, in the order specified by the

Tj parameters. This implies that the temporal pattern is regular, and only

one neuron is activated at the same time. In this paper, each temporal

neuron will be connected to only two spatial neurons, which means that

a temporal neuron will code for a sequence of two articulatory targets

(N = 2). This will allow us to represent easily the temporal neural map,

but this is not crucial for the results. When an agent decides to produce

a vocalisation, which it does at random times, it activates one temporal

neuron chosen randomly and sends a GO signal.

Initially, a high number of temporal neurons are created (500), and

are connected randomly to the spatial map with random values of their

internal parameters. Using many neurons means that basically all possi-

ble sequences of activations of spatial neurons are encoded in the initial

temporal neural map. The plasticity of the temporal neurons is differ-

ent from the plasticity of spatial neurons3. The parameters of temporal

3Yet, some recent experiments which we do not describe in this paper because they were

not conducted with the same systematicity, indicate that it is possible to use for both neural

maps the same neural dynamics and still obtain results similar to those we present. In these

experiments, the common neural dynamics was the same as the one we use here for the
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neurons stay fixed during the simulations, but the neurons can die. As

a consequence, what changes in the temporal neural map is the number

of surviving neurons. The neuronal death mechanism is inspired from

apoptosis (Ameisen, 2000), and fits with the theory of neural epigenesis

developed by (Changeux and Danchin, 1976). The theory basically pro-

poses that neural epigenesis consists of an initial massive generation of

random neurons and connections, which are afterwards pruned and se-

lected according to the level of neurotrophins they receive. Neurotrophins

are provided to the neurons which are often activated, and prevent them

from automatic suicide (Ghosh, 1996). We apply this principle of genera-

tion and pruning to our temporal neurons, and depending on their mean

activity level. The mean activity of a temporal neuron j is computed with

the formula:

MAj,t =
MAj,t−1 · (window − 1) + GTj,t

window

where window has the initial value 50 (the value of the window size in-

fluences the speed of convergence, but the system is rather robust in

terms of end result if we change it). The initial value MAj,0 is equal

to 2 · vitalThreshold. The vitalThreshold constant defines the level of

activity below which the neuron is pruned. This threshold remains the

same for all neurons in the map. The value of this threshold is chosen so

that there is not enough potential activity for all the neurons to stay alive:

stability arises at the map level only after a certain amount of neurons

have been pruned.

temporal neural map.
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2.3 The coupling of perception and production

The crucial point of this architecture is that the same neural units are

used both to perceive and to produce vocalisations, both in the spatial

and in the temporal neural map. As a consequence, the distribution of

targets which are used for production is the same than the distribution

of receptive fields in the spatial neural map, which themselves adapt to

inputs in the environment. This implies for example that if an agent

hears certain sounds more often than others, he will tend to produce

them also more often than others. The same phenomenon applies also

to the order of the articulatory targets used in the vocalisations. If an

agent hears certain combinations often, then this will increase the mean

level of activation of the corresponding temporal neurons, which in turn

increases their chance of survival and so increases the probability that

they will be used to produce the same articulatory targets combinations.

These coupling create positive feed-back loops which are the basis of the

self-organisation that we will now describe.

One has to note that this is not realized through explicit imitation,

defined as the repetition of a sound that has just been perceived, or of

a sound that has been perceived before and has been stored explicitly in

memory4. This is rather a side effect of an increase of the selectivity of

4Yet, the existence of a neural structure which allows the mapping between articulation

and perception, which might correspond to the so-called “mirror neurons” (Rizzolatti et al.,

1996), might still be the result of a phylogenetic evolution that happened under a selective

pressure for imitation capabilities. We just say that these structures, which are only a part of

a complete imitation machinery, are not used here for imitation, and their existence has the

side effect of participating in the formation of a shared discrete combinatorial speech code.
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neurons, and of the competition for neurotrophins between the temporal

neurons, which are very generic local low-level neural mechanisms. Addi-

tionally, agents do not play any language game in the sense used in the

literature (Steels, 1997). In fact, they have no capacity for coordinated

protocol-based social interactions. They are just in a world in which they

wander around and sometimes produce sounds and adapt to the sounds

they hear around them.

3 The dynamic formation of phonotac-

tics and patterns of combinations

In these simulations, we use a population of 10 agents. As initially the pre-

ferred vectors of the spatial neurons are random, and as there is a massive

number of random temporal neurons, agents produce vocalisations which

are holistic and inarticulate: the continuum of possible articulatory tar-

gets is used, and nearly all possible sequences of targets are produced.

The initial state of both neural map in two agents is represented on figure

1: the spatial map is represented on the x-axis, which shows the preferred

vectors, and is also represented on the y-axis, which shows the same in-

formation. The temporal map is represented by the small segments in the

middle of the figure, which all correspond to a point (x, y) for which x

corresponds to an existing preferred vector in the spatial map, and y to

another existing preferred vector in the spatial map. The x coordinate of

a temporal neuron corresponds to the first articulatory target of the vo-

calisation that it encodes, and the y coordinate corresponds to the second
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Figure 1: The neural maps of two agents at the beginning of the simulation. The

neural map of one agent is represented on the left, and the neural map of the other

agent is represented on the right. The spatial neurons are represented by their preferred

vectors plotted on the x-axis and also plotted on the y-axis. The temporal neurons

are represented by small segments (which nearly appear as points here due to their

low level of neurotrophins) whose centre has its x and y corresponding to preferred

vectors of the spatial neurons. The x coordinate of a temporal neuron corresponds to

the first target that it encodes, and the y coordinate corresponds to the second target

that it encodes.
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Figure 2: The neural maps of the same two agents after 1000 interactions. We observe:

1) that the preferred vectors of the spatial neural map are now clustered, which means

that vocalisations are now discrete: the articulatory continuum has been broken; 2)

that many temporal neurons have died and the surviving ones are organised into lines

and columns: this means that phonotactic rules have appeared, that the repertoire

of vocalisation can be organised into patterns, and that some phonemes get re-used

systematically for building vocalisations, i.e. vocalisations are now combinatorial.

target that it encodes. The length of the segment represents the level of

neurotrophins that each neuron possess.

After several hundred time steps, as we have shown and explained

in details in (Oudeyer, 2005), we observe a clustering of the preferred

vectors of the spatial map. Figure 2 and 3 shows an example of the neural

maps after 1000 interactions in two agents (taken randomly among the 10

agents). Moreover, the clusters are the same for all the agents of the same

simulation, and different for agents of different simulations. This shows

that now the vocalisations that they produce are discrete: the articulatory

targets that they use belong to one of several well defined clusters, and so
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Figure 3: Another example of neural maps of two agents after 1000 interactions in

another simulation.

Figure 4: Evolution of the number of surviving temporal neurons corresponding to

the temporal neural map of the two agents of figure 2. We observe that there is

a first phase of massive pruning, followed by a stabilization which corresponds to a

convergence of the system.

the continuum of possible targets has been discretized.

Moreover, if we observe the temporal map, we discover that there
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Figure 5: Another example of the evolution of the number of surviving temporal

neurons, corresponding to the final neural maps of figure 3. We can observe that here

the two agents do not possess exactly the same number of surviving neurons: this is

due to the intrinsic stochasticity of the system. Nevertheless, as figure 3 indicates,

they share the same phonotactics and the same patterns.
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remains only temporal neurons coding for certain articulatory target se-

quences. This means that some sequences of targets belonging to the spa-

tial clusters are not produced any more. All the agents of the same pop-

ulation share not only the same clusters in the spatial map, but they also

share the same surviving groups of temporal neurons, as figures 2 and 3

show. This means that rules of phoneme sequencing have appeared, which

are shared by all the population. In brief, this is the self-organisation of

a primitive form of phonotactics. Yet, this is not all that we can observe

from the temporal neural map. We also see that the surviving temporal

neurons are organised into lines and columns. This means that the set of

allowed phoneme sequences can be summarized by patterns. If we call the

phonemes associated with the eight clusters of the spatial map on figure

2

p1, p2, ..., p8

then we can summarize the repertoire of allowed sequences by:

(p6, ∗), (p8, ∗), (∗, p7)

where ∗means “any phoneme in p1, ..., p8”. This implies that the system of

vocalisations that the agents are producing are now combinatorial: some

phonemes are re-used systematically for the building of different complex

vocalisations. The repertoire is thus organised into patterns. Yet, one

has to remark that the types of patterns that appear are quite different

from the types of patterns of real human languages, like for example the

“CV/CVN/VN” organisation of syllables in Japanese. Indeed, in human

languages, patterns define slots in which the set of phonemes that can

appear are often disjunct: in particular, the consonants set (C) and the
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vowels set (V) have intrinsic properties which determine their valences

and thus their privilege of occurrence in certain slots. So the complexity

of the patterns that form in the simulations has not yet reached that of

human languages.

The states shown on figures 2 and 3 are convergence states. Indeed,

both the states of the spatial map and of the temporal neural map crys-

tallize after a certain amount of time. In (Oudeyer, 2005), we explained in

detail why the spatial map practically converged into a set of clusters for

wide range of values of the parameter σ which determines the dynamics

of spatial neurons.

We will now explain why there is a convergence in the dynamics of

the temporal neural map, as figures 4 and 5 show (we have plotted the

evolution of the number of surviving neurons within the temporal maps

of two agents). As explained above, the initial level of activity (MAj,0)

of the temporal neurons is set to a constant (2.vitalThreshold) which

is higher than the mean level of activity that will be actually computed

for each neuron at the beginning of the simulation when they are still

all alive. As a consequence, the mean level of activity of all neurons

is going to go down at the beginning of a simulation. Because there is

stochasticity in the system, due to the random choice of temporal neurons

when a vocalisation is produced, and also due to the fact that all uniform

distributions of preferred vectors are not exactly the same in different

agents, all the MAj,t’s will not decrease exactly in the same manner.

In particular, certain temporal neurons will have their MAj,t go below

the vital threshold (vitalThreshold) before the others and die (indeed,
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vitalThreshold is chosen so that it is higher than the mean level of activity

of neurons if they are all alive). The survival of one temporal neuron in

a cluster of the temporal map of one agent ag depends on the number

of neurons in the corresponding cluster in other agents, whose survival

depends in return on the number of neurons in the cluster of the agent

ag. This creates positive feed-back loops: sometimes and by chance, a

number of neurons die in the same cluster of one agent, which favours

the death of similar neurons in other agents, because having less neurons

in one cluster or area of the space decreases the probability to produce a

vocalisation coded by the neurons of this cluster and so decreases the mean

level of activity of the corresponding cluster in the other agents. Reversely,

clusters composed of neurons with a high mean level of activity will favour

the survival of similar clusters in other agents. This interaction between

the competition and the cooperation in the clusters of temporal neurons

of all agents will push a number of neurons, and a number of clusters of

neurons, below the vital threshold, until there remains few enough clusters

so that the neurons that compose them are activated often enough to

survive and “live” together. This explains the stabilisation observed on

figures 4 and 5, where we see the two phases: a first phase of initial and

rapid pruning of neurons, and a second phase of stabilisation.

The “cooperation” / positive re-inforcement can happen between clus-

ters of temporal neurons coding for the same phonemic sequence, but also

between clusters of temporal neurons sharing only one articulatory target

at the same location within the vocalisation. This is due to the mode

of activation of temporal neurons, as detailed in the formula above. For
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example, let us denote p1, p2, p3 and p4 four distinct articulatory targets

belonging to four distinct clusters. If the similarity of two vocalisations

with the same sequence of phonemes is about 1, then the similarity be-

tween the vocalisation coded by the sequence (p1, p2) and the vocalisation

coded by the sequence (p1, p3) is about 0.5, and the similarity between

(p1, p2) and (p3, p4) is about 0. This means that the level of activity

“provided” to the temporal neurons of a cluster cl thanks to two clusters

of temporal neurons in other agents which share exactly one phoneme in

the same location, is about the same as the level of activity provided to

the neurons in cl thanks to the cluster in other agents which corresponds

to temporal neurons sharing all the phonemes in the right location with

those in cl. As a consequence, groups of clusters re-inforcing each other

will form during the self-organisation of the temporal neurons map. These

are the lines and the columns that we observed on figures 2 and 3, and

this explains why we observe the formation of phonological patterns in the

phonotactics developed by the agents. To summarize, the interactions be-

tween competition and cooperation among individual clusters explains the

formation of shared and stable repertoires of allowed phoneme sequences,

and the interaction between competition and cooperation among groups

of clusters explains the formation of phonological patterns.
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4 The influence of articulatory and ener-

getic constraints on statistical preferences

in phonotactics

The mechanism presented in the previous section is such that if we run

a large number of simulations, there will not be any statistical preference

in the localisation of clusters of spatial neurons and in the localisation

of clusters of temporal neurons. We will now study how an articulatory

bias can introduce preferences. As detailed in (Oudeyer, 2005), a typical

articulatory bias is due to the non-linearities of the mapping between the

articulatory space, the acoustic space and the perceptual space. Some

small changes in the articulatory configuration of the human vocal tract

can produce large changes in the acoustic and perceptual image and vice

versa. If one uses an integrated architecture with one articulatory neu-

ral map and one acoustic neural map as in (Oudeyer, 2005), then even

if the preferred vectors of all the neurons of both maps are initially ran-

domly and uniformly spread across the space, their distribution quickly

becomes biased by the non-linearities of the mapping (this happens if the

two maps are connected so that changes in the distribution of one map

are propagated to the other map, see (Oudeyer, 2005)). In (Oudeyer,

2005), we showed how the use of a realistic model of vowel perception and

production could implement such a constraint and introduce statistical

preferences in the repertoires of vowels formed by the societies of agents.

In particular, we were able to predict the most frequent vowel systems in
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human languages.

Here, as we use only the articulatory representation and its associated

neural map, we will model this kind of bias simply by initially generat-

ing a biased distribution of initial random preferred vectors. We chose

a distribution in which there are more preferred vectors close to 1 than

to 0. This is illustrated by two examples on figure 6. On the one hand,

and as explained in detail in (Oudeyer, 2005), it is easy to see that this

will lead to a statistical preference for clusters of spatial neurons with a

preferred vector close to 1, and so for phonemes corresponding to articu-

latory targets close to 1. On the other hand, this bias will also influence

the statistical preference of certain kinds of phoneme sequences: as there

are more preferred vectors near 1 in the spatial neural map, the associated

temporal neurons will be more often activated, and so their mean level

of activity will be higher, which implies that they have a greater chance

to survive. As a consequence, there will be a statistical preference for

sequences of phonemes whose articulatory configurations of all targets are

close to 1.

Using only this kind of bias is nevertheless too simplistic if one wants

to grasp the principles that explain the statistical preferences for certain

kinds of phonotactics over other kinds of phonotactics in human languages.

Indeed, this kind of bias suggest that phonotactics preferences can be

directly derived from phonemic preferences. But this is not at all the case

in human languages: vowels like “a/e/i/o/u” or consonants like “t/m/n”

are statistically preferred, but not all syllables sequences composed of

these phonemes are statistically frequent in human languages (e.g. “ta”
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Figure 6: Example of biased initial spatial neural map: there are more preferred

vectors around 1 than around 0.

or “me” are very frequent, but “tmn” or “aet” are very rare). Indeed,

the statistical preferences are certainly the outcome of the interaction of

several constraints.

We will illustrate this point by introducing another constraint in the

system. This is an energetic constraint. In humans, each vocalisation

involves the displacement of organs, which requires muscular energy: cer-

tain vocalisations are easier to pronounce from an energetical point of

view than some others. Several researchers (Lindblom, 1992; Redford

et al., 2001) have already proposed that this kind of energy cost was an

important component in the formation of human vocalisation systems.

The energy cost of one vocalisation will be modelled here as the amount

of displacement of the articulator from a rest position defined as the artic-

ulatory configuration of value 0 (this is a variant of the energy cost used by

(Redford et al., 2001), which measure the articulatory difference between
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Figure 7: Example of biased initial temporal neural map: we show here the initial level

of neurotrophins associated with each temporal neurons, represented by the length of

the segments. We observe that temporal neurons close to (0, 0) have the largest initial

level of neurotrophins, but that the temporal neurons close to (1, 1) are more numerous

and so will be activated more often initially, which means that they will receive more

neurotrophins than those close to (0, 0).
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subsequent phonemes). As the speed of the articulator when it moves is

here constant, there is a simple way to compute the energy associated

with the vocalisation composed of the targets p1 and p2:

e(p1, p2) = p2
1 + p2

2

This energy will influence the survival of the temporal neurons. Indeed,

we explained earlier that the survival of temporal neurons depended on

the level of neurotrophins that they received. A neuron could receive

neurotrophin in proportion to its level of activation. The stress associ-

ated with the spending of energy can in reverse prevent the reception of

neurotrophins (Ghosh, 1996). In particular, temporal neurons coding for

vocalisations with targets close to 0 will be favoured by this constraint as

compared to the temporal neurons coding for vocalisations with targets

close to 1. We will denote Nti,t the level of neurotrophins received by the

temporal neuron Ni at time t. Then we can compute:

Nti,t = MAi,t − c1.e(p1,Ni , p2,Ni)

where c1 is a normalizing constant so that both the terms of activation

and of energy have the same ranges, and where p1,Ni and p2,Ni are re-

spectively the first and second articulatory target encoded by temporal

neuron Ni. Again, there is a constant vitalThreshold such that if the

level of neurotrophins Nti,t becomes smaller, then the temporal neuron

Ni is pruned. This constant is chosen so that not all temporal neurons can

survive. Here, MAi,0 = 0.06, vitalThreshold = 0.03, c1 = 15 and there

are 150 spatial neurons and 500 initial temporal neurons. Figure 7 gives

two examples of initial spatial and temporal neural maps. The segments
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Figure 8: Distribution of surviving temporal neurons in 500 simulations.

on the representation of temporal neurons represent here the initial value

of their neurotrophin level Nti,0. As the MAi,0 component is the same

for all temporal neurons, this gives also a representation of the energy

cost associated with the vocalisations coded by the temporal neurons (the

higher the segment, the lower the energy cost). We represented here only

100 temporal neurons instead of 500 for a better visibility. This figure

shows that there are more temporal neurons with associated targets close

to 1, but that these neurons with targets close to 1 have individually the

lowest level of neurotrophins.

We are now going to run the system and observe how the combination

of these two constraints can lead to the formation of phonotactic systems

whose statistical properties can not be deduced from each constraint stud-

ied independently. We ran 500 simulations, made a database of all the

surviving temporal neurons after convergence of the system, and plotted

them on the figure 8. We observe that there is a clear statistical preference

30



for vocalisations composed of targets located in the centre of the space,

and not near 0, as the energetical constraint alone would result, or near

1, as the non-linearity articulatory constraint alone would result.

This shows how crucial it is to understand in detail all the constraints

influencing the formation of repertoires of vocalisations, as well as the

interaction among these constraints, if one wants to understand why for

example human languages prefer CV syllables to CCVC syllables. This

result is positive in the sense that it illustrates the kind of dynamics that

can give rise to apparently idiosyncratic phonotactics regularities. This

helps us develop our intuition of the self-organised processes which shape

vocalisations systems. But this result is also negative in the sense that

it shows how far we are from being able to predict human languages sta-

tistical preferences in phonotactics. Indeed, our knowledge of the physi-

ological, energetical and representational dimensions of human speech is

extremely low. There are few areas for which we have probably good

models, such as the perception and production of vowels, which allow to

use realistic constraints in a predictive model of the statistical regulari-

ties of vowel systems (de Boer, 2001; Oudeyer, 2005). But for example we

know very few about the energetical cost of vocalisations, and the existing

models of the brain representations of speech signals, which is crucial for

the understanding of the articulatory/perceptual non-linearities, are still

very speculative. We are not even able to make a list of all the possible

constraints that might influence the process of creation of vocalisations.

This also explains why instead of building a system based on very spec-

ulative models of realistic constraints, we chose to build a system with
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completely abstract representations and constraints, which facilitates the

understanding of the dynamics.

Finally, it should be said that another constraint which would be very

interesting to integrate is the functional constraint. Indeed, for reasons

that we explained in the introduction, we developed a system free of func-

tional constraint: the agents had no motivation for building a communi-

cation system with a repertoire of distinctive vocalisations. We showed

(Oudeyer, 2005) that even without this motivation, and with no repulsive

force, still the system self-organised a shared repertoire of vocalisations

which can be categorized distinctively. Yet, if we imagine that this system

actually describes a process that took place in the evolution of humans be-

fore they had language, it was certainly recruited later on in order to com-

municate. This means that a functional pressure came in and added new

constraints, such as the perceptual distinctiveness between similar vocal-

isations, which typically would disfavour sequences of identical phonemes

like “aaa” or “mmm”. This case could be studied by coupling the system

described in this paper with the imitation game invented by (de Boer,

2001) and extended to syllables in (Oudeyer, 2001).

5 Conclusion

In (Oudeyer, 2005), we presented a system showing how a society of agents

could self-organise a discrete speech code shared by all speakers of the

same community, and different in different communities. We also showed

how it allowed to predict certain statistical regularities characterizing the
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repertoires of phonemes in human languages. The originality of the system

was that: 1) it did not include any explicit pressure for communication;

2) agents did not possess capabilities of coordinated interactions, in par-

ticular they did not play language games like the “imitation game”; 3)

agents possessed no specific linguistic capacities; 4) initially there exists

no convention that agents can use; 5) there was no need for non-linearities

in the function which maps articulatory configurations to perceptions in

order to obtain the discretisation of the articulatory continuum.

This made the system a good tool to think and develop our intuitions

about the bootstrapping of speech, and attack the problem of the origins of

language as opposed to the problem of the formation of languages which

has already been studied extensively in the computer modelling litera-

ture (e.g. Kaplan (2001); Kirby (2001); de Boer (2001); Oudeyer (2001);

Cangelosi and Parisi (2002)). Indeed, by making evolutionarily simpler

assumptions than existing models, it allows us to understand how natu-

ral selection, in an environment favouring the reproduction of individuals

capable of communication, could have been guided by self-organisation to

establish the first and primitive forms of conventions, such as the speech

codes that our agents generate. In this paper, we presented a natural and

crucial extension to our earlier work, introducing a mechanism that takes

into account the order of articulatory targets both in production and in

perception of vocalisations. This allowed to show that similarly, agents

could self-organise combinatoriality and a primitive form of phonotactics

defining shared sets of allowed phonemic sequences in a given population.

Diversity was again a feature: different populations of agents developed
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different phonotactics systems. Moreover, the set of allowed phonemic

sequences could always be organised into patterns. Yet, these patterns

are quite different from the types of patterns of real human languages in

which there are phonological categories like consonants and vowels, which

possess disjunctive valences and privileges for the occurrence in certain

syllabic slots. Searching for mechanisms which could account for the for-

mation of such phonological categories will be the subject of future work.

We also studied theoretically how the addition of constraints such as

non-linearities due to the articulatory/acoustic mapping or such as the

energetic cost of vocalisations could influence the statistical preferences of

populations of agents for certain kinds of phonotactics. This showed that

if one wants to be able to predict the actual phonotactics preferences in the

human languages, then it is crucial to take into account all the constraints

as well as their interactions. Unfortunately, the speech sciences are too

young and our knowledge of these constraints is today either speculative

or not detailed enough. Whereas it is possible to make relatively realistic

models of the production and the perception of vowels, which allows to

build predictive models of human vowels systems (e.g. Lindblom (1992);

Schwartz et al. (1997b); de Boer (2001); Oudeyer (2005)), existing models

of the production and perception of consonants, and models of the produc-

tion and perception of sequenced articulatory targets can hardly be used

in a predictive model of human phonotactics because they would introduce

too much ad hoc and speculative biases. Indeed, let us take the example

of the “Frame-Content Theory” developed in (MacNeilage, 1998), which

states that vocalisations consist in the deformation of “frame” cycles of
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opening and closing the jaw, and thus that vocalisations are subject to the

articulatory cost of the deformation of these default cycles. This theory,

even if it provides interesting insights into the understanding of speech,

does not specify operationally how this cost is computed by the motor

system and the neuronal networks to which it is connected: as a conse-

quence, the potential modeller is left with the obligation to invent cost

functions, and this will necessarily introduce assumptions which will have

a strong impact on the result of a simulation, as we have shown in this

paper. There is thus a risk that these assumptions, not founded on real ob-

servations, distort the initial qualitative theory (e.g. the “Frame-Content

Theory”) and destroy the potential benefits of using it in a simulation.

This is also why we preferred to stay at an abstract and theoretical

level in the work that we presented in this paper, which has the advantage

of allowing to understand better the biases which are programmed in, but

also to understand the biases that could be introduced by for example a

so-called “realistic” model of the vocal tract. Because of these consider-

ations, we believe that the priority in the possible continuations of this

work is not to introduce realistic models of the human perceptual and

production apparatus for complex vocalisations, but to study the incor-

poration of a functional pressure for communication. Indeed, we showed

here that one can already go a long way without a functional pressure for

communication, but if one wants to bridge the gap with the formation and

evolution of contemporary speech systems, it is a necessity to use such a

pressure. Indeed, some phenomena can only be accounted with it, like the

existence of large vowels systems (more than 10 vowels) which requires a
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mechanism of active phonemic creation and repulsive forces among the

different phonemic categories. This study could be done by coupling the

system which we presented in this paper with higher level systems like the

ones described in (de Boer, 2001) or (Oudeyer, 2001).
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