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Abstract

Recent years have been marked by the development of robotic pets or partners such
as small animals or humanoids. The interactions with them are very different from
those with traditional computers : instead of having human beings using robotic
conventions, robots should learn to communicate in a humanised fashion. In par-
ticular, they need to be able to express and recognize emotions. This can be done
in part using speech, which has the advantage to be computationally cheap and
practical to implement in real world robots. Nevertheless, research in this area is
still very young. We present here algorithms that allow a young robot to express its
emotions like babies do. They are very simple and efficiently provide life-like speech
thanks to the use of concatenative speech synthesis. We describe a technique which
allows to control continuously both the age of a synthetic voice and the quantity of
emotions that are expressed. This is useful since personal robots may grow up and

have many degrees of emotions. Also, we present the first large-scale data mining
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experiment about the automatic recognition basic emotions in unformal everyday
short utterances. We focus on the speaker dependant problem. We compare a large
set of machine learning algorithms, ranging from neural networks, Support Vector
Machines or decision trees, together with 200 features, using a large database of
several thousands examples. We show that the difference of performance among
learning schemes can be substantial, and that some features which were previously
unexplored are of crucial importance. An optimal feature set is derived through the
use of a genetic algorithm. Finally, we explain how this study can be applied to real
world situations in which possibly very few examples are available. Furthermore, we
describe a game to play with a personal robot which allows to teach it examples of

emotional utterances in a natural and rather unconstrained manner.
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1 Introduction

Recent years have been marked by the increasing development of personal
robots, either used as new educational technologies (Druin and Hendler, 2000)
or for pure entertainment (Fujita and Kitano, 1998; Kusahara, 2000). Typi-
cally, these robots look like familiar pets such as dogs or cats (e.g. the Sony
AIBO robot), or sometimes they take the shape of young children such as the
humanoids SDR3-X (Sony). The interactions with these machines are radically
different from the way we interact with traditional computers. So far humans

have been learning to use very unnatural conventions and devices such as key-
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boards or dialog windows, and need to know how computers work to be able
to use them. Opposite to that, personal robots should try themselves to learn
the natural conventions (such as natural language or social rules like polite-
ness) with the appropriate modalities (such as speech or touch) that humans

have been using for thousands of years.

Among the capabilities these personal robots need, the most basic is the ability
to grasp human emotions (Picard 1997), and in particular they should be able
to recognize human emotions as well as express their own emotions. Indeed,
not only emotions are crucial to human reasoning, but they are central to social
regulation (Halliday, 1975) and in particular to control dialog flows. Emotional
communication is both primitive enough and efficient enough so that we use
it a lot when we interact with pets, in particular when we tame them. This is
also certainly what allows children to bootstrap language learning (Halliday,

1975) and should be inspiring to teach robots natural language.

Apart from the words that we use, we express our emotions in two main ways :
the modulation of facial expression (Ekman, 1982) and the modulation of the
intonation of the voice (Banse and Sherer, 1996). Whereas research about au-
tomated recognition of emotions in facial expressions is now very rich (Samal
and Yengar, 1992), research dealing with the speech modality, both for auto-
mated production and recognition by machines, has only been active for very
few years (Bosch, 2000). In this paper, we present the results of our research
which consisted in providing to robots means to express emotions vocally and
in enabling them to recognize some basic emotional information in its care-
taker’s voice. Both aspects are original : as far as production is concerned,
and unlike most of existing work, we are dealing with cartoon-like meaning-

less speech, which has different needs and constraints than for example trying



to produce naturally sounding adult-like normal emotional speech. For exam-
ple we would like the emotions to be recognized by people of different cultural
or linguistic background. Our work has similarities with the one of (Breazal,
2001), but we use concatenative speech synthesis and our algorithm is more
simple and completely specified. As far as the recognition of emotions is con-
cerned, we present here the first (to our knowledge) large scale data mining
experiment in which we compare most of the standard machine learning al-
gorithms and explore the value of two hundred different features. As shown
below, we found some new features which seem to be more efficient than the
ones traditionally used in the literature. Besides, all the work presented here
is based on the use of freely available softwares and thus can be reproduced
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with minor difficulties. A web site * containing some accompanying material

such as sounds and graphs is also available.

Next section presents general information about the acoustic correlates of
emotion in speech, which form the basis of our work. Section 3 presents our
algorithm for the production of emotion as well as its validation with human
subjects. Section 4 presents the results of our data mining experiment con-
cerning learning algorithms and useful features in the recognition of emotions

in the human voice.

2 The acoustic correlates of emotions in human speech

It is possible to achieve our goal only if there are some reliable acoustic cor-

relates of emotion/affect in the acoustic characteristics of the signal. A num-
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ber of researchers have already investigated this question (Fairbanks 1940,
Burkhard and Sendlmeier 2000, Banse and Sherer 1996). Their results agree
on the speech correlates that come from physiological constraints and corre-
spond to broad classes of basic emotions, but disagree and are unclear when
one looks at the differences between the acoustic correlates of for instance fear
and surprise or boredom and sadness. Indeed, certain emotional states are
often correlated with particular physiological states (Picard 1997) which in
turn have quite mechanical and thus predictable effects on speech, especially
on pitch, (fundamental frequency F0) timing and voice quality. For instance,
when one is in a state of anger, fear or joy, the sympathetic nervous system
is aroused, the heart rate and blood pressure increase, the mouth becomes
dry and there are occasional muscle tremors. Speech is then loud, fast and
enunciated with strong high frequency energy. When one is bored or sad, the
parasympathetic nervous system is aroused, the heart rate and blood pressure
decrease and salivation increases, producing speech that is slow, low-pitched

and with little high frequency energy (Breazal, 2001).

Furthermore, the fact that these physiological effects are rather universal
means that there are common tendencies in the acoustical correlates of basic
emotions across different cultures. This has been precisely investigated in stud-
ies like (Abelin and Allwood 2000) or (Tickle 2000) who made experiments in
which American people had to recognize the emotion of either another Amer-
ican or a Japanese person only using the acoustic information (the utterances
were meaningless, so there were no semantic information). Reversely, Japanese
listeners were asked to decide which emotions other Japanese or American
people were trying to convey. Two results came out of it : 1) there was only

little difference between the performance in detecting the emotions conveyed



by someone speaking the same language or the other language, and this is
true for Japanese as well as for American subjects ; 2) subjects were far from
being perfect recognizer in the absolute : the best recognition score was 60
percent (This result could be partly explained by the fact that subjects were
asked to pronounce nonsense utterances, which is quite unnatural, but is con-
firmed by studies asking people to utter semantically neutral but meaningful
sentences (Burkhart and Sendlmeier 2000)). The first result indicates that our
goal to build a machine that can express affect, both with meaningless speech
and in a way recognizable by people from different cultures with the accuracy
of a human speaker, is attainable in theory. The second result shows that we
should not expect perfect recognition, and compare the machine’s performance
in relation to human performance. The fact that humans are not so good is
mainly explained by the fact that several emotional states have very similar
physiological correlates and thus acoustic correlates. In actual situations, we
solve the ambiguities by using the context and/or other modalities. Indeed,
some experiments have shown that the multi-modal nature of the expression
of affect can lead to a McGurk effect for emotions (see Massaro 2000): a face
showing emotion A and speaking with emotion B is perceived as expressing
either only one of the two emotions or sometimes even a third one. Also, dif-
ferent contexts may lead people to interpret the same intonation as expressing
different emotions for each context (see Cauldwell 2000). These findings indi-
cate that we shall not try to have our machine generate utterances that make

fine distinctions ; only the most basic affect categories should be investigated.

A number of experiments using computer based techniques of sound manip-
ulation have been conducted to explore which particular aspects of speech

reflect emotions with most saliency. (Murray and Arnott, 1993; Banse and



Scherer, 1996; Burkhardt and Sendlmeier, 2000; Williams and Stevens, 1972)
basically all agree that the most crucial aspects are those related to prosody :
the pitch (or f0) contour, the intensity contour and the timing of utterances.
Some more recent studies have shown that voice quality (Gobl and Chasaide,
2000) and certain co-articulatory phenomena (Kienast and Sendlmeier, 2000)

are also reasonably correlated with certain emotions.

3 The generation of cartoon emotional speech

3.1 Goal

The goal of this research is quite different from most of existing work in syn-
thetic emotional speech. Whereas traditionally (see Cahn 1990, Iriondo et al.
2000, Edgington 1997, Iida et al. 2000) the aim is to produce adult-like natu-
rally occuring emotional speech, here the target is to provide a young creature
with the ability to express its emotions in an exaggerated/cartoon manner,
while using nonsense words (this is necessary for us because we use this in ex-
periments with robots to which we try to teach language : this pre-linguistic
ability to use only intonation to express basic emotions serves to bootstrap
learning; yet, we will not give more details about this point since it falls far
beyond the scope of this paper). The speech should sound lively, not repet-
itive, and similar to infants’ babbling. Finally, we wanted people from very
different linguistic and cultural background are able to recognize easily the

creature’s emotions.

Additionally, we wanted to have algorithms as simple as possible and to con-

trol as few parameters as possible : in brief, what is the simplest manner to



transmit emotions with prosodic variations ? Also, the speech had to be both
of high quality and computationally cheap to generate (robotic creatures have
usually only very scarce resources). For these reasons, we chose to use a con-
catenative speech synthesizer (Dutoit and al., 1993), the MBROLA software
freely available on the web 2, which is an enhancement of more traditional
PSOLA techniques (it produces less distortions when pitch is manipulated).
The price of quality is that very few control over the signal is possible, but

this is compatible with our need of simplicity.

Because of all these constraints, we have chosen to investigate only five emo-
tional states so far, corresponding to calm and one for each of the four regions
defined by the two dimensions of arousal and valence: anger, sadness, happi-

ness, comfort.

3.2  FExisting work

As said above, existing work has concentrated on adult-like naturally sound-
ing emotional speech, and most of projects have tackeled only one language.
Many of them (see Cahn, 1990; Murray and Arnott, 1995; Burkhardt and
Sendlmeier, 2000) have used formant synthesis as a basis, mainly because it
allows detailed and rich control of the speech signal : one can control voice
quality, pitch, intensity, spectral energy distributions, harmonics-to-noise ratio
or articulatory precision which allows to model many co-articulation effects
occurring in emotional speech. The drawbacks of formant synthesis are that
quality of the produced speech remains not satisfying (voices are often still

quite unnatural). Furthermore, the algorithms developped in this case are

2 MBROLA web page : http://tcts.fpms.ac.be/synthesis/mbrola.html



complicated and necessitate the control of many parameters, which renders
their fine tuning quite impractical (see Cahn, 1990 for a discussion). Unlike
these works, (Breazeal, 2000) has described a system which is very similar to
ours: based on (Cahn, 1990), she made a system for her robot Kismet that
allows it to produce meaningless emotional speech. Like the work of Cahn, it
relies heavily on the use of a commercial speech synthesizer of which many pa-
rameters are often high level (for example, specification of the pitch baseline of
a sentence) and implemented in an undocumented manner. As a consequence,
this is hardly reproducible if one wants to use another speech synthesis sys-
tem. On the contrary, the algorithm we will describe here is completely spec-
ified, and can be used directly with any PSOLA-based system (besides, the
one we used here can be freely downloaded, see above). Another drawback
of Breazeal’s work is that the synthesizer she used was formant based, which

does not correspond to our constraints.

Because of their very superior quality, concatenative speech synthesizers (Du-
toit et al., 2000) have gained popularity in the recent years, and some have
tried to use them to produce emotional speech. This is a challenge significantly
more difficult than with formant synthesis since only the pitch contour, the in-
tensity contour and the duration of phonemes can be controlled (and yet, there
are narrow contraints over this control). To our knowledge, two approaches
have been presented in the literature. The first one, as described in (lida et
al., 2000), uses one speech database for each emotion as the basis of the pre-
recorded segments to be concatenated in the synthesis. This gives satisfying
results but is quite impractical if one wants to change the voice or add new
emotions or even control the degree of emotions. The second approach consists

in (see for example Edgington, 1997) making databases of human produced



emotional speech and computing the pitch and intensity contours and apply
them to sentences to be generated. This brings some problems of alignments,
partially solved using syntactic similarities between sentences. Finally, Edg-
ington (1997) showed that this method gave quite unsatisfying results (speech
sounds unnatural and emotions are not very well recognized by human lis-
teners). Finally, these two methods are unapplicable to our work since there
would be great difficulties to make speech databases of exaggerated/cartoon

baby voices.

The approach we take here is from an algorithmic point of view completely
generative (it does not rely on the recording of human speech that would serve
as input), and uses concatenative speech synthesis as a basis. We will show
that it allows to express emotions as efficiently as with formant synthesis, but

with simpler controls and the liveliness of concatenative speech synthesis.

3.3 A simple and complete algorithm

Our algorithm consists in generating a meaningless sentence and specifying
the pitch contour and the duration of phonemes (the rhythm of the sentence).
For the sake of simplicity, we specify only one target per phoneme for the
pitch, which reveals enough. We could have fine control over the intensity
contour, but as we will show, this is not necessary, since manipulating the
pitch can create the auditory illusion of intensity variations. We only control
the overall volume of sentences. Our program generates a file which is fed into

the MBROLA speech synthesizer. This file looks like :
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1 448 10 150 80 158 ;; means : phoneme ‘‘1’’ duration 448 ms,
;; at 10 percent of 448 ms
;; try to reach 150 Hz, at 80 percent
;; try to reach 158 Hz

9~ 557 80 208

b 131 80 179

@ 77 20 200 80 229

b 405 80 169

o 537 80 219

v 574 80 183.0

a 142 80 208.0

n 131 80 221.0

i 15 80 271.0

H 117 80 278.0

E 323 5 200

The first step of the algorithm is to generate a sentence composed of ran-
dom words, each word being composed of random syllables (of type CV or
CCV). Initially, the duration of all phonemes is constant and the pitch of each
phoneme is constant equal to a pre-determined value (noise is added, which
is crucial if one wants the speech to sound natural; we tried many different
kinds of noise, and this does not make significant differences; for the percep-
tual experiment reported below, gaussian noise was used). Then the pitch and
duration informations of this sentence are altered so as to yield a particular
affect. Deformations consist of deciding that a number of syllables become

stressed, and in applying a certain stress contour on these syllables as well as
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some duration modifications. Also, all syllables are applied a certain default
pitch contour and duration deformation. For each phoneme, we give only one
pitch target fixed at 80 percent of the duration of the phoneme. Let us now
state more precisely the different steps of the algorithm (words in capital let-

ters denote parameters of the algorithm that need to be set for each emotion)

1 Choose the number of words of the sentence

(random number between 2 and MAXWORDS) ;

N

Create the words
3 For each word, choose the number of syllables
4 (random number between 2 and MAXSYLL), and
5 decides with probability PROBACCENT whether
the word is accented or not ;
6 If the word is accented then choose randomly one
7 of its syllables and mark it as accented ;
8 Create the syllables
9 For each syllable
10  choose whether this is a CV or a CCV syllable
11 (CV syllable have probability 0.8) ;
12 instantiate the C’s and V by picking randomly a
13 consonnant or vowel in the phoneme database ;
14  set the duration of each phoneme to MEANDUR + random(DURVAR) ;
15 let e = MEANPITCH + random(PITCHVAR)
16 set the pitch of consonnants to e - PITCHVAR

17 set the pitch of vowels to e + PITCHVAR
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18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

if the syllable is accented then

add DURVAR to the duration of its phonemes ;

if DEFAULTCONTOUR = rising
set the pitch of consonants to MAXPITCH - PITCHVAR
set the pitch of the vowel to MAXPITCH + PITCHVAR
if DEFAULTCONTOUR = falling
set the pitch of consonants to MAXPITCH + PITCHVAR
set the pitch of the vowel to MAXPITCH - PITCHVAR
if DEFAULTCONTOUR = stable

set the pitch of phonemes to MAXPITCH

Change the contour of the last word :
if not LASTWORDACCENTED
let e = PITCHVAR/2
if CONTOURLASTWORD = FALLING
for each syllable in word
add -(i+1)*e pitch of phonemes to their value
(i = index of phoneme in syllable)
e =e+e
if CONTOURLASTWORD = RISING
for each syllable in word
add +(i+1)*e pitch of phonemes to their value

(i = index of phoneme in syllable)

else
if CONTOURLASTWORD = FALLING

for each syllable in word
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44 add DURVAR to the duration of its phonemes ;

45 set the pitch of consonants to MAXPITCH + PITCHVAR
46 set the pitch of the vowel to MAXPITCH - PITCHVAR
47 if CONTOURLASTWORD = RISING

48 for each syllable in word

49 add DURVAR to the duration of its phonemes ;

50 set the pitch of consonants to MAXPITCH - PITCHVAR
51 set the pitch of the vowel to MAXPITCH + PITCHVAR
52

53 Set the loudness volume of the complete sentence to VOLUME.

A few remarks can be made concerning this algorithm. First, it is useful to
have words instead of just dealing with random sequences of syllables be-
cause it avoids to put accents on adjacent syllables too often. Also it allows
to express more easily the operations done on the last word. Typically, the
maximum number of words in a sentence (MAXWORDS) does not depend on
the particular affect, but is rather a parameter than can be freely varied. A key
aspect of this algorithm are the stochastic parts : on the one hand, it allows to
produce, for a given set of parameters, a different utterance each time (mainly
thanks to the random number of words, the random constituents of phonemes
of syllables or the probabilistic attribution of accents) ; on the other hand,
details like adding noise to the duration and pitch of phonemes (see line 14
and 15 where random(n) means “random number between 0 and n”) are fun-
damental to the naturalness of the vocalizations (if it remains fixed, then one
perceives clearly that this is a machine talking). Finally, let us remark that

here accents are implemented only by changing the pitch and not the loudness.
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Nevertheless, it gives satisfying results since in human speech an increase in
loudness is correlated to an increase in pitch. Of course here we had to ex-
aggerate the pitch modulation, but this is fine since as we explained earlier,
our goal is not to reproduce faithfully the way humans express emotions, but
to produce a lively and natural caricature of the way they express emotions
(cartoon-like). Finally, a last step is added to the algorithm in order to get
a voice typical of a young creature : the sound file sampling rate is overriden
by setting it to 30000 or 35000 Hz as compared to the 16000 Hz produced by
MBROLA (this is equivalent to playing the file quicker). Of course, so that
the speech rate remains normal, it is initially made slower in the program sent
to MBROLA. Only the voice quality and pitch are modified. This last step is
necessary since no child voice database exists for MBROLA. So a female adult

voice was choosen.

Now that we have described in details the algorithm, let us give (see table
1) examples of the parameters’ values obtained for 5 affects : calm, anger,
sadness, happiness, comfort. The way these parameters were obtained was by
first looking at studies describing the acoustic correlates of each emotion (e.g.
Murray and Arnott 1993, Sendlmeier and Burkhartd 2000), then deducing
some coherent initial value for the parameters and modifying them by hand,

and trial and error until it gave a satisfaying result.

3.4 Validation with human subjects

In order to evaluate the algorithm described in section 3.3, an experiment

was conducted in which human subjects were asked to describe the emotion
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Table 1

Parameter values for different emotions

they felt when hearing a vocalization produced by the system 2. More pre-
cisely, each subject first listened to 10 examples of vocalizations, with emotion
randomly chosen for each example, so that they got used to the voice of the
system. Then they were presented a sequence of 30 vocalizations (unsupervised
serie) , each time corresponding to an emotion randomly choosen, and were
asked to make a choice between “Calm”, “Anger”, “Sadness”, “Comfort” and

“Happiness”. They could hear each example only once. In a second experiment

3 Some sample sounds are available on the associated web page www.csl.sony.fr/py

Calm

Anger

Sadness

LASTWORDACCENTED

NIL

NIL

NIL

MEANPITCH

280

450

270

PITCHVAR

10

100

30

MAXPITCH

370

100

250

MEANDUR

200

150

300

DURVAR

100

20

100

PROBACCENT

0.4

0.4

0

DEFAULTCONTOUR

RISING

FALLING

FALLING

CONTOURLASTWORD

RISING

FALLING

FALLING

VOLUME

1

2

1

Comfort

Happiness

LASTWORDACCENTED

TRUE

TRUE

MEANPITCH

300

400

PITCHVAR

50

100

MAXPITCH

350

600

MEANDUR

300

170

DURVAR

150

50

PROBACCENT

0.2

0.3

DEFAULTCONTOUR

RISING

RISING

CONTOURLASTWORD

RISING

RISING

VOLUME

2

0
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with different subjects, they were initially given 4 supervised examples of each
emotion, which means they were presented vocalization together with a label
of the intended emotion. Again they were presented 30 vocalizations that they
had to describe with one of the word cited above. 8 naive adult subjects were
in each experiment : 3 French subjects, 1 English subject, 1 German subject,
1 Brazilian subject, and 2 Japanese subjects (none of them was familiar with
the research or had special knowledge about the acoustic correlates of emotion
in speech). Table 2 shows the results for the unsupervised serie experiment.
The number in the (rowEm,columnEm) means the percentage of times a vo-
calization intended to represent rowEm emotion was perceived as columnEm
emotion. For instance in the Table 2,we see that 76 percent of vocalizations

intended to represent sadness were effectively perceived as sadness.

The results of the unsupervised serie experiment have to be compared with
experiments done with human speech instead of machine speech. They show
that for similar setups, like in (Tickle 2000) in which humans were asked to
produce nonsence emotional speech, at best humans have 60 percent success,
and most often less. Here we see that the mean result is 57 percent, which
compares well to human performance. The errors are of two types: the most
frequent is related with a confusion with the neutral /calm emotion. This is the
less annoying error since it does not involve a confusion between aroused/not
aroused and negative/positive. There are also (but much less) confusion be-
tween anger and happiness, but not between comfort and sadness, which means
that confusions about valence appear only for aroused speech. Finally, there

are nearly no confusions between aroused and not aroused speech.

A second unsupervised experiment was performed, similar to the one reported

here except that the calm affect was removed. A mean success of 75 percent
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Calm Anger Sadness Comfort Happiness
Calm 36 1 1 30 30
Anger 0 65 0 0 35
Sadness 20 0 76 4 0
Comfort 45 0 16 39 0
Happiness 5 30 0 5 60

Table 2

Confusion matrix for the unsupervised series

was obtained, which is a great increase and is much better than human per-
formance. This can be explained in part by the fact that here the acoustical
correlates of emotions are exagerated. The results presented here are similar
to those reported in (Breazal 2001), which proves that using a concatenative
synthesizer with a lot less parameters still allows to convey emotions (and in

general provides more life-like sounds).

Examination of the supervised serie shows that the presentation of only very
few vocalizations with their intended emotion (4 exactly for each emotion),
results increase very much : now 77 percent success is achieved. We see that
confusions involving the neutral emotion and confusions between anger and
happiness have nearly disappeared. Similarly, an experiment in which the calm
affect was removed was conducted, which gave a mean success of 89 percent.
This supervision is something that can be implemented quite easily with digital
pets : many of them use for combinations of color LED lights to express their
“emotions”, and the present experiment shows that it would be enough to
visually see the robot a few times while it is uttering emotional sentences to

be able later to recognize its intended emotion just by listening to it.
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Calm Anger Sadness Comfort Happiness
Calm 76 3 4 14 3
Anger 0 92 0 0 8
Sadness 8 0 76 16 0
Comfort 15 0 5 7 3
Happiness 4 20 0 8 68

Table 3

Confusion matrix for the supervised series

3.5 Varying continuously the age of the voice and the degree of emotion

Typically, robotic pets are initially “babies” and shall grow up and develop
along with time and interactions with humans (or other pets). It seems natu-
ral that their voice evolves accordingly, and in a continuous manner. To our
knowledge, this problem has not already been addressed in the literature. Gen-
erally, one has several voice databases (for the segments used by the speech
concatenizer) to choose from, and corresponding to different ages. Yet, on one
hand each database is made with a different person (having a voice of the
desired age), which means that it is clear to the human ear that the voice
is also from a different person, which of course is not acceptable in our case.
On the other hand, only a limited number of databases are available (because
having a lot is impractical and requires a lot of memory), which means that

age can not vary in a smooth manner.

We found a solution to this problem, which is rather simple but sufficient (see
the associated web page for samples). When one has a vocalization signal, in
order to change only the age of the voice, it is enough to override the sample
rate and then use the PSOLA algorithm to modify the length of the new sound
so that it remains the same as in the original sound. In our case, the 'default’

age is a signal sampled at 32000 Hz (which we use in the validation experiment
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in next section) : if we want to make the signal sound ’older’, then we can
override the sample rate to for example 28000 Hz, and then use PSOLA to

shorten the signal back to its original time length.

Furthermore, it would be obviously useful that robotic pets may be able to
vary the degrees of emotion that they express: for instance they could make a
difference between happy and very happy. Again, we did not find this question
addressed anywhere in the literature. We propose to add to each set of pa-
rameters of ‘'normal’ degree of emotion (those described in previous section),
an associated set of similar parameters corresponding to the highest degree
of emotion for a give emotion (for e.g. very very happy). For example, to the
parameter MEANPITCH (= 400) of (normal) happiness, we add a parameter
MEANPITCH2 (= 500); then we define a variable delta taking values in [-1;1]
which determines the degree of one emotion: 0 is for normal, 1 for maximum
and -1 for minimum. When a vocalization is to be generated, delta has to be
set and the actual mean pitch of the utterance becomes : MEANPITCH +
delta*MEANPITCH2. We are in fact making some kind of local linear models
of emotion degrees. This experimentally gives satisfying results, and requires
to specify only one additional set of parameters, while allowing an infinite

range of nuances.

4 Validation of age and emotion degree control

In order to validate the techniques presented in the precedent part, we made
some tests with the eight human subjects used above. As far as age control
is concerned, each subject was presented pairs of utterances with a random

emotion and asked which one looks older than the other. The re-sampling fre-
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quencies were taken in the range [25000;35000] Hz. Each subject was presented
50 pairs of utterances (the difference of re-sampling frequency was always su-
perior to 1000 Hz and random). The mean rate of correct age ranking was

92.4 percent, which is satisfying for our goal.

For the evaluation of the control over the degree of emotion, the same test
was repeated except that the age was fixed (32000 Hz), and pairs consisted in
two utterances of the same emotion (but each time random), with a different
(random) degree. Human subjects had to evaluate which utterance expressed
with a higher degree the emotion. Again 50 pairs were presented to each
subject. The mean rate of correct ranking was 85.1 percent, which is again

satisfaying for our goal.

5 The recognition of emotions in human speech

5.1 Goal

It is necessary that robotic pets can also recognize the emotions expressed by
the humans who are interacting with them. Human beings generally do that
by using all the context and modalities, ranging from lexic to facial expression
and intonation. Unfortunately, using appropriately the context is not an easy
thing for a machine in an uncontrolled environment : for instance robust speech
recognition in such situations is out of reach for nowadays systems, and facial
expression recognition needs both computational resources and video devices
that robotic creatures most often do not have. For this reason we investigated
how far we can go by using only prosodic information voice. Furthermore, the

speech we are interested in is the kind that occurs in everyday conversations,
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which means short informal utterances, as opposed to the speech produced
when one is asked to read emotionally a paragraph of for example a news-
paper. Four broad classes of emotional content were studied : joy/pleasure,

sorrow /sadness/grief, anger and calm/neutral.

5.2 Emisting work

As opposed to the automatic recognition of emotions with facial expression
(Samal and Iyengar, 1992), research using the speech modality is still very
young (Bosch, 2000). The first studies that were conducted (e.g. Murray and
Arnott 1993, Williams and Stevens, 1972) were not so much trying to get
an efficient machine recognition device, but rather were searching for general
qualitative acoustic correlates of emotion in speech (for example : happiness
tends to make the mean pitch of utterances higher than in calm sentences).
More recently, the increasing awareness that affective computing has an im-
portant industrial potential (Picard, 1997) pushed research towards the quest
for performance in automatic recognition of emotions in speech (Bosh, 2000).
Unfortunately, to our knowledge, no large scale study using the modern tools
developped in the data mining and machine learning community has been con-
ducted. Indeed, most often, either only one or two learning schemes are tested
(for e.g. in Polzin and Waibel 2000, Slaney and McRoberts 1998, Breazal 2001)
or very few and simple features are used (Polzin and Waibel 2000, Slaney and
McRoberts 1998, Breazal 2001, Whiteside 1997), or only small databases are
used - less than 100 examples per speaker (as in Breazal 2001, McGilloway et
al. 2000, Slaney et al. 1998) which means that the power of some statistical

learning schemes may have been overlooked.
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Ounly (McGilloway and al. 2000) have tried to make some systematic data
mining, using more than the traditional/standard set of features used by the
rest of the literature : mean, max, min, max-min, variance of the pitch and
intensity distributions, and of the lengths of phonemic or syllabic segments,
or of pitch rising segments. This work has some drawbacks: 1) only 3 kinds of
learning schemes were used - support vector machines, gaussian mixtures and
linear discriminants - which are far from being the best at dealing with data
in which there are possibly many irrelevant features, and in particular do not
allow to derive automatically smaller set of features with optimal efficiency; 2)
the feature set was explored by choosing one learning scheme and iteratively
removing less useful features for classification : on one hand, this is rather
ad hoc since it is linked to a very particular learning scheme and selection
procedure, on the other hand it does not allow to detect the fitness of groups
of features. Finally, their work is based on speech generated by asking human
subjects to read newspaper texts in an emotional manner, which does not cor-
respond to our constraints. To our knowledge, only two research groups have
tried to build automatic recognition machines of everyday speech (Breazal
2001, Slaney et al. 1998). Yet, they only used very small databases, very few
features and two different learning algorithms. Finally, a general conclusion
of this already existing corpus of research is that recognition rates above 60
percent, even with only 4 basic emotions, seems impossible if there are several
speakers. The enormous speaker variability has been described in (Slaney et
al. 1998). As a conclusion, we chose to focus only on speaker dependent emo-
tion recognition. This is not necessarily a bad point from an industrial point
of view since it is targeted to robotic pets that may interact only with their
caretakers (and the fact that robots only manage to recognize their owner

could even be a positive feature, because it is a source of complicity between
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a robot and its caretaker).

Our methodology is an extension of the work of (McGilloway and al. 2000)
in which we use more features (including new and crucial ones), more learn-
ing schemes, and more powerful feature space exploration tools. A very large
database of six speakers containing informal short emotional utterances is
used. All experiments were conducted using the freely available data min-

4

ing software Weka * | which implements most of the standards data mining

techniques.

5.3 The database

In order to have sufficiently large databases, we had to make some compro-
mises (the recording conditions as described in (Slaney et al, 1998) or (Breazal
2001) were too impractical for us to make several thousands samples). So we
used six Japanese professional speakers (men and women), who are both voice
actor/actress and worked on many radio/TV commercials, Japanese dubbing
of movies and animations. They were asked to imitate everyday speech by pro-
nouncing short sentences or phrase like “Great !”, “Exactly!”, “See”, “Hello”,
“I see”, “How are you?”, “What kind of food do you like?”, “Wonderful!”,
“What is your name ?” (these are of course the english translation of the
japanese utterances). They had to imagine that they would utter these sen-
tences to a pet robot. Before each utterance, they had to imagine themselves in
a situation where they could pronounce it, and which would correspond to one
of the four emotional classes: joy/pleasure, sorrow/sadness/grief, anger, nor-

mal/neutral. If several emotions were compatible with the sentence meaning,

* Weka web page : http://www.cs.waikato.ac.nz/ ml/
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then they were allowed to utter each of them. Each example in the database
was evaluated by human subjects who had to decide if they were appropri-
ate or not (whether the utterance’s intonation compatible with the emotion or
not). We ended with a database of 200 examples per speaker and per emotion,
which makes 4800 samples in total. We know that having only six speakers
restrains the generality of the results, but to our knowldege no one so far had
the opportunity to have so many examples, even for one speaker, and so to use
the power of modern statistical learning algorithms. Another potential draw-
back of the database is that there might be a self-entrainment of the speakers:
as they are asked to perform a particular task with their voice intonation, they

might produce less variable speech than in natural situations.

5.4 Using data mining techniques

5.4.1 Features

The two main measures that can be done concerning the intonation are pitch
and intensity, which we did, like in all the works reported above. For each sig-
nal, we also measured the intensity of its low-passed and high-passed version,
the cutting frequency being chosen at 250 Hz (the particular value appears
not to be crucial). Finally, for sake of exhaustivity, we made a spectral mea-
sure consisting in computing the norm of the absolute vector derivative of
the first 10 MFCC components (mel-frequency ceptral components). All these
measures were performed at each 0.01s time frame, using the Praat software,
which is a signal processing toolkit freely available °. In particular, the pitch

was computed using the algorithm described in (Boersma, 1993), which is

® Praat web page : http://www.praat.org
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known to be very accurate.

Each of these measures provides a time series of values that we had to trans-
form to produce different points of view upon the data. So each serie of values
was transformed into 4 series : the series of its minima, the series of its maxima,
the series of the durations between local extrema of the 10Hz smoothed curve
(which models rhytmic aspects of the signal), and the series itself. Finally,
to get features out of these series, we computed for each one: the mean, the
maximum, the minimum, the difference between the maximum and the min-
imum, the variance, the median, the first quartile, the third quartile and the
interquartile range, and the mean of the absolute value of the local derivative.

In total we used 5*4*10 = 200 features.

5.4.2 Learning algorithms

There are many learning schemes that have been developed in the last 20 years
(see Witten and Frank, 2000), and they are often not equivalent : some are
more efficient with certain types of class distributions than others, and some
are better at dealing with many unrelevant features (which is the case here, as
seen a posteriori) or with structured feature sets (in which this is the “syntac-
tic” combination of the values of features which is crucial). As by definition
we do not know the structure of our data and/or the (ir-)relevance of features,
it would be a mistake to investigate our problem with only very few learning
schemes. As a consequence, we chose to use a set of the most representative
learning schemes, ranging from neural networks to rule induction or classi-
fication by regression. Also, we used one of the best meta-learning scheme,

i.e. AdaBoostM1 (Witten and Frank, 2000), which allows generally significant

26



name

description

1-NN

1 nearest neighbour

5-NN

voted 2 nearest neighbours

10-NN

voted 10 nearest neighbours

Decision Tree/C4.5

C4.5 decision trees

Decision Rules/PART

PART decision rules

Kernel Density

Radial Basis Function Neural Net.

KStar

KStar

Linear Regression

classification via linear regression

LWR

classification via locally weighted regression

Voted Perceptrons

commitee of perceptrons

SVM 1

polynomial (deg. 1) Support Vector Machine

SVM 2

polynomial (deg. 2) Support Vector Machine

SVM 3

polynomial (deg. 3) Support Vector Machine

SVM 4

Gaussian kernel Support Vector Machine

VFI

Voted features interval

M5Prime

clsiification via M5PRime regression method

Naive Bayes

Naive Bayes classification algorithm

AdaBoostM1/C4.5

Adaboosted version of C4.5

AdaboostM1/PART

Adaboosted version of PART

Table 4

Learning schemes

improvement on generalization performance for unstable learning schemes like
decision trees (an unstable learning algorithm is one that can sometimes pro-
duce very different recognition machines when only a slight change in the
learning database has been performed). We chose to use the Weka software, of
which code and executable are freely available so that the experiment, though
being large scale, can be easily reproduced. This software also provides means
like automatic cross-validation, or the search of feature spaces (for e.g. with
genetic algorithms as we will see later). The list of all learning algorithms is

given in table 4. More details about these algorithms can be found in (Witten

and Frank, 2000).
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name

mean correct generalization rate across 6 speakers

1-NN 84.5
5-NN 85.2
10-NN 84.4
Decision Trees/C4.5 94.1
Decision Rules/PART 94

Kernel Density 85.2
Kstar 81

Linear Regression 89.7
LWR 88.3
Voted Perceptrons 75.9
SVM degree 1 92.1
SVM degree 2 91.2
SVM degree 3 90.9
SVM 4 91.5
VFI 88.2
M5Prime 90.4
Naive Bayes 89.8
AdaBoost M1/C4.5 95.7
AdaBoost M1/PART 94.8

Table 5

Using all features

5.4.8 All features/All algorithms

In a first experiment, evaluation was conducted in which all algorithms were
given all the (normalized) features, and were trained on 90 percent of the
database and tested on the remaining 10 percent. This was repeated 10 times
with each time a different 90/10 percent split (we performed a 10-fold cross-

validation). Table 5 gives the average percentage of correct classification for

the 10 folds.

We see from these results that very high success rates are obtained (95.7 per-

cent). These figures are higher than any other reported in the literature but
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one has to be careful since the number of classes and the types of classes are
most of the time unique to each paper. For example, (Slaney and McRoberts,
1998) report rates around 80 percent for the speaker dependant recognition,
with only three classes (but they were different than ours: approval, prohibi-
tion, attention). The best way to compare is in fact to look at the results of
individual learning schemes and features in our paper, since all the learning
schemes and features used in the papers that we quote are included here. The
difference among algorithms is striking : whereas the best results are obtained
with adaboosted decision trees and rules, some others perform 10 percent be-
low (like nearest neighbours, RBF neural nets or Support Vector Machines,
which are the ones typically used in other studies), or even 20 percent below
(commitees of perceptrons). This illustrates our initial claim that one must
be careful to try many different learning schemes when one wants to solve a
problem about which we have very few prior or intuitive knowledge. It is not
surprising that the best results are obtained with decision trees and rules since
these kinds of algorithms are known to be very good at dealing with many
unrelevant features, which seems to be the case here (if not, there would be

less disparity between results).

5.5  Feature selection

After this first experiment, one naturally would like to see how the feature set
could be reduced for three reasons : 1) small features set provide better gener-
alization performance in general (see Witten and Frank, 2000); 2) obviously,
it is computationally cheaper to compute fewer features; 3) it is interesting

to see if the most useful features for the machine learning algorithms are the

29



ones that are traditionally put forward in the psychoacoustic literature.

A first way of exploring the feature set is to look at the results of learning
schemes like decision rules (PART'), which are often used mainly as knowledge

discovery devices :

If MEDIANINTENSITYLOW > 0.48 and
THIRDQUARTMINIMASPITCH <= 0.07 and

THIRDQUARTINTENSITY > 0.42 ==> CALM

ELSE If MEANINTENSITYLOW <= 0.58 and
MEDIANINTENSITYLOW <= 0.29 and

THIRDQUARTMAXIMASPITCH > 0.1 ==> ANGRY

ELSE If THIRDQUARTINTENSITYLOW > 0.48 ==> SAD

ELSE ==> HAPPY

These four and surprisingly simple rules allow a percentage of correct classi-
fication in generalization of 94.4 percent for the speaker number four in the
database. The striking fact is the repeated use of features related to the in-

tensity of the low-pass signal.

To get another view of the feature set, one can also simply try to visualize it.
Just to confirm the precedent intuition that low-passed intensity is crucial in
the distinction of emotions, figure 1 plots the database with axis being the 1st

quartile and the 3rd quartile of the intensity distribution, and figure 2 being
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Fig. 1. Data points in speaker 1 database : 1st quartile of intensity distribution
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the same but for the intensity of the low-passed signal. This is for speaker 2.
The same very striking effect happens also for the other speakers, but what is
interesting is that the clusters are not situated at the same places (anger and
happiness are 90 degrees rotated), which is an illustration of the great speaker
variability that we presented earlier. The difference is not a scaling difference,
but a qualitative difference that no learning schemes could learn with these
features. Yet, it seems that the use of some well chosen features is very stable

for each speaker.

In order to quantify the individual relevance of features or attributes, there is
a measure often used in the data mining literature, which is the expected infor-
mation gain, or mutual information between class and attribute. It corresponds
to the difference between the entropies H(class) and H(class—attribute) (see
Witten and Frank, 2000, for details about how it is computed). Table 6 gives

the 20 best attributes according to the information gain they provide.

This table confirms the great value of the features concerning the quartiles
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Fig. 2. The same data points than in last figure, except that we plot here the 1st
quartile of the low-passed signal intensity distribution against the 3rd quartile of

the low-passed signal intensity distribution

of the distribution of intensity values in the low-passed signals. It also shows
something rather surprising : among the 20 most individually informative
features, only 3 (the 12, 16 and 20) are part of the standard set put forward in
psychoacoustic studies (Murray and Arnott 1996, Sendlmeier and Burkhardt
2000, Stevens and Williams 1972) or used in most of more application oriented

research as in (Slaney et al. 1998, Breazal 2001).

Yet, one has to be aware that individual salience of a feature is only partially
interesting : it is not rare that success comes from the combination of features.
So in a first experiment, we tried to compare a feature set containing only the
features 1 to 6 related to low-passed signal intensity (LPF), with a feature set
composed of the standard features (SF) used in (Breazal 2001) or (Slaney et
al. 1998) : mean, min, max, max-min, and variance of pitch and intensity of
unfiltetered signal, plus mean length of syllabic segments (results are similar

if we add jitter and tremor as sometimes also used). Table 7 summarizes these
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feature information gain (mean across 6 speakers)

1: MEDIANINTENSITYLOW 1.44

2: MEANINTENSITYLOW 1.40

3: THIRDQUARTINTENSITYLOW 1.35

4: ONEQUARTINTENSITYLOW 1.34
5: MAXINTENSITYLOW 1.23
6: MININTENSITYLOW 1.14

7: THIRDQUARTMINIMASPITCH 0.72

8: THIRQUARTMAXIMASPITCH 0.72

9: THIRDQUARTPITCH 0.69
10: MAXMINIMASPITCH 0.67
11: MAXMAXIMASPITCH 0.67
12: MAXPITCH 0.67
13: MINMINIMASPITCH 0.59
14: MEDIANMINIMASPITCH 0.57
15: MEDIANMAXIMASPITCH 0.57
16: MINPITCH 0.52
17: MEDIANPITCH 0.52
18: MEANMINIMASPITCH 0.48
19: MEANMAXIMASPITCH 0.48
20 :MEANPITCH 0.48

Table 6
Information Gain of 20 best features
experiments (each number corresponds again to the mean percentage of correct

classification in generalization in 10-fold cross-validation).

This table shows that if one uses only the quartiles of the low-passed signal
intensity, one gets results extremely similar than when we use standard fea-
tures, and the best result is obtained with the low-passed intensity related
features (85.9 percent). Because here we have only few speakers, this result
has to be taken with caution, but it seems to indicate that previous work
missed something crucial. = Finally, as we saw on this table, using only low-

passed intensity features yields substantially lower results that when one used

33



Table 7

Comparing “standard” features and “low-passed signal intensity” features

all features with decision rules. In order to attain our goal of finding a very
efficient small set of features, we used an automatic search method : genetic
algorithms. Populations of features (limited to 30) were generated and evolved
using as fitness the 10-fold cross-validation with 2 algorithms : Naive Bayes
and 5-Nearest Neighbours (we chose these mainly because they are fast to
train). The exact genetic algorithm is the simple one described in (Goldberg,
1989). The outcome of this experiment was not obvious : within the selected
feature set, not surprisingly, there were features related to the quartiles of low-
passed signal intensity and features related to the quartiles of the minimas of

the pitch contour, but also features with relatively low individual information

learning scheme

LPF (mean across speakers)

SF (mean across speakers)

1-NN 78.1 82.7
5-NN 84.1 81.9
10-NN 79.2 79.1
Decision Trees/C4.5 80.1 81.2
Decision Rules/PART 79.9 80.4
Kernel Density 85.9 79.1
Kstar 80.4 81.2
Linear Regression 63.1 64.1
LWR 75.6 72.9
Voted Perceptrons 51.2 60.4
SVM degree 1 63.1 65.7
SVM degree 2 71.2 70.1
SVM degree 3 76.8 76.4
SVM 4 85.1 79.4
VFI 79.1 76.0
M5Prime 85.5 82.3
Naive Bayes 82.1 80.7
AdaBoost M1/C4.5 82.1 82.8
AdaBoost M1/PART 83.2 82.9
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name

correct generalization rate (mean for 6 speakers)

1-NN 92.1
5-NN 92.5
10-NN 91.4
Decision Trees/C4.5 92.9
Decision Rules/PART 94.1
Kernel Density 90.1
Kstar 86

Linear Regression 84.6
LWR 88.9
Voted Perceptrons 75.4
SVM degree 1 90.1
SVM degree 2 95.9
SVM degree 3 94.2
SVM 4 92.1
VFI 84.1
M5Prime 92.5
Naive Bayes 90.8
AdaBoost M1/C4.5 96.1
AdaBoost M1/PART 95.4

Table 8

Using the “optimal” feature set

gain : those related to the quartiles of the minimas of the unfiltered smoothed
intensity curve. A final experiment using these 15 features along with all learn-
ing algorithms was conducted (max, min, median, 3rd quartile and 1st quartile

of low-passed signal intensity, pitch and minimas of unfiltered signal intensity).

Results are summarized in table 8.

We observe that we get very similar highest results than initially, with more
than 10 times less features. Moreover and interestingly, the variation between
learning schemes is less important and algorithms which performed badly like

nearest neighbours or Naive Bayes, behave now in a more satisfying manner
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(yet, for these two, this is not surprising since the fetaure set was selected

using these algorithms as evaluators).

5.6  When only very few examples are provided

In last section, we used large training databases : this was crucial to explore
feature and algorithmic spaces, but as we are dealing with a speaker dependent
task, this is not directly applicable to a real world robotic pet. Indeed, it is not
conceivable that the owner of such a robot would give hundreds of supervised
examples to teach it how to recognize its way of expressing basic emotions
(yet, this is what probably happens with human babies and real pets, but
humans tend to be more willing at spending a lot of time with them than
with robotic pets). Then it is natural to ask what the results will become if

only very few training examples are given.

We made an experiment using the “optimal” feature set found earlier. We
gave to each algorithms only 12 examples of each class, and tested them on
the remaining items of the database. This was repeated 30 times with different
sets of 12 examples and results were averaged (the standard deviation was

rather low, typically around 1.1) Table 9 summarizes the experiment.

We see that some of the algorithms manage to keep a very reasonable level of
performance (90.1 percent of success in generalization for adaboosted PART).
Among them, examples of very cheap algorithms like 1-nearest neighbours or
Naive Bayes. These results are rather comparable (and in fact slightly superior)
to what is described in (Breazal, 2001) (except than in this case, learning was

off-line with a larger database of several female speakers) : what is important
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learning scheme mean across 6 speakers
1-NN 85.1
5-NN 78.9
10-NN 69.4
Decision Trees/C4.5 79.1
Decision Rules/PART 80.1
Kernel Density 84.2
Kstar 75.6
Linear Regression 74.8
LWR 79.1
Voted Perceptrons 50.2
SVM degree 1 83.2
SVM degree 2 85.4
SVM degree 3 84.9
SVM 4 85.1
VFI 77.1
M5Prime 80.9
Naive Bayes 85.1
AdaBoost M1/C4.5 84.2
AdaBoost M1/PART 90.1

Table 9

When very few training examples are provided

is that Breazal conducted experiments and showed that this level of success
is sufficient to develop interesting interactions with a robotic pet. Also, she
showed how these results could be substantially improved when integrated into
a larger cognitive architecture which is working in the real world. For example,
linking this recognition module to an artificial lymbic/emotional system in
which there is some kind of emotional inertia (one very rarely switches from
anger to happiness in half a second) might give some additional information
or tell the system there is uncertainty about the result. As a consequence,
the robot may for instance take a posture showing it is not sure of what is

happening and the human will often repeat his utterance with an even more
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exaggerated intonation. This provides 2 samples instead of one, one of them

being often very stylized.

5.7 Teaching a robot in the real world

In the previous paragraph, we saw that the use of adequate features and
algorithms allows a reasonable rate of correct recognitions in the speaker de-
pendent case. There remains the problem of providing these examples to the
robot in a user-friendly manner : indeed, as stated at the beginning of the pa-
per, we are to communicate with robotic pets in a relatively natural manner.
This implies that it is not acceptable for instance to ask the user to connect
its robot to a computer and use a windows/mouse based interface to record

samples.

We have developed and experimented a small game, in the spirit of language
games used in robotic models of the acquisition of language (Steels, 1997;
Steels and Oudeyer, 2000; Oudeyer, 2001; Kirby, 2000). The idea is to regulate
the interactions with both the use of a few simple keywords by the human and
the robot’s ability to express vocally emotions (see section 3). A continuous
word-spotting module is implemented in the robot, as available for instance in
the Sony AIBO robot or the NEC Papero robot. The robot continuously listen
to what humans say, computing the intonation parameters of the sentences
they hear, classify them, and react to the detected emotion. For instance, if the
robot detects a happy sentence, he utters a happy vocalization itself and mod-
ifies its facial expression accordingly (here by changing the colors of the LEDS
on its face), or if it hears a sad sentence, it gets sad also (and for calm/neutral

sentences, it does nothing special of course). When the robot reacts in an un-
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appropriate manner, then the human has to say a sentence with a key-word
(or equivalent key-word) which was “bad guess” in our experiments. Then he
has to say a sentence containing a key-word designating what was his intended
emotion (for example “I was angry !’). Then the robot stores the intonation
parameters of the last sentence he heard before the one containing the “bad
guess”, associated with the class corresponding to the second key-word. This
gives it an example to put in its database. It is possible to use a key-word, like
“well done” in our experiments, which means the robots reacted well to the
last sentence, and shall add the intonation parameters of the last sentence to
its database. Note that with robots like the Sony AIBO robot, it is possible to
replace the “bad guess” and “well done” key-words by the information coming
from the gentle/firm tap sensor which is on their head. Initially, the robot has
an empty database, and we pre-programmed it to think everything is neutral
initially. We used as a learning scheme the 1-nearest neighbour algorithm. In
practice, rather robust guesses were possible typically after 6 or 7 examples
of each class. To illustrate this mechanism, several videos showing this game
between a virtual character (projected on a wall) and a human are available

at 6.

6 Conclusion

We have shown how one could generate life-like vocalizations with basic emo-
tions recognizable by people from very different linguistic and cultural back-
ground. The algorithm presented has the advantage of being extremely sim-

ple (very few parameters need to be controlled) and completely specified.

6 www.csl.sony.fr/py
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We showed that concatenative speech synthesis could be used as successfully
as formant synthesis. Further work will concentrate in extending the range
of emotions used in this paper. We also presented and validated techniques
which allow the continuous control over the degree of emotion as well as ways

to control smoothly the age of the voice.

As far as recognition is concerned, we showed that using on a large scale
modern data mining techniques allowed to find non-obvious features which
were missed in precedent studies. In particular, it is interesting to see that the
features put forward in the psychoacoustic literature are not ones preferred by
machine learning algorithms. As precedent studies seemed to show that multi-
speaker emotion recognition was a very difficult task in principle, the present
work suggest that speaker dependent recognition can reach very high scores,
if adequate features and learning schemes are used. We also showed that with
the right set of features, reasonable performance can be reached when only
few examples are given, which might be the case in “real situation” robots.
Yet, we have to remain prudent with these results since they were obtained
with professional speakers, and we used high quality microphones in quiet
environment. The use of microphones embeded in real noisy robots might bring
difficulties. The fact that professional speakers might not be so biased since the
target of this research is to recognize the emotional information of humans who
talk to pet robors. Indeed, in this case they over-emphasize their intonation
as professional speakers do (see Breazeal 2001). Also, one has to note that
results should be improved if the algorithms presented here are embedded in
a complete cognitive robot which can use other cues than intonation (vision,
linguistic cues, semantic cues) to decide what is the emotional state of human

beings.
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This work should serve as a basis for necessary additional experiments with
more databases including speakers of very different languages in more realistic
settings. The use of only freely available softwares should allow other people

who already possess these databases to help to pursue this research.
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