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Abstract. A unified connectionist model of the perceptual magnet ef-
fect (the perceptual warping of vowels) is proposed, and relies on the
concept of population coding in neural maps. Unlike what has been of-
ten stated, we claim that the imprecision of the classical “sum of vectors”
coding/decoding scheme is not a drawback and can account for psycho-
logical observations. Furthermore, we show that coupling these neural
maps allows the formation of vowel systems, which are shared symbolic
systems, from initially continuous and uniform perception and produc-
tion. This has important consequences for existing theories of phonetics.

1 Introduction

Our perception of vowel sounds is biased by our knowledge of our own language
sound system. More precisely, Kuhl (1992) showed that when people are asked
to evaluate the similarity between couples of vowel sounds, they tend to perceive
two vowels closer than they are in a physical space when they are both close to a
vowel prototype of their language, and further than they are in the same physical
space when they are far from their vowel systems prototypes. In short, there is
a perceptual warping that collapses percepts around the vowel prototypes of a
given language. As a side effect, the perceptual difference between vowels be-
longing to different vowel categories is enhanced. This is refered in the literature
as the “magnet effect”. This is a particular instantiation of the well known and
widely spread across modalities phenomenon of categorical perception, which
Harnad (1987) defines as: “Categorical perception (CP) occurs when equal-sized
physical differences in the signals arriving at our sensory receptors are perceived
as smaller within categories and larger between categories”.

Several connectionnists models of categorical perception, and in particular
for the “magnet effect”, have been developed. Among them, there are 2 broad
categories: on the one hand, models like the Brain-State-in-a-Box of Anderson et
al. (1977) or the backpropagation based model of Harnad (Harnad and Damper,
1997) which consist in training a feedforward neural network to reproduce its
input point as outputs, with standard supervised learning training, in particular
back-propagation ; on the other hand, models like the one of Guenther and Gadja
(1996) which are based on the unsupervised training and self-organization of
neural maps whose activity is interpreted with population codes as used in the
pionneer work of Georgopoulos and colleagues (1988). Both kind of models have
advantages and drawbacks.
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The first group of models provides more than the simple ability to simulate
“magnet effect” like phenomena: it provides also the ability to categorize and
identify stimuli, which allows to model on the one hand the ability to categorize,
and also other aspects of categorical perception such as those concerning deci-
sion boundaries (Harnad et and Damper, 1997). The drawbacks of these models
are that they are not very biologically plausible and need supervised training
mechanisms (the BSB model is certainly more interesting from a cognitive mod-
eling point of view than back-propagation training, especially for its modeling of
categories as attractors, but it is brittle as Harnad and Damper 1997 explain).
The model of Guenther does not have these drawbacks since there are many neu-
rological evidences in favor of it, but looses the ability to categorize and identify
stimuli. Moreover, no real comparison has been done so far to our knowledge.

In this paper, we propose to reformulate the model of Guenther in such a way
that it can be interpreted in the framework of auto-associators, which allows a
unified model of the “perceptual magnet effect”, and extend it so as to provide
the ability to categorize in a way similar to the BSB model. Moreover, we present
a new experimental setup in which these neural maps are not used any more
only to make models of the environmental vowels, but also for the production of
vowels. Additionnally, instead of having one neural map that learns an already
existing vowel system, we have many agents, each endowed with the neural
system, that interact by producing sounds and listening to each other. They
behave exactly as if they were actually learning an existing sound system, except
that there is no such system (intially, each agent produces vowel that are spread
uniformly across the space). We show that a phenomenon of self-organization
arises in which all agents crystallise in a state where the distribution of vowels
they produce is not uniform anymore, but comprises a number of sharply defined
peaks: they did create effectively a sound system from scratch. We will explain
why this has important implications for the current theories of the origins of
communication systems, and in particular human language and sound system.

The next section describes the new formulation of Guenther’s model, as well
as its extensions. The following section describes the crystallization of neural
maps when they are coupled. Then the result is replaced in a larger scientific
framework in the conclusion.

2 A Neural Map for the Perception of Sounds

This model is based on topological neural maps, as Guenther. This type of neural
network has been widely used for many models of cortical maps, which are
the neural devices that humans have to represent aspects of the outside world
(acoustic, visual, touch etc...). There are 2 neuroscientific findings on which
our model relies, and that were initially made popular with the experiments of
Georgopoulos (1988): on the one hand, for each neuron/receptive field in the
map there exist a stimulus vector to which it responds maximally (and the
response decreases when stimuli get further from this vector) ; on the other
hand, from the set of activities of all neurons at a given moment one can predict
the perceived stimulus or the motor output, by computing what is termed the
population vector (see Georgopoulos 1988): it is the sum of all prefered vectors
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of the neurons ponderated by their activity (normalized like here since we are
intereseted in both direction and amplitude of the stimulus vector). When there
are many neurons and the preferred vectors are uniformly spread across the
space, the population vector corresponds accurately to the stimulus that gave rise
to the activities of neurons, while when the distribution is inhomogeneous, some
imprecisions appear. This imprecision has been the subjects of rich research, and
many people proposed more precise variants (see Abbot and Salinas, 1996) to the
formula of Georgopoulos because they assumed the sensory system coded exactly
stimuli (and hence the formula of Georgopoulos must be somewhat false). On
the contrary here we will show that this imprecision allows the interpretation of
“magnet effect” like psychological phenomena, i.e. sensory illusions, and so may
be a fundamental characteristic of neural maps.

Hence here a neural map consists of a set of neurons ni whose “preferred”
stimulus vector is noted vi. The activity of neuron ni when presented stimulus
v is computed with a gaussian function: act(ni) = e−dist(vi,v)2/σ2

(1) with sigma
being a parameter of the simulation (to which it is very robust). The popula-

tion vector is then: pop(v) =
∑

i
act(ni)∗vi∑
i
act(ni)

(2) The normalizing term is necessary

here since we are not only interested in the direction of vectors. There are argu-
ments for this being biologically acceptable (see Reggia 199?). Stimuli are here
2 dimensional, corresponding to the first two formants of vowel sounds. The dif-
ference with Guenther’s model is that we use distances and gaussians while he
uses scalar products and normalized vectors with agonist-antagonistic coding.
Our formulation allows to unify this neural map model with auto-associators:
indeed, (2) corresponds exactly to the Nadaraya-Watson estimator/regression

formula (1964): f(v) =
∑

i
K(v,vi)∗f(vi)∑

i
K(v,vi)

(3) that is used to approximate some

function f given a set of data points (vi, f(vi), and where K is a kernel func-
tion. (2) can be mapped to (3) by taking a gaussian as the kernel function and
f(vi) = vi, i.e. f = Id, which means that neural maps behave exactly like an
auto-associator.

Initially, a neural map is formed by initializing the preferred vectors of neu-
rons (i.e. their weights in a biological implementations) to random vectors. This
is actually done through a babbling phase in a refined version of the model
shortly described in next section. It means that the vi are uniformly spread
across the space. This can be visualized by plotting all the vi as in one of the
squares of figure 1. To visualize how agents initially perceive the vowel sound
world in a way comparable to Kuhl’s experiments, we can plot all the pop(v)
corresponding to a set of stimulus whose vectors values are the intersections of
a regular grid covering the whole space. Figure 2 is an example of such an ini-
tial perceptual initial state: we see that the grid is nearly not deformed, which
means as predicted by theoretical results, that the population vector is a rather
accurate coding of the input space.

Then the learning mechanism used to updated these weights when presented
a vowel sound stimulus v consists in shifting slightly these vectors towards the
stimulus vectors when the vi is close to it (activation is very high), shifting it
away when it is in mid-range, and no shifting when it is far. In brief, this is a
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Fig. 1. Neural map at the beginning

sort of mexican hat based competitive learning mechanism. The actual formula
is δvi = mexicanHatFunction(dist(v, vi)) ∗ (v − vi). Furthermore, here a neural
map represents an underlying vowel sound distribution, that one can compute by
adding gaussians centered on all vi’s and then normalizing. Learning consists in
adjusting neurons so that the coded distribution corresponds to the distribution
of heard vowels.

When learning an existing sound system, agents are presented with vowel
sounds coming from an existing vowel system (basically consisting of points
grouped in as many clusters as there are vowels). As in experiments performed
by Guenther, the kind of results we obtain are similar to what one can see on
figures 4 (repartition of neurons) and 5 (image of a regular input grid), and fits
perfectly well to experimental data found by Kuhl: the perceptual space has
warped, i.e. input vowels close to the center of regions corresponding to a vowel
of the language are perceive even closer and vice versa. This is due to the uneven
repartition of neurons coupled with the imprecision of the population vector. A
more precise way to visualize this is to plot the warping function with arrows
giving the exact shift for a number of example points. Figure 7 is an example
of warping function. What is interesting is that this looks like the plotting of
attractor basins of dynamical systems. This leads to a possible refinement of the
model that confers it the status of dynamical system and the ability to catego-
rize/identify stimuli: as in the BSB model, the output of the neural map, pop(v)
can be re-directed to the input, thus making the map recurrent. The fact that
this recurrent network has at the end effectively point attractors corresponding
to prototypes for categories of vowels, which is suggested by figure 7, can easily
be shown by casting formally the map onto a continuous hopfield network. This
will be detailed in a longer paper.

3 Coupling Neural Maps

In the last section, neural maps were used only to perceive the sound world. One
can imagine that they are also used in the process of vowel production (which
is very sensible according to psychological evidence): more precisely, that the
vowels produced by an agent at a given moment of its life follow the distribution
coded by its perception map. This can be implemented in a biological plausile
way by coupling the acoustic map with an articulatory/motor map, as will be
detailed in a longer paper. Still, here we are only interested in the consequence
of using perception maps to produce sounds.

The experiment presented consists in having a population of agents (typ-
ically 20 agents), each endowed with the neural system described previously.
They interact by pairs of two (following the evolutionary cultural scheme de-
vised in many models of the origins of language, see Steels 1997, Steels and
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Fig. 2. Perceptual (non-)warping at the
beginning (image of a regular grid of
stimuli)

Fig. 3. Neural maps after 1000 interac-
tions

Fig. 4. Perceptual warping after 1000
interactions

Fig. 5. Representation of the values of
the warping at the edges of a regular
gfrid

Oudeyer, 2000): at each round, one agent is choosen randomly and produces
a sound according to the distribution coded by its map, and another agent is
choosen randomly, hears the vowels and updates its map in the same way as
above. Their maps are initially built by setting the vi to random values, which
means that the vowel they produce initially follow a quasi-uniform distribution.
Figure 1 shows the initial state of neural maps for 3 agents in a simulation, fig-
ure 2 shows their initial perceptual warping (quasi non-existant). What is very
interesting, is that this situation is not stable: rapidly, agents get in the a situ-
ation like on figures 3 and 4 which are the correspondances of figures 2 and 3
after 1000 interactions. Moreover, this final situation is experimentally stable,
this is why we say that agents “crystalize”. In fact, symmetry has broken and a
positive feedback loop made that a distribution composed of a number of very
well defined peaks appears, being the same for all agents (but different between
2 experiments). This final state is characteristic of the distribution of vowels in
human languages. Moreover, because we added to the network the possibility
to relax through recurrent connections, the peaks in vowel distributions are also
attractors of the neural maps, and so good models of a categorizing behavior.
In brief, this shows how a full fledged vowel system, which means not only a
peaked distribution but also a shared system of discrete/symbolic units, can
emerge through self-organization out of the coupling of unsupervised learning
system.

4 Conclusion

The paper presented a connectionist model of 3 important phenomena: 1) the
perceptual warping of vowels, due to the imprecision of population coding when
receptive fields are not uniformly distributed ; 2) the emergence of a categorizing
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behavior/discrete perception through the combined effect of imprecision and re-
current connections ; 3) the emergence of shared vowel systems with the coupling
of unsupervised learning system, through symmetry breaking due to stochastic-
ity and positive feedback loops. The last point is of particular importance to
the field of linguistics. Indeed, many researchers (Archangeli and Langendoen
1997), defending nativist theories of language, think humans need to have in
their genome many pre-specifications of phonemes, in particular vowel systems,
and believe that biological evolution is responsible for their origins. For instance,
(Kuhl 2000) proposed that we are innately given a number of vowel prototypes
(all those that are “possible” in human languages), specified genetically, and
that learning consists in pruning those that are not used in the environment.
Our model shows that there is no need for linguistically specific devices. More
importantly, nativist theories are faced with the problem of how these specifica-
tions got into the genes, to which they never provided some possible operational
accounts. Our model shows that very generic neural devices can answer the ques-
tions, and need not biological evolution, but only cultural evolution (of course
these neural devices were built through biological evolution, but their genericity
indicates that language played certainly very little role for their selection).
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