Crossover in Grammatical Evolution: The
Search Continues

Michael O’Neill', Conor Ryan!, Maarten Keijzer?, and Mike Cattolico®

! Dept. Of Computer Science And Information Systems,
University of Limerick, Ireland.
{Michael.ONeill|Conor.Ryan}@ul.ie
? Danish Hydraulic Institute, Denmark. mak@dhi .dk
3 Tiger Mountain Scientific. mike@tigerscience.com

Abstract. Grammatical Evolution is an evolutionary automatic pro-
gramming algorithm that can produce code in any language, requiring
as inputs a BNF grammar definition describing the output language, and
the fitness function. The utility of crossover in GP systems has been hotly
debated for some time, and this debate has also arisen with respect to
Grammatical Evolution. This paper serves to continue an analysis of the
crossover operator in Grammatical Evolution by looking at the result of
turning off crossover, and by exchanging randomly generated blocks in
a headless chicken-like crossover. Results show that crossover in Gram-
matical Evolution is essential on the problem domains examined. The
mechanism of one-point crossover in Grammatical Evolution is discussed,
resulting in the discovery of some interesting properties that could yield
an insight into the operator’s success.

1 Introduction

While crossover is generally accepted as an explorative operator in string
based G.A.s [4] the benefit or otherwise of employing crossover in tree based
Genetic Programming hasn’t been fully established. Work such as [2] went as
far as to dismiss GP as a evolutionary search method due to its use of trees,
while [1] presented results which suggested that crossover in GP provides little
benefit over randomly generating subtrees. Langdon and Francone et. al. have
also addressed this issue, the former on tree based GP and the latter on linear
structures, and have both introduced new crossover operators in an attempt to
improve exploration [3] [7].

These exploit the idea of a homologous crossover that draws inspiration from
the molecular biological crossover process. The principal exploited being the fact
that in nature the entities swapping genetic material only swap fragments which
belong to the same position and are of similar size, but which do not necessarily
have the same functionality. This, it is proposed, will result in more productive
crossover events, and results from both Langdon and Francone et. al. provide
evidence to support this claim. A consequence arising from these conservative
crossover operators is the reduction of the bloat phenomenon, occurring due to

the fact that these new operators are less destructive [8]. As with many non-
binary representations, it is often not clear how much useful genetic material is
being exchanged during crossover, and thus not clear how much exploration is
actually taking place.

Grammatical Evolution (GE) an evolutionary algorithm that can evolve code
in any language, utilises linear genomes [9] [17]. As with GP systems, GE has
come under fire for its seemingly destructive crossover operator, a simple one-
point crossover inspired by GAs. Previously we have sought answers to questions
such as how destructive one-point crossover operator is, and could the system
benefit from a homologous-like crossover operator as proposed for tree-based GP,
and the linear AIM GP [11]. Initial results suggested that this destructive be-
haviour did not transpire, at the beginning of runs results show that the number
of crossover events that produce individuals which are better than those in the
current population is very high. On average, this ratio remains relatively consis-
tent throughout runs, which tells us that crossover is in fact a useful operator in
recombining individuals effectively, rather than causing mass destruction. The
idea of an homologous crossover has also been explored in the context of GE
[11], but results demonstrated the superiority of the simple one-point crossover
operator currently adopted.

We now continue the analysis of crossover in GE by turning off crossover,
and by exchanging random blocks during crossover in a headless chicken-type
crossover [1]. Before a description of our findings we firstly give an overview of
GE and introduce the one-point crossover operator adopted.

2 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve
computer programs in any language. Rather than representing the programs
as parse trees, as in standard GP [6], we use a linear genome representation.
Each individual, a variable length binary string, contains in its codons (groups
of 8 bits) the information to select production rules from a Backus Naur Form
(BNF) grammar. BNF is a notation which represents a language in the form of
production rules. It is comprised of a set of non-terminals which can be mapped
to elements of the set of terminals, according to the production rules. An example
excerpt from a BNF grammar is given below. These productions state that S
can be replaced with any one of the non-terminals expr, if-stmt, or loop.

In order to select a rule in GE, the next codon value on the genome is
generated and placed in the following formula:

Rule = Codon Integer Value

MOD
Number of Rules for this nonterminal

If the next codon integer value was 4, given that we have 3 rules to select from
as in the above example, we get 4 MOD 3 = 1. S will therefore be replaced
with the non-terminal if-stmt.

Beginning from the left hand side of the genome codon integer values are
generated and used to select rules from the BNF grammar, until one of the
following situations arise:

1. A complete program is generated. This occurs when all the non-terminals
in the expression being mapped, are transformed into elements from the
terminal set of the BNF grammar.

2. The end of the genome is reached, in which case the wrapping operator is
invoked. This results in the return of the genome reading frame to the left
hand side of the genome once again. The reading of codons will then continue
unless an upper threshold representing the maximum number of wrapping
events has occurred during this individual’s mapping process. This threshold
is currently set at ten events.

3. In the event that a threshold on the number of wrapping events has oc-
curred and the individual is still incompletely mapped, the mapping process
is halted, and the individual assigned the lowest possible fitness value.

GE uses a steady state replacement mechanism [16], such that, two par-
ents produce two children, the best of which replaces the worst individual in
the current population if the child has a greater fitness. The standard genetic
operators of point mutation (applied at a probability of pmut (see Table 2) to
each bit of the chromosome), and crossover (one point as outlined in Section 3)
are adopted. It also employs a duplication operator that duplicates a random
number of codons and inserts these into the penultimate codon position on the
genome. A full description of GE can be found in [9].

3 The GE Crossover Operator

By default, GE employs a standard one point crossover operator as follows:
(i) Two crossover points are selected at random, one on each individual (ii) The
segments on the right hand side of each individual are then swapped. As noted
in Section 1, it has been suggested that the cost of exploration via crossover is
the possible destruction of building blocks. Indeed, there has been work which
shows that a reason for the increase in bloat in many GP runs is to protect
individuals from destructive crossover.

It is argued here that bloat occurs as a mechanism to prevent the disruption
of functional parts of the individual arising from crossover events. To counteract
the potentially destructive property of the crossover operator, and to indirectly
reduce the occurrence of bloat, novel crossover operators have been developed
[7][3]- Dubbed homologous crossover, these operators draw inspiration from the
molecular biological process of crossover in which the chromosomes to crossover
align, and common crossover points are selected on each individual (i.e. at the
same locus), and typically a two point crossover occurs.

Results reported in [11] suggest that GE’s one point crossover is not as dam-
aging as has been suggested and appears to act as a global search operator
throughout the duration of a run.

4 Experimental Approach

We wish to examine the strength of crossover in GE with a two pronged
approach. Firstly, the probability of crossover will be set to zero, which effec-
tively switches off the operator. Secondly, we will replace the standard one point
crossover adopted with a headless chicken-type crossover. The headless chicken
crossover operates by selecting crossover points as normal, but, instead of ex-
changing the blocks as is, new blocks are generated with a random bit generator.

For each experiment 50 runs were carried out on the Santa Fe ant trail
and a symbolic regression problem [6]. Performance was ascertained by using a
cumulative frequency of success measure. Tableau’s describing the parameters
and terminals are given in Tables 2 and 1, and the grammars for both problems
are given in Appendix A and B.

5 Results

Results for the experiments can be seen in Figures 1 and 2. These graphs
clearly demonstrate the damaging effects of the headless chicken crossover and
switching crossover off completely. On the symbolic regression problem GE fails
to find solutions in both of these cases, while on the Santa Fe ant trail the
system’s success rate falls off dramatically.

These results clearly demonstrate that the one point crossover operator is
important to the effective operation of the system for the problems examined.
Notice that mutation also makes a small difference to the success rate.

Table 1. Grammatical Evolution Tableau for Symbolic Regression

Objective :

Find a function of one independent variable and one
dependent variable, in symbolic form that fits a given
sample of 20 (z;,y;) data points, where the target
function is the quartic polynomial X* + X° + X2 + X

Terminal Operands:

X (the independent variable)

Terminal Operators

The binary operators +, *, —, and / (protected division used)
The unary operators Sin, Cos, Exp and Log

Fitness cases

The given sample of 20 data points in the interval [—1, +1]

Raw Fitness

The sum, taken over the 20 fitness cases, of the absolute error

Standardised Fitness

Same as raw fitness

Hits

The number of fitness cases for which the error
is less than 0.01

‘Wrapper

Standard productions to generate C functions

Parameters

Population = 500, Generations = 50

pmut = 0.01, pcross = 0.9

Table 2. Grammatical Evolution Tableau for the Santa Fe Trail

Objective :

Find a computer program to control an artificial ant
so that it can find all 89 pieces of food located on
the Santa Fe Trail.

Terminal Operators: |left(), right(), move(), food_ahead()

Fitness cases

One fitness case

Raw Fitness

Number of pieces of food before the
ant times out with 615 operations.

Standardised Fitness|Total number of pieces of

food less the raw fitness.

Hits Same as raw fitness.
Wrapper Standard productions to generate C functions
Parameters Population = 500, Generations = 50

pmut = 0.01, pcross = 0.9

Crossover in Grammatical Evolution (Symbolic Regression)

50 t t t
[= 1=
B
45 - .
w5}
40 + i 1 point —+—— 1
Headless --->---
Off ----%---
1 point (No Mutation) =
35 | Headless (No Mutation) —--&--- _
n
a
[}
S
=]
3 30 g
ks
&
<3
S 25 g
]
w
[}
=
< 20 -
=}
£
S
(8]
15 -
10 -
5 L 4
o - - - - - - - -
(o} 5 10 15 20 25 30 35 40 45 50
Generation

Fig. 1. A comparison of GE’s performance on the symbolic regression problem is illus-
trated. When the headless chicken crossover is used the system fails to find solutions
to this problem. This is also the case when crossover is switched off.

Crossover in Grammatical Evolution (Santa Fe Trail)

45 T T T T T T T T T
40 + 1 point —+— -
Headless --->---
. (Off ---x---
1 point(No Mutation)
Headless (No Mutation) --—#-- =i
35 <
=
g 30 I i
[/&
Q
=] .
2 b
k)
S 25 b 4
9
=
)
E
=3
o
% 20 [u
= ;
ks -
S -
E -
=3
© 15 4
10 .
S
-
S S S S S S S
15 20 25 30 35 40 45 50
Generation

Fig. 2. A comparison of GE’s performance on the Santa Fe ant trail can be seen. The
graph clearly demonstrates the damaging effects of the headless chicken crossover and
the case when crossover is switched off.

6 Discussion

The question arises then, as to why GE’s one point crossover operator is so
productive. If we look at the effect the operator plays on a parse tree represen-
tation of the programs undergoing crossover we begin to see more clearly the
mechanism of this operator and it’s search properties.

When mapping a string to an individual, GE always works with the left
most non-terminal. Thus, if one were to look at the individual’s corresponding
parse tree, one would see that the tree is constructed in a pre-order fashion.
Furthermore, if the individual is over-specified, that is, has codons left over,
they form a tail, which is, effectively, a stack of codons, as illustrated in Fig. 3.

If, during a crossover event, one tried to map the first half of the remaining
string, the result not surprisingly, would usually be an incomplete tree. However,
the tree would not be incomplete in the same manner as one taken from the
middle of a GP crossover event. The pre-order nature of the mapping is such
that the result is similar to that of Fig. 3 and Fig. 4. That is, the tree is left with
a spine and several ripple sites from which one or more sub-trees, dubbed ripple
trees are removed. This crossover behaviour, which is an inherent property of
GE, was first noticed by [5] where they termed it ripple crossover.

Each of the ripple trees is effectively dismantled and returned to the stack
of codons in the individual’s tail. Crossover then involves individuals swapping
tails so that, when evaluating the offspring, the ripple sites on the spine will be
filled using codons from the other parent.

There is no guarantee that the tail from the other parent will be of the same
length, or even that it was used in the same place on the other spine. This
means that a codon that represented which choice to make could suddenly be
expected to make a choice from a completely different non-terminal, possibly
even with a different number of choices. Fortunately, GE evaluates codons in
context, that is, the exact meaning of a codon is determined by those codons
that immediately precede it. Thus, we can say that GE codons have intrinsic
polymorphism[5], as they can be used in any part of the grammar. Furthermore,
if the meaning of one codon changes, the change “ripples” through all the rest of
the codons. This means that a group of codons that coded a particular sub-tree
on one spine can code an entirely different sub-tree when employed by another
spine. The power of intrinsic polymorphism can even reach between the ripple
trees, in that if one no longer needs all its codons, they are passed to the next
ripple tree and, conversely, if it now requires more codons, it can obtain them
from its neighbouring ripple tree.

@ Eu==(+EE) | ((EE) | (*EE) | (WEE) | X|Y

(b) 86/4594520522

\ One-Point Crossover Site

© E

°E

1 ug BE

12X uy

*

(d)

Fig. 3. The ripple effect of one-point crossover illustrated using an example GE indi-
vidual represented as a string of codon integer values (b) and its equivalent derivation
(c) and parse trees (d). The codon integer values in (b) represent the rule number to
be selected from the grammar outlined in (a), with the part shaded gray corresponding
to the values used to produce the trees in (c) and (d), the remaining integers are an
intron. Fig. 4 shows the resulting spine with ripple sites and tails.

@ (b)
Tail (Exchanged with mate)
Spine 4594520522
E 1
, A\ o e
* E ! Tail (Material obtained from mate
. /’\ used to complete ripples sitesin (a))
?
+ 2 ?
443514
Ripple Sites

Fig. 4. Illustrated are the spine and the resulting ripple sites (a) and tails (b)(c) pro-
duced as a consequence of the one-point crossover in Fig. 3

7 Conclusions & Future Work

We have previously demonstrated the ability of GE’s one point crossover as
an operator that exploits an exchange of blocks in a productive manner on the
problem domains examined. Results presented here also show the detrimental
effects of switching off crossover for GE on these problems, in one case crossover
being essential to the generation of a correct solution.

A discussion on the mechanism of GE’s one point crossover reveals an inter-
esting ripple property when it’s effect on parse trees is examined, providing a
possible explanation as to why this operator may be so profitable for GE. Fur-
ther investigations will be required in order to ascertain the usefulness of this
ripple crossover mechanism. It is proposed that the key to the system is that
it exchanges on average, half of the genetic material of the parents during each
crossover, regardless of the size of the individuals. This is made possible by a
combination of the linear representation of the individuals and the property of
intrinsic polymorphism, which permits any part of an individual’s genome to
legally be applied to any part of the grammar [5].

This paper also discuss the notion of spines, that is, the part of the tree
that remains after crossover occurs. This could be the first step on the road
to identifying a schema theorem for GE, as the system is clearly growing these
rooted structures, in a manner similar to [10].

References

1. Angeline, P.J. 1997. Subtree Crossover: Building block engine or macromutation?
In Proceedings of GP’97, pages 9-17.

2. Collins, R. 1992. Studies in Artificial Life. PhD thesis. University of California,
Los Angeles.

3. Francone F. D., Banzhaf W., Conrads M, Nordin P. 1999. Homologous Crossover
in Genetic Programming. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO 99, pages 1021-1038.

4. Goldberg, David E. 1989. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison Wesley.

5. Keijzer M., Ryan C., O’Neill M., Cattolico M., Babovic V. 2001. Ripple Crossover
in Genetic Programming. In Proceedings of EuroGP 2001.

6. Koza, J. 1992. Genetic Programming. MIT Press.

7. Langdon W.B. 1999. Size Fair and Homologous Tree Genetic Programming
Crossovers. In Proceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO 99, pages 1092-1097.

8. Langdon W.B.; Soule T., Poli R., and Foster J.A. 1999. The Evolution of Size
and Shape. In Advances in Genetic Programming Volume 3, MIT Press 1999, pp
162-190.

9. O’Neill M. and Ryan C. 2001. Grammatical Evolution. IEEE Trans. Evolutionary
Computation, 2001.

10. Justinian P. Rosca and Dana H. Ballard. 1999. Rooted-Tree Schemata in Genetic
Programming, in Advances in Genetic Programming 3, Chapter 11, pp 243-271,
1999, MIT Press.

11.

12.

13.

14.

15.

16.

17.

A

O’Neill M. and Ryan C. 2000. Crossover in Grammatical Evolution: A Smooth
Operator? Lecture Notes in Computer Science 1802, Proceedings of the European
Conference on Genetic Programming, pages 149-162. Springer-Verlag.

O’Neill M. and Ryan C. 1999. Genetic Code Degeneracy: Implications for Gram-
matical Evolution and Beyond. In Proceedings of the Fifth European Conference
on Artificial Life.

O’Neill M. and Ryan C. 1999. Under the Hood of Grammatical Evolution. In
Proceedings of the Genetic & Evolutionary Computation Conference 1999.
O’Neill M. and Ryan C. 1999. Evolving Multi-line Compilable C Programs. Lecture
Notes in Computer Science 1598, Proceedings of the Second European Workshop
on Genetic Programming, pages 83-92. Springer-Verlag.

Poli Riccardo, Langdon W.B. 1998. On the Search Properties of Different Crossover
Operators in Genetic Programming. In Proceedings of the Third annual Genetic
Programming conference 1998, pages 293-301.

Ryan C. and O’Neill M. 1998. Grammatical Evolution: A Steady State Approach.
In Late Breaking Papers, Genetic Programming 1998, pages 180-185.

Ryan C., Collins J.J., and O’Neill M. 1998. Grammatical Evolution: Evolving
Programs for an Arbitrary Language. Lecture Notes in Computer Science 1391,
Proceedings of the First European Workshop on Genetic Programming, pages 83-
95. Springer-Verlag.

Symbolic Regression Grammar

N = {expr, op,pre_op}
T = {Sin,Cos, Exp, Log,+,—, /,*,X,()}
S =< expr >

And P can be represented as:

(1) <expr> ::

(2) <op> ::

(3) <pre-op> ::

(4) <var> ::

= <expr> <op> <expr> (A)
| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>))
| <var> (D)

=+ (4)
| - (B)
VAN(®)
| * (D)

= Sin (A)
| Cos (B)
| Exp (C)
| Log (D)

1]
>

B Santa Fe Trail Grammar

N = {code,line,if — statement, op}

S =< code >
And P can be represented as:

(1) <code> :: = <line> (h)
|<code><1line> (B)
(2) <line> :: = <if-statement> (h)
| <op> (B)

(3) <if-statement> :: = if(food_ahead()){<line>} else{<line>}
(5) <op> :: = left () @)
| right() ®

| move() ©

