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Abstract

Here we describe how some important scaling laws observed in

the distribution of languages on Earth can emerge from a simple com-

puter simulation. The proposed language dynamics includes processes

of selective geographic colonization, linguistic anomalous diffusion and

mutation, and interaction among populations that occupy different re-

gions. It is found that the dependence of the linguistic diversity on

the area after colonization displays two power law regimes, both de-

scribed by critical exponents which are dependent on the mutation

probability. Most importantly for the future prospect of world’s pop-

ulation, our results show that the linguistic diversity always decrease

to an asymptotic very small value if large areas and sufficiently long

times of interaction among populations are considered.

1 Introduction

The origins of the languages have been an issue of investigation and broad
interest since ancient times, and recent advances in archeology, genetics and
linguistics have been important to a better comprehension of the linguistic
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diversification [1]. However, there is not a universal consensus concerning
the evolution of this diversity [2]. Some similarities among distinct groups
of languages suggest that they must have a common ancestor. By compar-
ing languages that belong to a same family, linguists try to construct the
hypothetical ancestor language. According to the out of Africa hypothe-

sis, the modern human beings originated in Africa about 100,000 years ago
and substituted all the populations outside Africa. This hypothesis receives
strong confirmation from the family tree based on a sampling of nuclear DNA
from a number of living populations [3, 4]. Molecular genetics can also give
us some insights regarding to the distribution of languages on the Earth.
Cavalli-Sforza [5] compared the family tree which one obtains from molec-
ular genetic data at a world level with a family tree established using only
linguistic data and his results indicate a fair degree of overlap.

The future of languages is a matter of interest and concern as well [6]. It
is estimated that at least 50% of the existing languages may be extinct in
the next century [7, 8]. While one hundred of languages are spoken by about
90% of the world population, most languages are present in a single or in a
few small regions. The loss of linguistic diversity is a subject of worry not
only by the linguists, because languages provide an important way to better
understand the past of our species. Even more, since some languages possess
a very elaborated vocabulary to describe the world, the loss would imply also
the loss of ecological knowledge.

By analyzing all the approximately 6,700 languages on Earth, Gomes et
al [9] showed that (i) the language diversity scales with area according to
a power law D ∼ Az, where z = 0.41 ± 0.03, over almost six decades, and
(ii) the number of languages n spoken by a population of size larger than
N , n(> N), also display a power law behaviour: n(> N) ∼ N−τ . The
critical exponent z is comparable to the ones we observe in ecology for the
relationships between species diversity and area, which are usually in the
range 0.1 to 0.45 [10, 11, 12].

Here we study the evolution of the linguistic diversity by introducing a
spatial model which considers the underlying diffusion mechanisms that gen-
erate and sustain this diversity. The model is used to describe the occupation
of a given area by populations speaking various languages. In the process
of colonization of regions, language mutation or differentiation and language
substitution can take place, and so increase the linguistic diversity. In the
context of language dynamics, mutations are variations of languages with re-
spect to a common ancestor language. The probability of producing reverse
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mutations is zero, that is, the language generated by a mutation is always
different of the previous ones.

2 Model

Our model is defined on a two-dimensional lattice composed by A = L × L
sites with periodic boundary conditions. Each lattice site si represents a re-
gion that can be occupied by a population speaking just one language. We
ascribe to each site a given capability Ci, whose value we estimate from a
uniform distribution, in the range 0-1. This capability means the amount
of resources available to the population which will colonize that place. It
is expected that the population size in each cell is proportional to the ca-
pability Ci. Therefore, the populations are distributed in a heterogeneous
environment.

In the first step of the dynamics, we randomly choose one site of the
lattice to be colonized by a population that speaks the ancestor language.
To each language, we assign a fitness value f which is defined as the sum of
the capabilities of the sites containing populations which speak that specific
language. Therefore, the initial fitness of the ancestor language is the capa-
bility of the initial site. In the second step, one of the four nearest neighbors
of this site will be chosen to be colonized with probability proportional to its
capability. We assume that regions containing larger amount of resources are
more likely to be colonized faster than poor regions. The referred site is then
occupied by a population speaking the ancestor language or a mutant version
of it. The assumption of mutations mimics the situation at which one lan-
guage is initially spoken by populations in different regions, and after some
time, modifications of this initial language emerge in one or both populations
and the language split into two different languages. The probability of occur-
rence of a mutation in the process of propagation of the language is p = α

f
,

where α is a constant, and so the mutation probability is inversely propor-
tional to the fitness of the language. This rule for the mutation procedure,
we borrow from population genetics. We observe that small populations are
more vulnerable to genetic drift and the rate of drift is inversely proportional
to the population size [13]. Genetic drift is a mechanism of evolution that
acts to change the characteristics of species over time. It is a stochastic effect
that arises due the random sampling in the reproduction process.

In the subsequent steps, we check what are the empty sites which are
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Figure 1: Snapshot for a typical realization of the dynamics at the first
moment of colonization of all sites. The size lattice was L = 500 and α =
0.73.

on the boundary of the colonized cluster, and we choose one of those empty
sites according to their capabilities. Those ones with higher capabilities have
a higher likelihood to be occupied. We then choose the language to occupy
the cell among their neighboring sites. The languages with higher fitness
have a higher chance to colonize the cell. This process will continue up to
all sites be colonized. At this point, we verify the total number of languages
D. In order to give to the reader some insight about our model, in Figure
1 we present the snapshot for a typical realization of the dynamics at the
first moment of colonization of all sites. In this figure each color represent a
different language domain. The color bar shows the label for each language.
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3 Results and Discussion

In Figure 2, we show D as a function of the area A (total number of sites in
the lattice) for two different values of the constant α. We obtain each point
by taking averages over 100 independent simulations for L < 300, over 50
for L = 300, 400 and 500 and over 20 for L = 700. We notice from this
figure the existence of two distinct scaling regions, where D ∼ Az. When
α = 0.3, we estimate the exponent z = 0.43 ± 0.04 for 4 < A < 1, 000,
whereas z = 0.14 ± 0.02 for 1, 000 < A < 490, 000. When α = 0.73, we find
z = 0.88 ± 0.01 for 4 < A < 10, 000, and z = 0.35 ± 0.03 when 10, 000 <
A < 490, 000. For both values of α, we obtain exponents in agreement with
those observed for the distribution of languages on Earth [9]. Each power law
extends over approximately two or more decades. For small and intermediate
sized areas, the language diversity increases more quickly with the area, when
compared to large areas. When α > 0.9, it is not possible to distinguish the
two scaling regimes and in this case we estimate z = 1. As the simulation is
very time consuming for lattices of size L > 700, it is not perfectly clear for
us if the second regime is a true scaling or a transient regime with D going
to a constant value as A increases or perhaps with D growing logarithmically
with A for very large values of area.

In order to characterize the diffusion in this process we investigate the
time evolution of the average area Ā(t) occupied by the typical language. In
our model, one time step represents the process of colonization of just one
site by one language. The average area is

Ā(t) =

∑D(t)
i=1 Ai(t)

D(t)
(1)

where Ai(t) is the area occupied by the language i in time t and D(t) is the
diversity of languages in time t. By the end of the process of colonization we
have t = tf = L2, and

Ā(tf ) ∼ L2(1−z) (2)

since the total area is equal to L2 and the diversity is proportional to Az.
Ā(tf) is a measure of the capacity of the languages to diffuse or to spread
across the entire territory. Thus, the diffusion exponent dw can be introduced
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Figure 2: Number of languages D as a function of the area A for two values
of mutation probability p = α/f : α = 0.3, 0.73 (from bottom to top). The
exponents obtained for α = 0.3 are z = 0.43 ± 0.02 for 4 < A < 1, 000,
and z = 0.14 ± 0.02 for 1, 000 < A < 490, 000. For α = 0.73 we have
z = 0.88 ± 0.01 for 4 < A < 10, 000, and z = 0.35 ± 0.03 for 10, 000 < A <
490, 000.
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Figure 3: Evolution of Ā for α = 0.3 and L = 500. For this curve, we have
dw = 2.08.

using the relation [14]

Ā(tf) ∼ t
2/dw

f . (3)

From (2) and (3) we conclude that dw = 2/(1− z), and thus dw assumes the
standard Brownian value dB

w = 2 if z = 0. For 0 < z < 1 we have anomalous
diffusion and dw > 2, indicating a progressive difficulty for language diffusion.
For the current distribution of languages on Earth this exponent is dw =
3.4, reflecting the geographical limitations that languages have to face in
their process of expansion. This particular anomalous value is close to those
obtained for diffusion in two-dimensional percolation below the percolation
threshold [15]. We compare our previous estimative (Eq. (3)) with the value
of dw obtained by observing the evolution of Ā in the simulations and verify
a good agreement between them. In Figure 3 we illustrate the evolution of
Ā(t) for one run where α = 0.3 and L = 500. For this particular situation
we obtained dw = 2.08, i. e. an exponent close to the Brownian value.

Figure 4 displays the dependence of the exponents z and dw on the pa-
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Figure 4: Exponents z (o) and dw (�) as a function of α for (a) small and
intermediate areas and (b) large areas.
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Figure 5: Number of languages with population greater than N , n(> N), as
a function of N . n(> N) ∼ N τ with τ = 0.36 ± 0.01 for 20 < N < 10, 000.
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Figure 6: Number of languages D as a function of the area A for α = 0.73
after the process of interaction among populations. The distinct curves show
the cases where the fitness of the language that occupy the site is multiplied
by 1, 10 and 100 (from bottom to top).
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rameter α: we observe that for small and intermediate areas, z scales with
α as z ∼ α0.82±0.02, which means that a small increment of the mutation
probability results in a fast increasing of the diversity. For large areas z
is approximately constant for α ≤ 0.7 and quickly grows for α > 0.7 (this
sudden increase in z possibly reflects the finite size of the lattice).

In Figure 5 we plot the number of languages with population size greater
than N , n(> N), as a function of N . In order to obtain the curves, we
assume that each site contributes with 1 person to the population. The data
points were estimated over 10 independent runs with L = 500 and α = 0.73.
In close analogy with the distribution of languages on Earth [9], we find the
scaling regime n(> N) ∼ N−τ where τ = 0.36 ± 0.01, along almost three
decades in N .

After the populations have filled up the lattice, we initiate the second part
of our analysis, which consider the process of interaction among populations.
This interaction represents the flow of people that speak different languages
among nations or even the people using new technologies which permit their
communication throughout the world. Now, each time step corresponds to
visit all cells on the lattice. In the visit to a given cell we compare the fitness
of its language with the fitness values of languages which are spoken in its
neighborhood. One of the five languages will be chosen to invade (or to stay)
in that site with probability proportional to their fitness. The probability of
mutation is, as before, proportional to the inverse of the fitness of the invading
or staying language. After the stabilization, we estimate the average of the
number of languages over a given time interval. In Figure 6 we plot the
number of languages as a function of the area after considering the process
of interaction. We obtain each point taking averages over 10 independent
simulations. We also show the cases where the fitness of the language that
is already in the site is increased by a factor 10 and 100 in order to compete
with the neighbors. The purpose of this augment in the fitness is to increase
the selective advantage of the population that already colonizes the site.
When this selective advantage is small, the number of languages presents a
linear growth and then decreases with the area up to reaching an asymptotic
value. When the selective advantage is high, the number of languages initially
presents a linear growth with the area, followed by a regime of fluctuation of
the diversity and above a given area threshold it decreases abruptly.

For small areas, the fitnesses of populations are not high when compared
to those one which can be obtained by populations in large areas. Therefore,
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in order to compete with the populations which already colonize the sites (and
possess a selective advantage), languages need to colonize large areas. This
is the reason why we observe the initial linear growth of language diversity
for small area when we consider a high selective advantage. Above a certain
area, some populations have a very high fitness in order to compete with
other languages and dominate. Thus, the diversity drastically decreases and
only a few languages survive.

4 Conclusions

We have introduced in this work a simple computer model to simulate some
aspects of the linguistic diversity on Earth. Surprisingly, this model is able
to generate important scaling laws (Figs. 2 and 5) in close resemblance to
those observed in the actual distribution of languages [9].

We verified that the mutation probability of languages displays a decisive
role for the maintenance of the linguistic diversity. On the other hand, the
diffusion exponent dw is very large for values of α close to 1 (Fig. 4), that
is, in the situation in which we have a high diversity per area, indicating
that languages do not have much facility to diffuse and remain essentially
localized in linguistic niches.

We do not discard the possibility that the presence of two scaling regimes
for the linguistic diversity in our simulations may be a consequence of the
regular structure of the lattice. In order to investigate the role of the topology
in this model, we are currently studying the process of diffusion of languages
in a percolation cluster.

After the process of interaction among languages we observed the surviv-
ing of just a few languages with a very high fitness (Fig. 6). From this, we
can ascertain how important is for linguistic diversity to have well stablished
languages spoken by a large number of people.
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