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For the members of a population of animals to enjoy the benefit that might
accrue from the exchange of information, their communicative behavior must
be coordinated — most of the time that an animal sends a signal in some
type of situation, others respond to the signal in a manner appropriate to the
situation that inspired it. We investigate how coordinated communication
could emerge among animals capable of producing and responding to simple
signals, and how such coordination could be maintained, when new members
of a population learn to communicate by observing the other members. We
describe a learning procedure that enables an individual to achieve the max-
imum possible accuracy in communicating with a given population. If all
new members of the population use this procedure, or one of the approxima-
tions to it we describe, the coordination of the population’s communication
will steadily increase, ultimately yielding a highly coordinated system. Our
results are derived mathematically from a formal model of simple commu-
nication systems, and are illustrated with computational simulations. We
discuss their biological plausibility and their relevance to more complex com-
munication systems, including human language.
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1 Introduction

Communication enables animals to influence each others’ behavior, often in
beneficial ways. This benefit requires that the communicative behavior of
the animals be “coordinated,” in the sense that most of the time that one
animal sends a signal in some type of situation, other animals respond ap-
propriately. Populations of a number of species of primates, other mammals,
and birds, have highly coordinated alarm call systems in which the presence
of a specific type of predator is indicated with a specific type of vocalization
(Struhsaker, 1967; Cheney and Seyfarth, 1990; Slobodchikoff, et al., 1991;
Evans, et al., 1993; Hoogland, 1983, 1995; Dasilva, et al., 1994; Blumstein,
1995; Evans and Marler, 1995; Smith, 1996; Hauser, 1996).

Though these alarm call systems appear to be mostly innate, our focus
in this paper is on procedures whereby new (e.g., juvenile) members of a
population could learn to communicate with the other members by observing
their communicative behavior. Two apparently distinct issues are relevant
to the evaluation of such learning procedures. First, the procedure must
enable the new members to accurately acquire the communication system
of the population, even though their observations may be limited, noisy,
or otherwise misleading. Second, the learning procedure used by its new
members will affect the population’s communication system over time. The
use of a particular procedure might result in the population’s communication
increasing in coordination, ultimately yielding a nearly optimally coordinated
system. If a learning procedure were to satisfy both criteria, it could explain
how learned communication systems are maintained over time, as well as
how they are established in the first place.

In section 2 we describe a formal model of simple communication systems that
we use to explore these issues. We treat an animal’s communicative behavior
as the manifestation of a set of behavioral and perceptual dispositions. Upon
encountering certain types of situations, the animal may tend to perform
specific signaling actions. We refer to this as the animal’s “transmission
behavior.” For each of a set of signaling actions that it can recognize others
performing, it may evince some sort of awareness that a specific type of
situation is occurrent, perhaps by performing actions appropriate to that
type of situation. We refer to this as the animal’s “reception behavior.” We
call such systems “simple” because the signals are produced and responded
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to as individual, discrete tokens.

In section 3 we consider procedures for learning to communicate with the
members of a population. We show that while procedures based on imitating
the transmission and reception behavior observed in the population can ac-
curately acquire an existing highly coordinated communication system, and
can maintain it against degradation, such procedures cannot be guaranteed
to improve the coordination of a system in which communication is only
rarely accurate.

We then derive a learning procedure that yields, for any population, a
communication system that has the highest possible communicative accu-
racy with that population. Unless the population’s communication is already
optimally coordinated, individuals using the systems produced by our proce-
dure will be able to communicate with the members of the population more
accurately than the members can among themselves. The addition of each
new member will slightly increase the coordination of the population’s com-
munication. Therefore the coordination of the population’s communication
will steadily increase, ultimately resulting in a highly coordinated system.

We describe computational simulations that illustrate our results in sec-
tion 4. In section 5 we discuss a number of issues raised by our model and
our results. We argue that to satisfy our model, animals must be capable of
learning to predict and influence each other’s behavior, and they must share
an environment in which information exchange is often mutually beneficial.
Finally, we explore the relevance of our model to the emergence and learning
of human language.

2 Simple Communication Systems

In this section we present our formal model of simple communication systems.
A similar model is introduced by Lewis (1969) in his philosophical analysis of
convention. Hurford (1989) uses a generalized version of Lewis’ model that
is essentially identical to the one described here.

2.1 Meanings and Signals

We assume a population of animals that can recognize some set of situation
types such that there is a distinct, appropriate response to each. We call
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these pairs of situation types and their appropriate responses “meanings.”
We also assume that the animals have available to them a set of distinct
types of actions that can be performed with little or no cost by an animal,
and can be recognized by others. We call the elements of this set “signals.”

Our analysis focuses on communicative episodes of the following sort.
One member of a population, upon noticing that a situation of a particular
type is happening, produces a signal. We call this “encoding” the mean-
ing. Other animals, upon recognizing the signal, respond to it. We call this
“interpreting” the signal as a meaning. The communicative episode is con-
sidered successful if the responding animals act appropriately to the situation
noticed by the first.

For example, when vervet monkeys (Cercopithecus aethiops) see preda-
tors, they make vocalizations that alert the rest of the group. The type of
alarm call that is given depends on the specific kind of predator in the vicin-
ity. A loud barking call is given for leopards, a short, double syllable cough
for eagles, and a “chutter” sound is made for snakes. Though the production
of an alarm call is not part of the activity of seeking shelter, and the calls are
not similar to sounds the predators make, the response of other monkeys to a
given type of call is appropriate to evade the predator that inspired it. When
the leopard call is heard, the monkeys run to the trees; the eagle call provokes
them to look up into the air and seek shelter; hearing the snake call makes
the monkeys stand up on two legs and look in the grass (Struhsaker, 1967,
Seyfarth, et al., 1980; Cheney and Seyfarth, 1990).

In describing animals as encoding meanings as signals, and as interpreting
signals as meanings, we do not thereby assume that the animals are neces-
sarily aware of the communicative nature of their actions, nor that they rec-
ognize any relation among situation types, signals, and response types. Both
the production of, and the response to, signals will be treated as behavioral
dispositions, as described in the next section. The notion of meanings is
entirely a formal device, simplifying the model by allowing us to refer to a
situation type and its appropriate response type as a single entity.

We assume that there are at least as many available signals as there are
meanings. Given that virtually any behavior that an animal can perform
could be used as a signal, this seems plausible. Indeed our results hold even
if there is an infinite number of signals.!

!For the most part our results also hold if the set of meanings is larger than the set of
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We assume that each signal can be accurately performed, and its per-
formance accurately recognized, in more than one of the situation types.
However we do not assume that there is no relationship at all among some
situations and signals, thus we do not assume that signals must be “arbi-
trary” in the sense of de Saussure (1916) or Hockett (1960a, 1960Db).

It may be, for example, that some signaling actions are more likely to
be performed in some of the situation types than others, or that a signal
is more likely to be interpreted as indicating some particular meanings than
others, perhaps due to similarities between the signal and aspects of the situ-
ation or its appropriate response. Many animal signals apparently arise from
the exaggeration and “ritualization” of intention movements, protective be-
haviors, autonomic reactions, and other responses to situations (Tinbergen,
1952; Moynihan, 1970; Smith, 1977).

While our model does not require any such relations between signals and
meanings, it can apply whether or not they exist. Such clues may speed up
the establishment of a coordinated communication system, and may simplify
learning the system, but so long as each signal can, in principle, be paired
with more than one of the meanings, the population must somehow settle on
one of them, and each learner must determine which one it is.

2.2 Send and Receive Functions

We characterize an individual’s communicative behavioral dispositions with
two probability functions: a “send function,” and a “receive function.” For
each signal and meaning, the send function gives the probability that an
animal will send the signal when it notices that the meaning’s situation type
is occurrent, and the receive function gives the probability that an animal,
upon recognizing the signal, will perform the meaning’s response. Example
send and receive functions are shown in figure 1.

An idealization of the communicative behavior of adult vervet monkeys is
given by the send function s; and the receive function ry. The send function
s9 illustrated in figure 1 might describe the communicative behavior of an
individual who hasn’t quite mastered the vervets’ system. It is reasonably
accurate for leopards, in that it sends the bark signal with probability 0.7,
but it also sends a cough with probability 0.1 and a chutter with probability

signals, with differences that will be noted when appropriate.
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$1 bark cough chutter
leopard | 1.0 0.0 0.0
eagle 0.0 1.0 0.0
snake 0.0 0.0 1.0

bark cough chutter 1
1.0 0.0 0.0 leopard
0.0 1.0 0.0 eagle
0.0 0.0 1.0 snake

S9 bark cough chutter
leopard | 0.7 0.1 0.2
eagle 0.4 0.5 0.1
snake 0.0 0.4 0.6

bark cough chutter T
0.6 0.4 0.2 leopard
0.2 0.5 0.2 eagle
0.2 0.1 0.6 snake

Figure 1: Example send and receive functions. In the send functions s; and
S9, each entry is the probability that the signal at the top of the column is
sent for the presence of the predator to the left of the row. In the receive
functions ry and ry, each entry is the probability that signal at the top of the
column is responded to in a way appropriate to evade the predator to the
right of the row.

0.2. For eagles, sy is even less like the vervet’s system, sending the cough
signal only slightly more often than it sends the bark signal. The receive
function ry is also similar to, but not exactly, that of the vervets.

In the definitions and calculations below, we represent the set of meanings
relevant to a population of animals as M, and the set of signals available to
them as S. The probability that a signal o is sent for a meaning u by a
send function s is represented as s(y, o). We represent the probability that
a signal o is interpreted as a meaning p by receive function r as r(o, p).
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2.3 Communicative Accuracy

Suppose that one animal possesses the function s; and another possesses the
receive function ry shown in figure 1. If the first animal notices a leopard,
it will, with probability 1.0, produce the cough signal. If the second animal
hears the cough, it will, with probability 1.0, react in a manner appropriate
to the presence of leopard. Similar outcomes would obtain if the first notices
an eagle or a snake. All signals sent by the first animal will be correctly
interpreted by the second.

Now suppose that an animal whose send function is s; sends a signal to
an animal whose receive function is vy when a leopard is present. The first
animal will produce a bark with probability 1.0. The second animal, upon
hearing the bark, will respond as if a leopard were present with probability
0.6. But it also may respond as if an eagle or a snake were present, each with
probability 0.2.

These considerations motivate the following definition: Given a send func-
tion s, and a receive function r, we define the “communicative accuracy”
from s to r, which we write as ca(s, r), as the probability that signals sent
by an individual using the send function s will be correctly interpreted by
an individual using the receive function r.

To compute this value, first consider a specific meaning p and a specific
signal o. The probability that an animal using send function s will send o
for p is s(u, o), and the probability that an animal using receive function
r will interpret o as p is r(o, ). These two events are independent, so the
probability that both occur is given by the product:

s(u, o)r(o, p) (1)

For a given meaning p, the probability that a signal sent by an individual
according to send function s will be correctly interpreted by an individual
possessing receive function r can be computed by taking the sum, over all of
the possible signals, of the probability that, if a given signal is sent for pu, it
will be correctly interpreted:

>_s(u, o)r(o, p) (2)

[

We assume that each of the situation types corresponding to the meanings
occurs with equal frequency. This allows us to compute the communicative
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accuracy from s to r by taking the average probability that signals for each
meaning are interpreted correctly. This is the average of the quantity in
formula 2, taken over all of the meanings:

ca(s, ) = Ml—ﬂ S5 s 0) (o, 1) (3)

where | M| is the number of meanings. This probability has a maximum value
of 1.0 if the set of signals is at least as large as the set of meanings. If the
number of signals is smaller than the number of meanings, the maximum
value of ca(s, r) is |S|/|M|, where |S| is the number of signals.

Here are the communicative accuracy values for the send and receive
functions in figure 1:

ca(s1, ) = 1.00 ca(sg, ry) = 0.42
ca(s1, ry) = 0.57 ca(sg, 1) = 0.60

The above measure of communicative accuracy only takes into account
one direction of information transfer. We define the “two-way communicative
accuracy” (cay) between two individuals as the probability that a signal sent
by either member of the pair is interpreted correctly by the other. If the
first individual possesses send and receive functions s; and rq, and the other
individual has send and receive functions s; and 72, and each is as likely to
send as to receive, the two-way communicative accuracy between them can
be computed as follows:

(ca(sy, re) + ca(sz, r1)) (4)

ca2(317 1, S2, 7"2> -

DO | =

2.4 Communicating with a Population

We now consider an animal that possesses a specific send and receive function
interacting with the members of a population, each of which possess their
own send and receive functions. Given the send and receive functions of
the individual, and those possessed by the members of the population, it is
possible to determine the probability that communicative events involving
the individual and members of the population will be successful.

If we assume that the individual interacts with members of the population
with equal likelihood, the probability that a signal sent by the individual
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to members of the population can be determined by taking the average,
over each member of the population, of the communicative accuracy between
the individual’s send function, and the receive functions of the members
of the population. A similar calculation could be performed to compute
the probability that the individual will correctly interpret signals sent by
members of the population.

A mathematically equivalent way to compute these probabilities is to first
determine, for each meaning and signal, the average probability that the sig-
nal is sent for the meaning, and the average probability that the signal is
interpreted as the meaning, by members of the population. These probabili-
ties can be found by taking the average of the entries in the send and receive
functions of the members in the population, as follows:

Sy = Yslmo)  Roop = Yrlen) ()

K3 K3

where NV is the number of individuals in the population, and s; and r; refer
to the send and receive functions, respectively, of the ¢th member of the
population.

If we assume that each pair of animals interacts with equal likelihood,
the functions S and R can themselves be treated as send and receive func-
tions, describing the average communicative behavior of the members of the
population. In a sense, we are taking the whole population as if it were an
individual that can communicate according to the send function S and the
receive function K.

Thus the average probability that an individual with send function s
will be correctly interpreted by a member of a population whose average
receive function is R is ca(s, R). The average probability that an individual
with receive function r will correctly interpret signals sent by a member
of the population whose average send function is S is ca(S, r). The two-
way communicative accuracy between the individual and the members of the
population is caz(s, v, S, R).

The accuracy of intercommunication among the members of a population
can now be computed. Since the probability that a given signal o is sent
for meaning g by members the population is S(u, o), and the probability
that signal o is interpreted as g is R(o, i), the value of ca(S, R) is the
probability that communicative events involving members of the population
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will be successful.?

The maximum possible communicative accuracy among the members of
a population is equal to 1.0 if the set of signals is at least as large as the set
of meanings, and equals |S|/|M| otherwise. If ca(S, R) = 1.0 for some pop-
ulation, we say that its communication system is “optimally coordinated.”

2.5 Game-Theoretic and Evolutionary Accounts of
the Emergence of Coordinated Communication

Lewis (1969), explored whether a coordinated communication system could
emerge and remain stable in a game among players whose benefit depends on
the accuracy of their communication with the other players. Further devel-
opment and analysis of Lewis’ model has been done using the mathematical
theory of games (Spence, 1973; Crawford and Sobel, 1982; Cho and Kreps,
1987; Farrell, 1988, 1993). In the terminology of game theory, our model is
an instance of what are called “signaling games,” specifically those involving
“cheap talk,” in which the benefit (or cost) to the players depends only on
whether their communication is successful.

An important result from this approach is that while highly coordinated
communication systems can occur (i.e., are Nash equilibria in such games),
they are not inevitable. Other stable outcomes are “babbling” or “pooling”
equilibria in which the participants send the same signal for several meanings,
or interpret different signals as the same meaning, and thereby fail to transmit
much information. Furthermore, in these models the players choose their
communicative behavior based on explicit analyses of the alternatives, and
with knowledge of the communication systems used by the other players. It
would seem that a model in which coordinated systems are more likely to
occur, and which requires less cognitive sophistication, is needed to account
for the emergence of coordinated communications among animals.

One possibility is that the communicative dispositions of a species are
innate and heritable, and the benefits of successtul communication are suffi-
cient for coordinated communication systems to evolve by natural selection.

2This is strictly correct only if we allow for an animal interpreting its own signals
to count as a “communicative event.” Whatever the plausibility of this assumption, its
influence is negligible if the population size is large, and the results below would identical,
though their derivations would be slightly more tedious.
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Maynard-Smith (1965) shows that the behavior of making an alarm call can
benefit an individual’s inclusive fitness, and is therefore possible to acquire
through natural selection. It is also possible that the sender of a signal ob-
tains a more immediate benefit from its being correctly interpreted. For ex-
ample, if by signaling the presence of a predator, the other animals respond
by hiding, the predator might choose to leave the area. Another example
is the proposal and acceptance of an offer to form an alliance and thereby
achieve a mutually beneficial outcome that neither participant could produce
alone (Hinde, 1981; Hoogland, 1983).

When the game-theoretic models described above are used to analyze
populations of agents whose communicative behaviors are innate and fixed
during their lifetimes, but whose reproductive fitness depends on the accu-
racy of their communication, it can be shown that an optimally coordinated
communication system is the only evolutionarily stable outcome (Warneryrd,
1993; Blume, et al., 1993; Kim and Sobel, 1995; Skyrms, 1996). Computa-
tional simulations of the evolution of innate communication systems illustrate
these results (Werner and Dyer, 1991; MacLennan and Burghardt, 1993; Ack-
ley and Littman, 1994; Oliphant, 1996; Parisi, forthcoming; Di Paolo, 1996).

3 Learning Simple Communication Systems

Our concern in this paper is with the question of how individuals could learn
to communicate, and the effect that learning has on the coordination of a
population’s communication system.

3.1 Learning Procedures

We assume that a new member learns to communicate by observing com-
municative events among members of that population for a while, and then,
based on those observations, constructs its own send and receive functions,
according to some “learning procedure.”

The learner must be able, at least in some communicative episodes, to
tell which meaning is being encoded by a signal, and how the receiver in-
terprets it. In the extreme, of course, this assumption invalidates the need
for communication — such a learner could just continue reading the minds
of others rather than figuring out what their signals mean. But it seems
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plausible that for highly social animals, for whom accurate communicative
ability is an essential skill to acquire, some deference to learners would be
made. This could take the form of an explicit indication of the correct re-
sponse to a signal when it is produced, or of the correct signal to perform
in a given type of situation. Also, in many situations where a signal is pro-
duced or interpreted, its significance 1s immediately apparent to observers in
the immediate vicinity. By recording such observations, the learner might
ultimately be able to accurately send and interpret signals when it is more
distant from the situation or from other individuals, or they are otherwise
occluded.

The introduction of new members to a population, whose communicative
behaviors are based on observations of the existing members, can have pro-
found effects on how the population’s communication system changes over
time. Suppose that a new individual, whose learned send and receive func-
tions are s and r, is added to a population whose average send and receive
functions are initially S and R. If the population size is finite, and if:

caz(s, r, S, R) > ca(S, R) (6)

the communicative accuracy may increase slightly as a result of the addition
of the new member. If all new members use a learning procedure that strictly
satisfies this inequality, the communicative accuracy will increase as a result
of adding the new members, and may ultimately approach a state of optimal
coordination.

The assumption that new members of the population do all their learning
before being added to the population, and use a fixed communication system
thereafter, is made to simplify the mathematical analysis. If juveniles were
added to be population before they begin learning, their attempts at commu-
nication would introduce noise into the observations made by other learners.
If the fraction of such untrained members were low enough, this noise would
not affect the emergence and maintenance of highly coordinated communica-
tion systems, though it would limit the maximum achievable communicative
accuracy in such populations to a value less than 1.0.

3.2 Related Work

Hurford (1989) explores the evolutionary advantages of alternative learning
procedures for simple communication systems. The learning procedures dis-
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S1 bark  cough chutter
leopard | 0.500 0.100  0.400
eagle 0.425 0.450 0.125
snake | 0.100 0.475  0.425

bark  cough chutter Ry
0.400 0.525  0.325 | leopard
0.375 0.425 0.250 | eagle
0.225 0.050 0.425 | snake

Figure 2: Send and receive functions describing the average communicative
behavior of a hypothetical population. In the send function S; each entry
gives the average probability that a member will send the indicated signal
for the meaning. The receive function R; gives the average probability that
members of the population will interpret a given signal as a given meaning.

cussed below are based on considerations of Hurford’s results. Hutchins and
Hazlehurst (1991) present a somewhat different model, in which groups of
neural networks develop a communication system that involves shared pat-
terns of activation values on the networks’ hidden layers as they are trained.
Canning (1992), applying game-theoretic models, shows that coordinated
communication can occur as a result of learning, provided that each agent
utilizes a set of assumptions about the other agents’ systems. Yanko and
Stein (1993) show how a simple communication system can develop among a
group of mobile robots trained with reinforcement learning as they perform a
cooperative task. Steels (1996) applies symbolic learning methods to explore
the development and subsequent modification of communication systems.
While the results from these projects are consistent with ours (Oliphant,
forthcoming), the model of communication and learning we employ is meant
to more abstractly characterize the cognitive and other biological require-
ments for the emergence of coordinated communication.

3.3 Learning by Imitation

Consider a population whose average send and receive functions are as shown
in figure 2. What send and receive functions would enable a learner to most
accurately communicate with this population?

The simplest way to use the average send and receive functions would
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For each meaning pu:

s.1: Find the signal &, for which S(g, £,) is maximum.

For each signal o:

r.1: Find the meaning 7, for which R(o, n,) is maximum.

r.2: Set ri.(o,n,) = 1.0, and set r;.(o, ) = 0 for all g # n,.

s.2: Set s;.(p, £,) = 1.0, and set s;.(¢, o) = 0 for all o # &,.

Figure 3: The Imitate-Choose learning procedure.

Sic bark cough chutter

leopard | 1.0 0.0 0.0

eagle 0.0 1.0 0.0

snake 0.0 1.0 0.0
bark cough chutter Tie
1.0 1.0 0.0 leopard
0.0 0.0 0.0 eagle
0.0 0.0 1.0 snake

14

Figure 4: Send and receive functions derived using the Imitate-Choose learn-
ing procedure, for a population whose average communicative behavior is

described by the send and receive functions in figure 2.



3 LEARNING SIMPLE COMMUNICATION SYSTEMS 15

be to imitate them — to use S; as the learner’s send function, and to use
Ry as the learner’s receive function. Such a learner’s two-way communicative
accuracy with the population will be exactly the same as the average commu-
nicative accuracy among its members. This learning procedure could acquire
an optimal system if it were in place, but could not improve a sub-optimal
system, not even one that was only slightly degraded from optimal.

Instead of simply imitating observed communicative behavior, a learner
could use a population’s average send and receive functions to determine
which send and receive behaviors are most popular. For each signal and
meaning pair, the learner would send the signal most often sent for that
meaning, and would interpret each signal the way most of the population
does. This learning procedure, which we call “Imitate-Choose,” is described
in figure 3.% If a population’s communication is optimally coordinated, this
procedure will accurately acquire the system. When applied to the average
send and receive functions shown in figure 2, the Imitate-Choose learning
procedure will yield the new send and receive functions shown in figure 4.

An individual using the new receive function r;, will correctly interpret
signals sent by a population whose average send and receive functions are
shown in figure 2 with a probability equal to ca(S1, r;.) = 0.342. The av-
erage communicative accuracy for the population is 0.33, so the Imitate-
Choose procedure can sometimes yield individuals that are slightly better
than average at interpreting signals sent by members of a population whose
communication is less than optimally coordinated.

The send function obtained by the Imitate-Choose procedure does not
do as well. Signals sent according to s;. will be interpreted correctly by the
population with a probability of ca(s,., R1) = 0.292. This is less than the
population average. These two values can be used to compute the two-way
communicative accuracy between an individual using the new system and the
population: cas(sic, T, S1, B1) = 0.317. So adding an individual using this
system to the population will decrease the average communicative accuracy.

In general, Imitate-Choose exaggerates the communicative dispositions in
the population. If the system is highly coordinated, the use of Imitate-Choose

3The descriptions of the learning procedures here and in the next section leave out
a few details having to do with cases where values in the population average send and
receive functions are zero, or where there 1s no unique maximum. These cases don’t affect
the results we derive. In appendix A.1 we show how they can be handled for the learning
procedure described in the next section.
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can increase coordination, thus maintaining a near optimal system against
degradation. If the population’s communication is not very well coordinated,
on the other hand, Imitate-Choose can degrade it even more.

3.4 Learning by Obverting

Consider again the average send and receive functions shown in figure 2.
While the bark signal is sent for leopards most often, it is only interpreted as
indicating the presence of leopards with a probability of 0.400. If the cough
signal were sent to indicate leopards, it would be correctly interpreted with a
probability of 0.525. Similar considerations hold for interpreting signals. As
just noted, most of the population interprets the cough signal as indicating a
leopard, while this signal is most often sent when a snake is actually present.

For one’s signals to be interpreted correctly, one should send for each
meaning the signal that is most likely to be interpreted as that meaning.
To maximize the probability that one will correctly interpret signals sent by
others, one should interpret a signal as the meaning it most often encodes.

A learning procedure that works this way, which we call “Obverter,” is
described in figure 5. The send and receive functions that result from ap-
plying Obverter to a population with the average send and receive functions
in figure 2 are shown in figure 6. They have the following probabilities of
accurate communication with a population whose average send and receive
functions are shown in figure 2:

ca(sop, B1) =046  ca(S1, rop) = 047 caz(S,h, rop, S1, B1) = 0.46

All of these values are greater than the population average of 0.33.

It is proved in appendix A.1 that the Obverter learning procedure, when
applied to any population’s average send and receive functions, will produce
send and receive functions that have the highest possible communicative
accuracy with that population. An individual using the Obverter learning
procedure will thus acquire a send and a receive function whose two-way
communicative accuracy with the population will be strictly greater than
the average communicative accuracy, unless the population already possesses
an optimally coordinated system. Therefore the average communicative ac-
curacy of a a population whose new members use the Obverter learning
procedure will steadily increase, and an optimally coordinated system will
ultimately emerge.
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For each meaning pu:

s.1: Find the signal &, for which R(x,, ) is maximum.

For each signal o:

r.1: Find the meaning 7, for which S(7,, o) is maximum.

r.2: Set ry(o, 1,) = 1.0, and set ry; (o, p) = 0 for all g # n,.

s.2: Set so(p, k) = 1.0, and set s,4(¢, o) = 0 for all o # k.

Figure 5: The Obverter learning procedure.

Sob bark cough chutter

leopard | 0.0 1.0 0.0

eagle 0.0 1.0 0.0

snake 0.0 0.0 1.0
bark cough chutter Tob
1.0 0.0 0.0 leopard
0.0 0.0 0.0 eagle
0.0 1.0 1.0 snake

17

Figure 6: Send and receive functions derived using the Obverter learning pro-
cedure, for a population whose average communicative behavior is described

by the send and receive functions in figure 2.
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For each meaning pu:
s.1: Observe a signal &, being sent for p.
s.2: Set r,(k,, ) = 1.0, and set ry,(k,, n) = 0 for all n # pu.

r.1: Observe a signal A, being interpreted as p.

r.2: Set s,,(p, Ay) = 1.0, and set s,,(p, o) =0 for all o # A,.

Figure 7: The Unit-Statistic learning procedure.

3.5 Approximating Obverter

To use the Obverter procedure, a learner must have access to the population
average send and receive functions. It is more plausible to assume that the
learner has access only to approximations of these functions, based on a finite
number of observations.

Let us suppose that a learner performs a set of observations, and collects
two arrays of statistics, 5,3, and R,;,, based on those observations. These
arrays can be used in place of S and R in the Obverter procedure. Depending
on the number of observations, S,;s and R,;s might accurately approximate
S and R, and the resultant send and receive functions will be close to optimal
for that population.

With unbiased sampling, errors introduced by the finite sample size (and
other random noise) will cancel out, and so the approximations to the Ob-
verter procedure that use a finite number of observations can yield, and
maintain, a highly coordinated communication system. It is shown in ap-
pendix A.3, however, that a learning procedure that uses a finite number of
observations cannot be guaranteed to observe each of the meanings being con-
veyed. This means that a population using such a learning procedure cannot
quite reach a state of optimal coordination, though it can come arbitrarily
close as the number of observations made by each learner increases.
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3.6 Unit-Statistic Learning

The specific set of observations required to guarantee that the average com-
municative accuracy will increase, such that the population may ultimately
attain an optimally coordinated system, turns out to be very small. The
“Unit-Statistic” learning procedure, presented in figure 7, requires only a
single observation, for each meaning, of a signal being sent for that meaning,
and of some signal being interpreted as that meaning. These single obser-
vations could be the most recent, the first observed, the ones the learner is
most confident about, or could be chosen at random.

The Unit-Statistic procedure is essentially the same as Obverter, except
that it uses the single observations of each meaning being sent, instead of
the population average send function, to create the new receive function, and
it uses the single observations of each meaning being interpreted, instead of
the population average receive function, to create the new send function.
The Unit-Statistic procedure thus makes extremely small demands on the
learner’s memory and other cognitive faculties, since it only needs to record
one observation of each meaning being sent and received, and does not need
to compute averages or determine maximal values.

It is shown in appendix A.2 that, in a population whose new members use
this learning procedure, the expected value of the communicative accuracy
will increase over time. The general intuition behind the proof is that the
more often a given signal is sent for a given meaning, the more likely it is
to be observed, and therefore to be interpreted as that meaning by a receive
function created by the Unit-Statistic procedure. The learner’s ability to
correctly interpret signals will tend to be greater than average. A similar
argument holds for learner’s send function.

Thus, if its new members use the Unit-Statistic learning procedure the
population’s average communicative accuracy will increase (though more
slowly than with the Obverter procedure), and can ultimately achieve and
maintain an optimally coordinated system.

4 Computational Simulations

Computational simulations were performed to illustrate these results. In each
simulation, a population of individuals is created, each of which possesses
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Obverter: The Obverter learning procedure.

Obs-25: An approximation to the Obverter learning procedure
using observations of 25 episodes of communication.

Obs-10: As above, but with 10 observations.

Unit-Stat: The Unit-Statistic learning procedure.

Table 1: Learning procedures used in the computational simulations.

send and receive functions implemented as arrays of values representing the
relevant probabilities. At the start of a simulation, the contents of each
individual’s send and receive arrays are initialized to random values.

In each round of a simulation run, one individual is chosen at random
and removed from the population. A new individual is created, and uses
one of the learning procedures described in table 1 to determine values for
its send and receive arrays. In a given simulation, every individual uses the
same learning procedure. After the new individual is trained, it is added to
the population, whose average communicative accuracy is then recorded.

Results of such simulations are shown in figure 8. Each simulation involves
100 individuals capable of sending five signals for three meanings. The plots
in figure 8 show, for each of the learning procedures, the communicative
accuracy of the populations, averaged over ten simulation runs.

Populations using the Obverter learning procedure do quite well. Their
average communicative accuracy reaches 0.99 after only 600 rounds of the
simulation (when each individual in the population has been replaced an av-
erage of six times). The Obs-25 procedure does almost as well, reaching an
accuracy of 0.98 after 1200 rounds. The Obs-10 procedure is less effective,
but still reaches a high value of communicative accuracy. The Unit-Statistic
learning procedure also performs well. Details of how the learning proce-
dures affect the temporal dynamics of a population’s average communicative
accuracy are discussed in appendix A.3.

Figure 9 shows send and receive functions produced during a simulation
of the Obs-25 learning procedure. In round 0, the send and receive func-
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0 600 1200 1800 2400 3000 rounds
learning Round
procedure 600 1200 | 1800 | 2400 | 3000

Obverter mean | 0.991 | 1.000 | 1.000 | 1.000 | 1.000
sd 0.005 | 0.000 | 0.000 | 0.000 | 0.000
Obs-25 mean | 0.879 | 0.980 | 0.988 | 0.989 | 0.991
sd 0.035 | 0.019 | 0.010 | 0.012 | 0.012
Obs-10 mean | 0.431 | 0.659 | 0.786 | 0.826 | 0.848
sd 0.031 | 0.076 | 0.098 | 0.032 | 0.030
Unit-Stat mean | 0.362 | 0.483 | 0.621 | 0.807 | 0.944
sd 0.036 | 0.087 | 0.125 | 0.156 | 0.078

Figure 8: Simulation runs of a populations learning to communicate using
different learning procedures. Each plot shows the average communicative
accuracy of the population during the run. Results shown are the average of
ten runs; statistical properties of the runs are given in the table.
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a b c d e Round 0

S s | a b C d e
1]1.21 .18 .20 .20 .21 | ca=0.33 11.00 .00 .00 .00 1.0
21.19 .21 .22 .19 .19 21.00 .00 1.0 .00 .00
31.20 .20 .21 .19 .21 31.00 1.0 .00 .00 .00
a b c d e R a b c d e r
32 .32 35 32 371 .00 1.0 1.0 .00 .00]1
B35 032 34 32 312 .00 .00 .00 1.0 1012
33 35 31 35 3213 1.0 .00 .00 .00 .00 |3
S| a b c d e Round 200 | s | a b c d e
11.39 .15 .09 .12 .25| ca= 040 1|11.0 .00 .00 .00 .00
21.09 .13 .59 .13 .06 21.00 .00 1.0 .00 .00
31.14 24 .13 .27 .23 31.00 .00 .00 .00 1.0
a b c d e R a b c d e r
S0 .30 .10 .28 351 1.0 1.0 1.0 .00 .00 |1
23 28 78 .28 172 .00 .00 .00 .00 .00 |2
27 43 12 44 48 | 3 .00 .00 .00 1.0 1013
S|a b C d e Round 400 | s | a b C d e
11.73 .13 .01 .03 .09| ca=0.69 1110 .00 .00 .00 .00
21.00 .03 .93 .02 .01 21.00 .00 1.0 .00 .00
31.04 .20 .02 .46 .27 31.00 .00 .00 .00 1.0
a b c d e R a b c d e r
.88 37 .01 .18 361 1.0 .00 .00 .00 .00 |1
05 11 95 06 .04 |2 .00 1.0 1.0 .00 .00 2
.06 .51 .03 .76 .60 | 3 .00 .00 .00 1.0 1013
S| a b c d e Round 600 | s | a b C d e
11.91 .05 .00 .00 .04| ca=0.88 1|11.0 .00 .00 .00 .00
21.00 .00 1.0 .00 .00 21.00 .00 1.0 .00 .00
31.00 .27 .00 .51 .22 31.00 .00 .00 .00 1.0
a b c d e R a b c d e r
97 14 00 .01 131 1.0 .00 .00 .00 .00 |1
.01 .05 1.0 .00 .03|2 .00 .00 1.0 .00 .00 |2
02 81 .00 .99 .84 |3 .00 1.0 .00 1.0 1013

Figure 9: Send and receive functions, and the average communicative ac-
curacy (ca), during one of the simulation runs shown in figure 8. Three
meanings (labeled ‘17, ‘2’ and ‘3’), and five signals (labeled ‘a’, ‘b’, ‘¢’, ‘d’,
and ‘e’) are used. The left column presents the population average send and
receive functions at each of the indicated rounds. The right column shows
outputs of the learning procedure Obs-25 when applied during that round.
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tions of each member of the population are random, as reflected in the fact
that most of the entries in the average send and receive functions for that
round are approximately equal, and the average communicative accuracy is
0.33. However the learned send and receive functions still incorporate some
appropriate mappings. For example the signal ‘e’ is interpreted most often
as meaning ‘1’; and the learner’s send function incorporates this mapping.
On the other hand, signal ‘a’ is interpreted most often as meaning ‘2’ but
the learner sends signal ‘c’ for this meaning. But the difference between the
two probabilities is small (0.35 versus 0.34) and so is not always picked up
in only 25 samples.

As the simulation progresses, the population begins to settle on a more
accurate system, and the learner is able to acquire it accurately, and often
improve on it. By round 600, when the average communicative accuracy is
near 0.9, the signal ‘a’ is almost always sent for meaning ‘1’, and is almost
always interpreted correctly. For meaning ‘2’ the signal ‘c’ is always sent
and received accurately. The population uses the signals ‘b’, ‘d’, and ‘e’ to
encode meaning ‘3’. Even so, the average communication accuracy is high,
because all three of these signals are interpreted correctly as meaning ‘3.

We have run many simulations of this model, varying the population sizes,
numbers of signals and meanings, learning procedures, and other aspects
of the model. 1In all of our simulations, approximations to the Obverter
procedure yield near optimal communication systems.

5 Discussion

5.1 Why Obverter Works

If the point is for one’s signals to be understood, the transmission behavior
of others is irrelevant. What is important is their reception behavior. The
transmission behavior of others should be consulted, on the other hand, when
one is determining how to interpret their signals. Procedures based on imita-
tion, or on other non-communicative considerations, for example the ability
of the learner to accurately interpret its own signals, can not be guaranteed
to increase communicative accuracy.

Another reason why Obverter performs optimally is because it explicitly
avoids ambiguities. When choosing a signal to transmit for a meaning, or
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a meaning to interpret in response to a signal, the procedure will select the
single most popular. If each new member does this, the ambiguities in the
population’s system will be shaken out over time. Such ambiguity-avoidance
alone is not sufficient for a procedure to improve communicative accuracy
however, as is shown by the inferiority of the performance of Imitate-Choose
in section 3.3, even though that procedure also involves choosing the most
popular alternative.

The Obverter procedure combines the properties of determining commu-
nicative behavior according to its communicative function, and of avoiding
ambiguity in the resultant send and receive functions. These two properties
not only guarantee that its use will improve the communicative accuracy
of a population, but that each learner will acquire the optimal system for
communicating with the population.

5.2 Cognitive Requirements

To instantiate our model, animals must be capable of classifying different
types of situations, and must be capable of recognizing that a situation of
a given type is occurrent. They must be capable of performing the correct
kinds of responses to the situations they recognize. They must also be capa-
ble of producing several different types of signaling actions in the situations,
and of recognizing when other animals are performing them. All of these
abilities must be at least partly learned. These general requirements are not
very stringent, and they are satisfied by many mammal species, in particular
primates and rodents (Barnett, 1975; Cheney and Seyfarth, 1990; Hoog-
land, 1995), probably by many species of birds (Burton, 1985), and possibly
by species in other vertebrate taxa (Pough, et al., 1996).

Our model imposes two further requirements that are satisfied in fewer
species. The first such requirement is not cognitive but ecological — the
animals must inhabit an environment in which the accurate exchange of
information is mutually beneficial, at least in many situations. The second
additional requirement our model imposes is that the animals be capable of
understanding and predicting each other’s behavior well enough to use some
behaviors as signals, and to be capable of reliably affecting the behavior
of others by sending signals. Both of these requirements are most likely
to be met by animals that live socially (Humphrey, 1976; Rubenstein and
Wrangham, 1986; Heyes and Galef, 1996).
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For animals that satisfy all of these requirements, the Obverter learning
procedure is an instance of Bayesian inference. The construction of an indi-
vidual’s receive map is based on determining the most likely cause of each
signal (the situation type in which it is most often performed). An individ-
ual’s send map is based on determining, for each potential desired effect, the
most likely way to cause it (by sending the signal which will most likely be
responded to in a way that will benefit the sender). Thus, in environments
in which accurate information exchange is often beneficial, the Obverter pro-
cedure is an instance of a generally useful cognitive ability applied to the
domain of social behavior.

The requirements imposed by our model suggest why highly coordinated
learned communication systems seem to be rare. While many animal species
are capable of learning to exploit regularities in their environments, our model
requires in addition that the animals learn regularities in each other’s behav-
ior. It is possible that very few animal species are capable of doing this well
enough to instantiate our model. For many animals species whose behav-
ior is largely innate anyway, a more direct evolutionary pathway to obtain
the benefit of accurate communication would have been to acquire innate
transmission and reception behaviors.

On the other hand, the cognitive and ecological requirements our model
imposes, and the coordinated communication that results, need not emerge
independently. As the social interactions among the members of a popu-
lation become more complex, it is more and more likely the animals will
encounter situations in which coordinated activity is of mutual benefit. To
exploit such situations, the animals might develop better abilities to predict
and influence each others’ behavior, thus enabling even more complex social
interactions. Further development of the abilities to coordinate social activ-
ity might require learning, especially if the animals must rapidly adapt their
behavior to new environments. Thus sociality, learning, and communication
might emerge synergistically, each ability drawing on, and contributing to,
the development of the others.

In section 2.1, we pointed out that our model does not require that the an-
imals be aware of the communicative nature of their actions. In particular,
we do not require that an animal entertain a “communicative intent” when
sending signals, nor that it recognize any such intent on the part of those
whose signals it observes, as suggested by Grice (1957, 1989), whose ac-
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count has had a profound influence on the debate about the nature of animal
communication (Bennett, 1976; Dennett, 1983; Premack, 1983; Cheney and
Seyfarth, 1990, chapter 5).

While often taken as a general theory of communicative action, Grice’s
account is primarily intended to explain how a speaker could use an utter-
ance to convey something other than its conventional meaning. Our results
demonstrate that communicative conventions can arise among animals with
less cognitive sophistication than Grice requires. Our model does not, how-
ever, explain how animals might convey anything other than the conventional
meanings of their signals. Given that animals apparently do not often resort
to sarcasm, irony, or theatrical productions — cases central in the analyses
of Grice, Austin (1962) and Searle (1969) — this does not seem like a fatal
shortcoming.

Animals are sometimes observed to use their communicative abilities to
deceive one another (Andersson, 1980; Krebs and Dawkins, 1984; Munn,
1986; Byrne and Whiten, 1988). While the ability to do this is also taken as
evidence for the possession of, and the recognition of, higher-order intention-
ality by animals (Whiten, 1991), our model is consistent with the occasional
occurrence of deception among animals without such cognitive abilities. It
is possible that situations could occur in which one of the participants in a
communicative event would benefit from producing a signal that is ordinarily
sent in a different situation type. To take advantage of such situations, an
animal need only be aware of how other individuals respond to signals that it
sends. It is also possible for animals to resist deception if they can somehow
determine that despite the signal performed by another animal, the situa-
tion type ordinarily conveyed by that signal could not be occurrent. These
abilities require that the animals be capable of subtle reasoning about each
other’s behaviors, but not the internal cognitive states that may be causing
them (Maynard-Smith and Price, 1973; Johnson, 1993). Of course for a com-
munication system to become established in the first place, and coordinated
enough to allow for the possibility of deception, situations in which successful
deception is possible must be relatively rare.

5.3 Relevance to Human Language

As the story of Adam making up names for animals (Genesis 2: 19-20)
illustrates, it has long been understood that the specific sounds or gestures as-
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sociated with a given concept are matters of more or less arbitrary convention
(de Saussure, 1916), but little has been said about how the conventions that
constitute a language’s lexicon could arise. Lewis’ (1970) account of conven-
tion involves participants explicitly reasoning about the potential payoffs of
their communicative actions and of those of the others. Aristotle (see Sorabji,
1996) argues that the establishment of conventions requires language (logos)
in the first place. Strawson (1974), Lewis (1975), and Davidson (1984) argue
that the establishment of conventions requires the ability to form complex
intentions and to recognize them in others. As mentioned above, our results
demonstrate that the conventions required for a lexicon could be established
among animals whose cognitive skills are relatively modest.

Though communication systems capable of conveying quite large numbers
of meanings can emerge in populations using the Obverter procedure, our
model does not address the emergence of communications systems that use
the sequential structure of signals to convey complex meanings. However
the fact that highly coordinated simple communication systems can emerge
suggests that populations of animals who use them might become more and
more dependent on communication to organize their activity, thus providing
adaptive benefit for improving their communicative abilities still further.

It is possible, for example, that as a simple communication system in-
creases in coordination, and thus more useful to a population of animals,
their cognitive and social abilities relevant to communication would improve.
New meanings could be added to the system, along with new signals to con-
vey them. Eventually the difficulty of accurately performing and recognizing
the different signals could lead to the development of complex signals with se-
quential regularities. Such regularities are observed in bird songs (Catchpole
and Slater, 1995) and the long calls of some primate species (Robinson, 1984;
Mitani and Marler, 1989). These sequential regularities could then be associ-
ated with the semantic structure of complex meanings. Batali (forthcoming)
describes computational simulations of agents capable of sending and inter-
preting signals composed of sequence of tokens, and conveying structured
meanings, who develop systems of coordinated communication as a result of
using a learning procedure similar to Obverter. Such populations develop
communication systems with sequential regularities reminiscent of grammat-
ical phenomena in human languages.

In considering the problem of learning the syntactic regularities in a lan-
guage, a number of theories have been proposed that assume that the child
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must learn values for a fairly small set of parameters that determine the syn-
tactic properties of the language, for example its standard word order, how
thematic roles are assigned, constraints on the movement of constituents, and
so forth. In some models the set of parameters, their possible values, and the
learning mechanisms needed to set the values appropriately, are assumed to
be language-specific and innate (Chomsky, 1987; Atkinson, 1992; Lightfoot,
1992). In other models the finite set of choices is based on functional con-
siderations (Bates and MacWhinney, 1982). It has also been suggested that
most of the information that speakers possess about the syntax of their lan-
guage involves properties of its lexical items (Bresnan, 1982; Langacker, 1986;
Chomsky, 1995). In all of these approaches, syntactic regularities are argued
to be the result of interactions among a set of learned conventions, and our
results show how such conventions can become established in a population,
and can be acquired by an individual.

Research into lexical acquisition by children usually focuses on the problem
of learning the relations between the categories and the sounds or gestures of
an extant, highly coordinated communication system — a human language
(Macnamara, 1982; Clark, 1993). An influential hypothesis is that children
rely on assumptions about the relations among words and the concepts they
denote, for example that two words that sound different must contrast in
meaning, or that words correspond to categories that are organized taxo-
nomically (Clark, 1983; Markman, 1987).

The Obverter learning procedure also incorporates a set of assumptions
that constrain the relations among the meanings and signals that can be
learned. However those assumptions derive entirely from considerations of
communicative function, and not from any assumed organization of the set
of meanings. This is consistent with suggestions by Baldwin (1993) and
Tomasello (1995) that children attend to clues about communicative func-
tion, for example, pragmatic and contextual information, to acquire the
meanings of words, and that this information reduces the need for the child
to rely on additional constraints about how word meanings are related.

A subtle assumption in much of the research into lexical acquisition is
perhaps inspired by de Saussure’s (1916) notion of the bidirectional nature
of the linguistic sign. No distinction is made between the task of learning
to produce the correct word for a concept, and the task of learning to com-
prehending a word as referring to a specific concept. While evidence that
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a child understands a word may come from experiments that involve com-
prehension or production or both, understanding the meaning of a word is
usually treated as unitary phenomenon. Little justification is made for this
assumption except that it is more or less true for adult language users.

We make no such assumption. Indeed, we separate the tasks of learning
transmission and reception behavior completely. In a population whose new
members use Obverter, the bidirectionality of signals is a consequence of how
the learning procedure affects the population’s communication system, not
an assumed constraint on how learning is done.

Our model makes empirical predictions that could be used to test whether
or not children use something like Obverter when acquiring a lexicon. We
predict that the major influence on a child’s production of words will be
the child’s observation of those words being understood by others, and that
the major influence on a child’s comprehension of works will be the child’s
observation of those words being produced by others. This would require
experiments in which the two sets of observations are not as coordinated
as they would be if words from human languages were used. A paradigm
involving made-up words and concepts, similar to those described by Nelson
and Bonvillian (1973), Woodward, et al. (1994), and Schafer and Plunkett
(1996), could be employed.

Research involving children exposed to impoverished linguistic input sug-
gests that they use learning strategies that would tend to improve the com-
municative accuracy of a population. In studies of deaf children exposed
to the relatively unsystematic gestures of their parents, Goldin-Meadow and
Mylander (1990) find that the children emerge with systems more complex,
and more consistent, than the ones they were exposed to. Bickerton (1990)
argues that properties of Creole languages show that children possess learn-
ing procedures that systematize and regularize the pidgin languages they
observe. Although mostly concerned with the acquisition of syntax, Pinker’s
(1994) summary of such evidence as indicating that “children actually rein-
vent [language], generation after generation” [p. 32|, is consistent both with
the way that Obverter works (as opposed to imitation-based procedures), and
with the fact that the use of Obverter by the new members of a population
can literally result in the invention of a coordinated communication system.
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6 Conclusion

The questions of how a coordinated system of communication could originate,
and how individuals could learn such a system, might seem unrelated. To
the contrary, we have shown that learning procedures exist that will result in
the communication system of a population increasing in accuracy, ultimately
yielding a highly coordinated system. Since these procedures will improve
sub-optimal systems, they will also maintain the accuracy of an established
system against degradation due to the noisy and limited input available to
its learners.

The main reason that these procedures work so well is that they explic-
itly take the communicative aspects of communicative behavior into account.
This is done by first separating the problem of learning to communicate into
two subproblems, that of acquiring appropriate transmission behaviors, and
of acquiring appropriate reception behaviors. Thus separated, the two prob-
lems can be solved in related ways. The Obverter procedure, and the ap-
proximations to it we describe, work by using the reception behavior of a
population to determine how to send signals, and by using the transmission
behavior of a population to determine how to receive signals. The resul-
tant systems can be guaranteed to enable accurate communication with the
population.

Our learning procedures involve generally useful cognitive abilities applied
to the domain of social interaction. Our model is therefore most relevant to
species of social animals capable of adjusting their behavior to that of others,
and for whom the accurate exchange of information is often mutually bene-
ficial. Though such species may be rare, humans almost certainly descended
from one of them.

Appendix: Mathematical Detalils

A.1 Obverter Yields the Best Possible System

The Obverter learning procedure, described in figure 5, yields send and re-
ceive functions that have the highest possible communicative accuracy with
a given population. This will be proved as follows: We first derive the max-
imum values that can be achieved for the population, and then show that
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the Obverter procedure will produce send and receive functions that achieve
those maximum values.

For each meaning , the sum Y, s(u, o), where o ranges over the set of
signals, represents the probability that some signal is sent for p. Likewise, for
each signal o, the sum Y, r(o, p), where p ranges over the set of meanings,
represents the probability that o is interpreted as some meaning. So:

> s(p,0) <1 and > r(o,p) <1 (7)

o w

The inequalities allow for the possibility that not all meanings are sig-
naled, and not all signals are interpreted. In the case of the send functions in
figures 1 and 2, for example, some signal is always sent for each meaning, and
so all of the rows of the send functions sum to one. For the receive functions
in figures 1 and 2, each signal is always interpreted as some meaning, and so
all of the columns of the receive functions sum to one.

Suppose that a given population’s average send and receive functions are
S and R. The probability that a send function s is correctly interpreted by
members of the population when it sends signals for some meaning p is

S s(.0) Rlo,p) (®)

o

(See equation 2.) Let k be the signal most often interpreted as g by members
of the population. Thus:

S (i, @) Blo, 1) < 3 s, @) (s, 1) (9)

o

since R(k, ) is greater than or equal to each R(o, ) in the summation on
the left. Since R(k, ) is a constant in equation 9, we can move it out of the
summation to obtain:

> s(p, o) R(o, p) < R(k, p) Y s(p, o) (10)

e o

Finally, since 3, s(u,0) < 1, we have:

3" s(u,0) R(o, ) < R, ) (11)

o
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So R(k, p) is the maximum possible probability that signals about meaning
i are correctly interpreted by members of the population.

The Obverter learning procedure will create a send function s,; with
Sop(p, k) = 1.0. It will communicate about meaning g with members of
the population successfully with probability R(k, ). This, as we have just
shown, is the maximum value that any send function could achieve.

Given a send function s,; derived according to the Obverter procedure,
we have, for any other send function s

7] S X s(n ) Bl ) < (i & Sl ) Rl ) (12

since each term in the sum over g on the right is greater than or equal to the
corresponding term on the left. Thus:

ca(s, R) < ca(se, R) (13)

and so the send function s,; has the highest possible probability of having
its signals correctly interpreted by members of the population.

Two considerations are in order: (1) Suppose that for some meaning g,
all R(o, ) = 0. In this case, no member of the population interprets sig-
nals about g at all, and so no send function could communicate about p
correctly; (2) Suppose that for some pu, several £ have equal, maximal values
of R(k, ). In both cases there is more than one signal whose probability
of being interpreted as a given meaning is equal to the maximum value. In
both cases, the inequality in formula 9 still holds for any one of the signals
with the maximum value of being interpreted as p (whether it is zero or not).
Accordingly, the description of the Obverter procedure in figure 5 should be
modified to handle this case, as follows:

If, during step s. 1 of the Obverter procedure, while trying to find
a signal to send for meaning p, it is found that more than one
& have equal, maximal values for R(k, i), choose one at random,
call it k,. Then continue with step s.2.

Similar results obtain when considering the best possible receive function for
communicating with a population. First we note that for a given signal o, a
receive function r will correctly interpret o with a probability given by
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> S(p, o)r(o, p) (14)
n
Let n be the meaning most often encoded as o. So:

ZS,M, O'/L<ZS77, yr(o, ZT0N<5777)
! (15)

Thus S(n, o) is the maximum probability that any receive function will
correctly interpret signal ¢ when sent by members of the population. The
receive function r,; that Obverter will create will have r,;(o, n) = 1.0.

For any receive function r:

1] S X S0 0) o ) < (i S S )l ) (16)
So:
ca(S, r) < ca(S, rm) (17)

The receive function r,; has the highest possible probability of correctly
interpreting signals sent by members of the population.

As in the discussion above, the possibility arises that S(u, o) is zero for
all of the meanings, or that several meanings have equal, maximal values for
a given o. As in the previous derivation, the result still holds. In the case
where the maximal value is nonzero for a given signal, we will, as before,
choose a meaning at random. However in the case where a signal is never
sent, there is no point in defining any interpretation for it at all — indeed
if the set of available signals is infinite, this would be impossible. Hence the
Obverter procedure should be modified as follows:

If during step r.1 of the Obverter procedure, more than one 7
have equal, maximal, nonzero values for S(n, o), choose one at
random, call it n,. Continue with step r.2. If, during step r.1,
no S(n, o) > 0, ry3(o, 1) is undefined for all p.

In a population of finite size, whose older members die off and are replaced
by learners using the Obverter procedure, there will come a point where,
for some meaning p, a certain signal o, is interpreted most often as that
meaning, and that signal is rarely, if ever, interpreted as any other meaning.
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After that point, all send functions produced by Obverter will send o for
g with probability 1.0. The fraction of the population that sends o for p
will then increase, as new members replace older ones, and ultimately o will
be the signal sent most often for p. After this point, all receive functions
produced by obverter will interpret ¢ as p with probability 1.0. Eventually,
all members will both send o for g with probability 1.0, and interpret o as
p with probability 1.0, thus achieving the maximum possible communicative
accuracy for that meaning. As the same process will happen for all meanings
(assuming that the number of signals is at least as large as the number of
meanings), the population will ultimately develop an optimally coordinated
communication system.

A.2 Unit-Statistic Learning

The Unit-Statistic learning procedure, described in figure 7, requires that
the learner record exactly one observation, for each meaning, of some signal
being sent for that meaning, and of some signal being interpreted as that
meaning. These observations are used to create send and receive functions
by using a procedure similar to Obverter. In this appendix we show that the
resultant send and receive functions will have an expected value of two-way
communicative accuracy with the members of the population that is higher
than the population average communicative accuracy.

Consider a meaning p. Signal o is sent for this meaning with average
probability S(p, o) by members of the population. If the learner records
exactly one instance of a signal being sent for u, it will record that o is sent
for g with probability S(p, o). If the learner now always interprets o as
p (in accordance with the Unit-Statistic procedure), it will be correct with
probability S(g,o). The probability that a set of learners using the Unit-
Statistic learning procedure will correctly interpret signals about meaning p
sent by a population whose average send function is S is therefore:

> 5(u, o) (18)

The expected value of the communicative accuracy of the receive functions
for all meanings is:

“i—[l S S0 of (19)
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Similar considerations hold for learners constructing their send functions
based on one observation in which, for example, signal ¢ is observed being
interpreted as meaning p. According to the Unit-Statistic procedure, they
will always send o for p. Their signals will be correctly interpreted by the
population with probability:

S (o, )’ (20)

The expected value of the communicative accuracy of the learned send func-
tions for all meanings is:

7 S5 Rl o) (21)

So the expected value of the two-way communicative accuracy between
Unit-Statistic learners and the population is:

1/ 1 2 1 2

al 1arl R g, ¢ + Tarl S u, o ) 22

(Zsre T ses) e
This can be simplified to:

o (Z S o u) + 500 a>2) (23)

We now subtract the average communicative success of the members of
the population with each other from the quantity in 23:

ﬁ (Z 3" R(a, u)* + S(p, 0)2>
(Z S S(u, o) Blo, 1) + S(u, o) B(o, m) (21)

1
2| M|

This expression can be converted to:

ﬁ (ZZR(J, 1) [R(o, p) — S(p, o))+ S(u, o) [S(k, o) — R(o, N)])
(25)
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Which equals:

ﬁ @;R(“’ #) [R(o, 1) = S(, )] = S(p, @) [R(o, 1) = (g, a>1)

(26)
Yielding:

o (2 ™[R0, 1) - S 0)]2> (27)

This quantity is always greater than or equal to zero, and therefore the
expected value of the communicative accuracy of learners using the Unit-
Statistic procedure be higher than that of the population average.

The value of formula 27 equals zero only when all corresponding values
of S(p, o) and R(o, u) are exactly equal. This could occur if population
has reached a state of optimal communication, in which, for each meaning
i there is a signal o that is sent by all with probability 1.0, and which is
interpreted by all with probability 1.0. In this case, of course, the learner
could do no better (and will, in fact, do as well as) the rest of the population.

It is also possible that formula 27 could equal zero in some population
for which an optimal communication system has not been achieved. Such
cases are going to be highly unstable, as random fluctuations in the S and R
entries will cause the quantity in formula 27 to attain a positive value, and
the average communicative accuracy will increase.

Though in principle a population of finite size whose new members use the
Unit-Statistic procedure could achieve an optimally coordinated system, this
outcome cannot be guaranteed. For it to occur, each new learner’s single
recorded observation of each of the meanings would have to be identical.
While the probability of this happening increases as the coordination of the
system increases, and the coordination of the system will increase, as has
just been shown, the probability equals 1.0 only if the system is optimally
coordinated. Thus the expected value of the population’s communicative
accuracy will asymptotically approach 1.0, but may or may not actually
achieve that value in any specific population in a finite amount of time.

A.3 Temporal Dynamics of the Learning Procedures

The different shapes of the plots of the computational simulations in figure 8
illustrate the qualitative differences in the temporal dynamics of communica-
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tive accuracy among populations using different learning procedures.

To analyze the differences, let us consider a meaning p and a signal o
such that, at some point in the simulation, ¢ is most often sent for g and is
also the signal most often interpreted as p. Let p be the probability that the
signal o is sent for u, and is then interpreted correctly, that is:

pP= S(N? U)R(Uv ﬂ) (28)

Given these assumptions, the Obverter learning procedure will result in
each learner sending o for g with probability 1.0, and interpreting o as p with
probability 1.0. Thus p will increase by an amount proportional to (1 —p)/N
in each round of the simulation, where N is the number of individuals in the
population. If the population size is large, this expression will be proportional
to the derivative of p as a function of time, and therefore:

p(t) =1— ke /N (29)

Where k£ =1 — p(0) and r depends on details of the simulation, for example
the number of meanings and signals, and the rate at which members of the
population are replaced.

In the case of Unit-Statistic learning, the value of p will not necessarily
increase each round, as the chance that the learner will observe p being
encoded as o, or o being interpreted as p, depends on the specific entries
in the population’s send and receive functions. The probability p describes
the chance that both events are observed in a single communicative event,
and thus the probability that a Unit-Statistic learner will encode p as o
and interpret o as . So the value of p will increase by (1 — p)/N with a
probability of p. If the population size is large enough, we can take the time
derivative of p to be p(1 — p)/N, and therefore:

B 1
- 1_|_ ke—'rt/N
Where k£ = p(0)/(1 — p(0)), and r depends on the simulation details.

The shapes of the curves labeled “Obverter” and “Unit-Stat” in figure 8
are consistent with the functions in equations 29 and 30.

p(t) (30)

For the learning procedures based on a fixed number of observations, it might
be expected that their performance would approximate that of Obverter if
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the number of observations is large enough, and this is apparently the case
for Obs-25. We might expect that fewer observations would result in perfor-
mance similar to the Unit-Statistic procedure, but this is not entirely correct.
The reason that the Unit-Statistic procedure is guaranteed to increase the
communicative accuracy of the population is that it must observe, for each
meaning, one episode of that meaning being encoded as a signal, and one
episode of some signal being interpreted as that meaning. However there is
no guarantee, for any finite number of observations, that one of each such
episode will be seen. If a learner with a finite number of observations fails
to observe one or more such events, it will send or receive randomly for
the meanings whose transmission or reception was not observed. The pres-
ence of such a learner will degrade the average communicative accuracy of
a population whose system is optimal, and the communicative accuracy of
a population whose members use this learning procedure will be limited to
some value below 1.0.

To estimate the limiting value, we first compute the probability that each
meaning will be observed in some number of observations. With three mean-
ings and ten observations, this probability is 0.948. This value represents
the probability that an Obs-10 learner’s send map entry will be correct, and
the probability that its receive map entry will be correct. So the maximum
communicative accuracy such a population could achieve is 0.948% = 0.899.
In the case of Obs-25 the probability that all three meanings will be ob-
served 1s approximately 0.9998, and so the threshold is greater than 0.999.
Though these estimates ignore other influences on the limiting values, they
are roughly consistent with the performances of the Obs-10 and Obs-25 learn-
ers shown in figure 8.
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