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ABSTRACT OF THE DISSERTATION

Formal Approaches to Innate and Learned Communication:

Laying the Foundation for Language

by

Michael Oliphant
Doctor of Philosophy in Cognitive Science
University of California, San Diego, 1997
Professors John Batali and Jeffrey Elman, Co-Chairs

This dissertation identifies the conditions necessary to establish a system of communication in a
population of individuals, whether through evolution or learning. A definition of communication
is proposed that encompasses the behavior of species ranging from flowers to human beings, and
a formal framework for modeling such behavior is presented. Through the use of computational
simulations, it i1s shown that systems of communication evolve in cases where such behavior con-
veys a selective advantage to both sender and receiver. It is also demonstrated that factors such
as kin selection and reciprocal altruism can result in the establishment of communication even
when there is no direct pressure on the transmission of signals. In the case of learned commu-
nication, it is argued that observational learning is the appropriate learning model. Learning
strategies that simply imitate the behavior of others, however, are not suitable. Instead, a learn-
ing mechanism must optimize its behavior so as best to communicate with the population it
is observing. A Bayesian learning procedure designed to maximize the probability of commu-
nicative success is shown to be capable not only of learning an existing communication system,
but also constructing such a system from random initial signaling behavior. To examine how
animals might actually implement such a procedure, network learning models are considered. It
is shown that a simple form of Hebbian learning, well within the grasp of most animals, has the
required properties. Given this, it is surprising that learned systems of communication are not
more frequent. Evidence from the animal social learning literature suggests that the primary
reason for this may be that observational learning is difficult, if not impossible, for non-human
animals. Given this, he most basic explanation for why only humans have language may not lie
in the ability of learn a complex, syntactic form of communication, but rather in the ability to

learn any system of communication at all.



Chapter I

Introduction

The research that I will present in this dissertation has two related, but distinct goals.
The first, and primary goal is to give a formal analysis of what is required for communication
to be established in a population of animals, either through evolution or through learning. 1
believe that laying this formal foundation is critical. A clear understanding of the requirements
involved in constructing and maintaining a system of communication will allow us to know when
we should be surprised that such behavior exists, and when we should be surprised that it does
not.

The second, and more speculative goal is to use the formal framework I develop to
begin to answer some questions about communication and language that I feel are important.
Why do animals communicate in situations where it seems not to be in their own best interest
to do so? Why, when virtually every animal species has a system of communication, are so few
of them learned? Why do human beings seem to be unique in their communicative abilities?
Such questions represent both the motivation for the work in this dissertation, and the future
directions that I hope to pursue as a result of 1t.

In the next chapter, I outline the behavior of communication, giving examples of some
of the communicative behaviors that animals exhibit. I then formulate a definition of commu-
nication that encompasses all of these examples. In chapter III I give the formalism that will
be used as the basis for simulations I present and analyze the conditions that are required of an
effective system of communication.

Having established a definition of communicative behavior, and a formalism with which
to describe it, I then turn to an investigation of mechanisms capable of establishing systems of
communication. Chapter IV is an exploration of the establishment of innate systems of com-

munication. Through the use of computational simulations, I demonstrate that communication



evolves in cases where sender and receiver each have a common stake in its success. I also
show that factors such as kin selection and reciprocal altruism can result in the establishment of
communication even when there is no direct pressure on the transmission of signals.

In chapter V, I use the evolutionary simulation framework I have developed to experi-
mentally explore the differences between behavior that is communication and behavior that just
involves the exploitation or manipulation of one individual by another. I then apply these results
to simulation work done by others, showing that the behavior they observe is best described as
exploitation or manipulation, rather than communication.

Chapter VI explores how systems of communication might be established through learn-
ing. I argue that observational learning is the appropriate learning model, and describe a number
of plausible learning procedures that might be used. I show that learning strategies that simply
imitate the behavior of others are not suitable. A learning mechanism must rather optimize its
behavior so as best to communicate with the population it is observing. To examine how such
learning might be implemented, I turn to network learning models. I demonstrate that a simple
form of Hebbian learning is sufficient to result in the creation and maintenance of a system of
communication in a population of individuals.

Because the computational requirements of learned communication seem to be so mod-
est, in chapter VII I consider possible explanations for why we do not see more such systems. 1
point to a lack of observational learning ability among non-human animals as the primary reason,
and give an overview of the animal social learning literature supporting this claim. In conclusion,
I argue in chapter VIII that the ability to learn by observing others presents a key bottleneck in

the evolution of language.



Chapter 11

The behavior of communication

Before turning to an investigation of how systems of communicative behavior might be
established, it is necessary to first give an overview of the behavior itself. First, I will discuss
examples of the communicative behavior that I intend to model. Then I will attempt to give a

definition of communication that is sufficient to account for all of these examples.

II.A  Animal communication systems

This section gives a brief overview of the diverse examples that should be included in
an account of animal communication. There is an enormous literature on this subject. For more
detailed treatments, T recommend Smith (1977), Sebeok (1977), Lewis and Gower (1980) and
Hauser (1996). My intent here is simply to show that communication systems are used by a wide
variety of animals, using a number of different signaling techniques in a diverse set of types of

interaction.

II.A.1 Flowers and pollinators

While communication occurs most frequently among conspecifics, it sometimes involves
interactions across species. Bees obtain nectar from certain species of flower, and as a result,
act as pollinators to the flower. Because it is in the flower’s best interest to attract bees, their
appearance has evolved to facilitate this (Daumer, 1958). Bees cannot see the color red, and very
few of the flowers the bees pollinate are that color. This color bias of the flowers is quite possibly
an adaptation that has occurred because of the symbiotic relationship between the flowers and

the bees that pollinate them.



Some bee-pollinated flowers do even more to make the bee’s job easier. The evening
primrose, for example, has a distinctly colored central region. When the petals of the flower are
removed and rotated so that the distinctive central region now faces outward, the bees probe at
the corners, rather than at the center. Thus, the coloration of the flower helps the bee find the
source of the nectar (and the site of pollination).

This interaction between bees and pollinators not only demonstrates that communica-

tion can be interspecific, but also that it can occur in clearly non-sentient species.

IT.A.2 Insect pheromones

Pheromones are chemical signals used by certain species to communicate in a oral or
olfactory manner. The use of pheromones is particularly widespread in among the social insects,
who used them to coordinate much of their activity. Wilson (1965) identifies a variety of ways
in which such signals are used by social insects, including alarm, recruitment, grooming, and
recognition of others.

Termites use odor trails to recruit works to repair breaks in the nest wall, as well as
to construct trails that lead to food resources. Pheromones also control caste recognition in
termites. Both royal males and royal females identify others of their kind through pheromones.
When a queen termite encounters another queen, the pheromones they release produce fighting

behavior.

II.A.3 Bee dances

One the most famous examples of animal communication is the dance done by honeybees
to indicate food sources. The bee “language”, decoded by von Frisch (1974), is used by a bee
that has discovered a source of food to inform others of its approximate angle and distance from
the hivel. A bee, upon returning to the hive, performs a tail-wagging dance in the shape of a
figure-eight. The amount of time it takes the bee to traverse the straight, central portion of the
dance indicates the distance to the food source, while the angle of this traversal gives its angle of
the source using the position of the sun as a reference. The degree of vigorousness of the dances
indicates the quality of food at the source. In addition, scent from the flower becomes attached
to the bee, and indicates the flower type to others. This effectively gives an indirect signal from

the flower to the other bees.

1von Frisch won the Nobel Prize in 1973 for this work, a prize he shared with Nikolaas Tinbergen and Konrad
Lorenz.



ITI.A.4 Vervet monkey alarm calls

While many animal species have some form of alarm call system, perhaps the most
studied is that of the vervet monkey (Strusaker, 1967; Seyfarth, Cheney, and Marler, 1980a;
Seyfarth, Cheney, and Marler, 1980b) Vervets use a system of alarm calls that distinguishes the
different kinds of danger posed by various species of their predators. When a vervet sees an
eagle, it gives an alarm call that sounds like a cough. When a large cat such as a leopard is seen,
a barking sound is made. When a vervet sees a snake, it utters a chuttering sound. Each of
these alarm calls causes other vervets that hear them to engage in evasive behavior appropriate
to the predator: in response to the eagles call, the monkeys to look up or run into bushes, the
calls given in response to large cats cause vervets to run into tress, and the snake call causes the
monkeys stand up and look in the grass. That the monkeys are responding to the alarm calls,
and not to the predators themselves is indicated by the results of playback studies. Seyfarth,
Cheney, and Marler (1980b) have shown that vervets make the appropriate response to recorded

calls in the absence of an actual predator.

II.A.5 Human language

No survey of animal communication, however brief, would be complete without making
mention of human language. Human language, due to its unique complexity, is generally consid-
ered separately from communication in other species. Human beings are animals, however, and
human language is a form of communication. It is therefore my intent that the results of the
research presented in this dissertation apply to human communication, linguistic or otherwise.

The primary focus of this dissertation, however, will be on the properties of a subset of
communication systems that I will call simple. Simple communication systems are those which
make use of signals that are independent and discrete. In other words, the signals have no
meaning-bearing internal structure, and cannot be combined together to create more complex
utterances. This is to be contrasted with the combinatorial, syntax-governed structure of human
languages, for which the term language will be reserved. Thus, while not all communication

systems have the properties required of language, human language is a system of communication.

II.B Defining communication

The goal of this section is to establish a definition of communication that is general
enough to encompass all of the examples given in the previous section, while still remaining suf-

ficiently specific to exclude cases that common sense would rule as not involving communication.



This is an extremely difficult task, and one that has been attempted by many other researchers
— each of whom, more often than not, differs with the others. A selection of these previous
definitions will be reviewed here, as they will both contrast with, and provide a basis for the

definition that will subsequently be formulated and used throughout the rest of this dissertation.

II1.B.1 Previous definitions of communication

Attempts to define communication have, to a large extent, come from two different
groups of researchers: those studying human language and those studying communication in
other animals. Despite the similarities underlying communication in both cases, these definitions
have proceeded more or less independently, and tend, at least on the surface, to seem incompatible
with one another.

The study of human communication is closely intertwined with the philosophical notion
of intent. Grice (1957), in defining what he calls true meaning, requires that individuals take
into account the mental states of others. In particular, Grice wanted to distinguish cases of true
meaning from events that have what he called natural meaning. In the nautical saying “Red sky
at night, sailor’s delight. Red sky at morning, sailor take warning,” the color of the sky is taken
to carry information about impending weather. There is no sense, however, in which the sky
intentionally conveys this information.

According to Dennett (1987), individuals are intentional systems to the degree that they
have metal states (beliefs, desires, emotions), and are capable of attributing them to others. He
argues that communication requires that an individual has at least what he calls second-order
wntentionality — not only having their own mental states, but being capable of attributing such
states to others. The more complicated nuances of human language, such as sarcasm, require
even higher-order levels of intentionality.

In contrast, definitions of communication put forward in the more general context of
animal behavior tend not to make reference to intentionality. Instead, the defining feature is
generally whether or not the potentially communicative behavior results in a selective advantage
to one or more of the participants involved in the exchange. There seems to be no general
consensus, however, on whether communicative acts must benefit the sender, the receiver, or
both. Wilson (1975), for example, considers an interaction to be communicative if it is adaptive
from the perspective of either participant.

Communication is seen by some to be a primarily manipulatory behavior. In this case, it
is only important that the behavior convey a selective advantage on the transmitter (Burghardt,

1970; Dawkins and Krebs, 1978). Dawkins and Krebs (1978) define communication as occurring
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Receiver:

Benefit No Benefit
Sender: Benefit Communication | Manipulation
No Benefit Exploitation Spite

Figure I1.1: Classification of interaction types. Communication is differentiated from manipula-
tion and exploitation based on the selective advantage conveyed to sender and receiver. Modified

from Bradbury and Vehrencamp (forthcoming), after Wiley(1983).

when “an animal, the actor, does something which appears to be the result of selection to influence
the sense organs of another animal, the reactor, so that the reactor’s behavior changes to the
advantage of the actor” (p. 282). While this is a perfectly reasonable definition of manipulative
behavior, others find it to be somewhat lacking as a definition of communicative behavior. This
results, most likely, from a difference of opinion over what classes of behavior should be included
and which should be excluded from the definition.

Bradbury and Vehrencamp (forthcoming) differentiate communication from other forms
of interaction, such as manipulation and exploitation, based on the selective advantage conveyed
to the sender and the receiver. As can be seen in Figure II.1, manipulative interactions con-
vey an advantage to the sender, but not to the receiver. Exploitative interactions involve the
opposite situation, conveying an advantage to the receiver, but not to the sender. They call
interactions that are beneficial to neither party spite. By their definition, then, an interaction 1is
only communicative if both the sender and the receiver benefit from it.

Because certain interactions that we will want to call communicative may not involve
direct benefits to sender and receiver, this framework requires a small modification. In situations
involving kin selection, for example, selection is best seen as operating at the level of the gene
rather than the individual. In order to account for such situations, the benefit to the individuals
involved in an interaction should be expressed in terms of inclusive fitness. Lewis and Gower
(1980) approach this problem by being appropriately vague about the locus of a selective advan-
tage, defining communication as “the transmission of a signal or signals between two or more

organisms where selection has favored both the production and the reception of the signal(s)”

(p-2).

II.B.2 Incompatible definitions

While intent-based notions of communication are sufficient to characterize human be-

havior, and fitness-based notions of communication provide a good classification of innate be-



havior, neither provides a general definition of communication.

A Gricean approach will conclude that most, if not all, non-human animals are incapable
of communication — it is probably safe to assume that second-order intentionality is a great deal
to ask of a bee or a flower. Even vervet monkeys, whose alarm calls are so often used as an
example of animal communication, are unlikely to possess the level of sophistication that Grice
requires (Cheney and Seyfarth, 1990; Cheney and Seyfarth, 1996). Because of this, although T
believe that the study of intentionality, and of theory of mind in general, is relevant to attempts
to ascertain the cognitive abilities of a species, I will argue that such issues are not germane to the
task of determining what classes of behavior should be termed communicative. Although a vervet
monkey may not intend, or even be aware that i1ts leopard alarm call may indicate the presence
of a leopard to other monkeys, there is still something more to this interaction than the way the
color of the sky may indicate to a sailor that a storm is approaching. Because the requirement
of intent excludes many animals whose behavior I believe should be called communication, it 1s
necessary to look elsewhere to make the appropriate classification.

The definitions of communication based on selective advantage put forward in the animal
communication literature are equally limited. They are tied quite tightly to communication
systems that are innate, having been tuned by natural selection. In the case of human language, it
is difficult to determine what, if any, selective advantage an interaction conveys on its participants.
Even if it were possible to trace back intentional behavior to its evolutionary roots, the resulting
connections would likely be too remote and convoluted to prove useful.

Because the communication systems that will be explored in this dissertation involve
both innate and learned behavior, it will be useful to have a definition that encompasses all
communicative interactions: innate systems, simple learned systems, and even human language.

The following section attempts to formulate such a definition.

II1.B.3 A causal definition of communication

Consider the communication system set up during the American revolution to warn of
impending British attacks, and immortalized as “one if by land, two if by sea.” One lantern
was lit to signal that Paul Revere should warn of a land attack, two lanterns were lit to warn of
an attack across the Charles river, and no lanterns indicated that no attack was coming. The
reason that this system is communicative has to do with the way various parts of it interact
with one another. Why would an impending attack by sea cause two lanterns to be lit? Because
this would signal to the defenders that they should defend against an attack on the shore. Why

would a two-lantern signal cause preparations for a coastal defense? Because if the British were



X =Y 7

Figure I1.2: The form of a causal interaction. The sender, in situation X, exhibits behavior Y,

and the receiver, upon observing this behavior, has a reaction Z.

going to attack across the river, two lanterns would be lit.

While this kind of reasoning is seems circular, I argue that it is this very circularity
that is at the heart of a definition of communication. An interaction is communicative only
if the send and receive behaviors are such that, in some sense, each 1s an explanation for the
other. The sender behaves the way it does because of how this behavior can be expected to

2 The receiver interprets the sender’s behavior the way it does

be interpreted by the receiver.
because the sender can be expected to behave this way in particular situations. In the case of
the lantern signaling system, the two haves of the system, while operating independently, have
been structure to correspond to one another. In this case, this correspondence was explicitly
established, but such design is not required.

The kind of interaction we are interested in, then, is one involving a causal chain of
events. An interaction is causal when one individual, the sender, exhibits a behavior in response
to a particular situation, and a second individual, the receiver, responds to this behavior (Fig-

ure I1.2). Not all such causal interactions are communicative, however — the abovementioned

synergistic relationship between send and receive behavior is required.

Exploitation and Manipulation

It 1s important that communication can be distinguished from situations that simply
involve exploitation or manipulation of one animal by another. A causal interaction is exploitative
if the fact that the receiver responds to the sender’s behavior the way it does has, to some degree,
been determined by the fact that the sender can be expected to behave this way in response to a
particular situation (Figure I1.3a).? For example, consider the detection of bluffing in the game
of poker. Suppose that one player has noticed that another player has a habit of blinking when
he is bluffing a hand. The first player can then take advantage of this regularity to raise the bet

in such situations. In this situation, the reason that the first player raises the bet is that there

21t is important to note that, while this could involved an explicit expectation on the part of the sender, all
that is required is that the sender’s behavior has been tuned in some way to be responsive to regularities that
exist in the receiver’s behavior.

3The qualification “to some degree” is used here because a myriad of different causes are likely to contribute
to any given behavior. What is important in this case is that the sender’s behavior is one of the factors that has
shaped the receiver’s response.
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(X —=Y)= (Y = 2)
)

Player 1 is

bluffing — Player 1 blinks = ( Player 1 blinks —  Player 2 raises )

b)
Figure I1.3: The form of an exploitative interaction. The general framework is shown in diagram

a). Diagram b) gives an example where, in a poker game, one player exploits the habit of another

who blinks when he is bluffing.

(X =Y)<= (Y = 2)
)

Female .. .. Male of other
. Female imitates Female imitates ;
firefly 1s — . . —  species responds
mating flash mating flash )
hungry and 1is eaten
b)

Figure I1.4: The form of a manipulative interaction. The general framework is shown in diagram
a). Diagram b) gives an example where a female firefly imitates the mating flash-code of another

firefly species, attracting a male and eating him.

is a regularity between the other player’s blinking and bluffing. This interaction is diagrammed
in Figure I1.3b.

A causal interaction 1s manipulative if the fact that the sender behaves the way it does
in a given situation has, to some degree, been determined by the fact that the receiver can be
expected to respond in a particular way (Figure IT.4a). An example of this kind of behavior is
the hunting technique of certain female fireflies, who imitate the mating flashing code signal of
another firefly species (Lloyd, 1984). The males of the second species, arriving prepared to carry
on their genetic line, are promptly eaten by the female deceiver. This interaction is shown in

Figure I1.4b.
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Communication

A causal interaction is communicative if it can be described both as a manipulative
interaction and as an exploitative interaction, as shown in Figure I1.5a. This allows us to define

communication in the following way:

An act of communication is a causal chain of events, whereby one individual, the
sender, exhibits a behavior in response to a particular situation, and a second indi-
vidual, the receiver, responds to this behavior. Such an interaction is communicative
if 1t involves manipulation on the part of the sender, and exploitation on the part of
the receiver.

Two examples of communicative behavior are shown in Figure II.5. The first is an
example of human communication: attracting a waiter’s attention in a restaurant (Figure I1.5a).
The customer wants to pay, so she raises her hand. The waiter sees the customer’s raised hand
and comes over to the table. The reason that the signal is transmitted is that it will have a
particular outcome, namely attracting the waiter’s attention. The reason the waiter comes over
to the table is because of a known association between customers wanting to pay and the hand
signals that they make.

The second example involves an innate behavior — the threat displays observed in the
hostile interactions of many species. One animal, being in an aggressive state, makes a particular
display with its body. The other animal, upon observing the display, may withdraw from the
interaction. The withdrawal of the second animal is a result of an innate response to the display
behavior. This response has been tuned by natural selection because of the association of the
display with another animals state of aggression. The display behavior itself has also been tuned
by evolution, being selected for because it has the response that it does — namely causing another

animal to back down.

II.B.4 The chicken or the egg?

The circular nature of this definition of communication may still seem to be problematic.
Consider the chuttering sound used by vervet monkeys as an alarm call for snakes. It seems
circular to say that the response of vervets to a chuttering sound caused vervets to chutter when
they see a snake, and also to say that the fact that vervets chutter when they see a snake caused
vervets to respond with the appropriate evasive action. Two things can not cause each other
if neither of them initially existed. The solution to this problem is the same as the solution to
most “chicken and egg” problems: neither was initially present in its current form, but small

tendencies were exaggerated over time in a feedback loop. The initial correlation may have been
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(X=Y) _ (¥ =2)

Customer wants Customer raises — Customer raises Waiter comes to
to pay his hand — his hand the table
b)

Animal 1 is in Animal 1 gives = Animal 1 gives Animal 2

an agtgrtesswe - a threat display <— a threat display withdraws
state

c)

Figure I1.5: The form of a communicative interaction. Diagram a) gives the general framework.
Diagram b) gives an example of human communicative behavior, where customers attract the
attention of waiters by making hand gestures. Diagram c) gives an example of innate communi-

cation, where a threat display is used to mediate a hostile interaction.
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small and randomly introduced, or, as seems often to be the case, derived from some aspect of a

related behavior (Tinbergen, 1952; Moynihan, 1970; Brandon and Hornstein, 1986).

II.B.5 Defining communication in practice

Because of the historical nature of the causal links between transmission and reception
behavior, it will often be difficult to tell whether a given behavior is truly communicative or
not — there will often be multiple possible explanations. In the case of an alarm call system, for
example, the animals could respond with cries of alarm because of biological reasons unrelated to
the effect they have on others. The animals might then have been tuned by evolution to respond
to these cries, resulting in a form of interaction that would be exploitation. On the other hand,
the animals might be startled by certain sounds, again for reasons unrelated to any tendency
of others to make them. Selection might then result in individuals that produce such sounds in
response to predators, resulting in a manipulative form of interaction.* Or the alarm behavior
might truly be communication, with both alarm production and the response to it being tuned
based on one another.

To determine whether any particular interaction is communicative will tend to require
a historical argument. Such arguments will be a prior: and, as such, must be speculative. In
some cases, the situation will be relatively clear. For example, a common form of manipulation
in insects is the imitation of another species’ mating calls by a predator in order to attract prey
(such as the firefly behavior described earlier). In this case, it is unlikely that the receiver’s
behavior has been tuned in response the the signals of the predator. Other situations, such as
seemingly altruistic alarm calls that are made despite possible danger to the sender, are more
difficult to assess. This difficulty is the primary motivating factors for the use of simulation, the
main analytic technique that will be used in the research I present. In contrast to the study
of real-world communication systems, the history of a simulation is accessible, and the selective
pressures on an individual are manipulatable. In section V, I will return to these issues, using

evolutionary simulations to demonstrate situations of exploitation and manipulation.

II.B.6 An inclusive definition of communication

In defining communication, I have focused on the synergistic relationship that must exist
between transmission and reception behavior. This synergy can occur as a result of a variety of

different pressures. It could result from the action of a learning mechanism, or it may, as is the

4Such behavior is still manipulative even if the receiver benefits. This points out a key difference between
the present definition of communication and those that are based directly on selective advantage to sender and
receiver.
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case with most communication systems, be a result of natural selection. It might be established
explicitly by agreement, or it may involve rational agents trying to predict each other’s behavior.
The failing of most existing definitions of communication is that they confound the relationship
that exists between send and receive behavior with the pressure that established 1t. This leads
to definitions that are limited in scope. They are designed to account for systems that have
been established by a particular mechanism, and fail to apply in other cases. By separating the
mechanism from the results it produces, the definition of communication proposed in this chapter

is able to encompass a more general class of behavior.



Chapter III

Communication system formalism

In order to study communicative behavior within a computational or mathematical
framework, it is necessary to come up with a formalism with which to describe it. As is always
the case with such a formalism, it will be an abstraction from the reality, and will involve
numerous simplifying assumptions. Previous models of communication have been presented by
Lewis (1969), Hurford (1989), and Skyrms (1996). The present model shares much in common
with this previous work, particularly that of Hurford.

III.A Signals and meanings

We will assume that there 1s a set, F, of environmental states that an animal is capable
of distinguishing between, and a set, A, of distinct actions that the animal can perform in response
to these states of the environment. Let us further assume, for the sake of simplicity, that these
sets F and A are the same size, and that there is a one-to-one function, a, that determines,
for each state ¢ € F, a unique action, o € A, that is appropriate. The animal in the course of
its everyday behavior will, when it observes some state ¢ (such as the presence of a particular
predator), perform action a(e) (such as appropriate evasive behavior).

This describes the behavior of an individual animal interacting with its environment.
Often, however, one individual has privileged information about some state of the environment
(including, perhaps, its own internal state) that another, uninformed individual does not have
access to. Communication provides a way for the uniformed individual to react appropriately to
the state of the environment by using the informed individual as an intermediary.

In order for communication to be possible, the animals must have at their disposal a set,

S, of low-cost behaviors which are observable and can be distinguished by others. We will call
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these behaviors signals. Because the set of environmental states and their appropriate responses
are linked to each other in a one-to-one fashion, it will be convenient to refer to each associated
pair together as a single meaning, p € M.

A communicative interaction, then, involves one individual observing an environmental
state €, and producing a signal, ¢ € S . A second individual observes the signal ¢, and per-
forms an action, a.! Communication is said to be successful if the action is appropriate to the
environmental state (a(e) = ).

An individual’s communicative behavior will be characterized in two distinct parts. The
first, transmission, determines what signal will be sent for a given meaning. The second, reception,
determines what meaning a given signal will be interpreted as. Both of these behaviors will be
described by probability functions. s(yu, o) represents the probability that a signal ¢ will be sent
for a meaning g by a transmitter, and r(o, p) represents the probability that a signal o with be
interpreted as meaning p by a receiver. The send function s, then, gives a probabilistic mapping

from meanings to signals, while the receive function » maps back from signals to meanings.

III.B Communicative accuracy

Consider two individuals involved in a communicative interaction, the transmitter with
send function s and the receiver with receive function r. For a particular meaning p, r(o, p)
is the probability that, if a given signal o is sent for u, it will be correctly interpreted by the
receiver. The probability, then, that meaning g will correctly communicated is the weighted
average of this conditional probability across all possible signals, with the weighting term being
the probability, s(u, o), that the transmitter will use a particular signal:
Z s(p, o) r(o, u) (TI1.1)
o
We can now compute the expected probability that signals sent using send function
s will be correctly interpreted by receive function r. This probability, which we will write as
ca(s, r), will be called the communicative accuracy from s to r. If we assume that all meanings
are equally likely to serve as the subject of a communicative interaction, then this value is the

average probability that any given meaning will be correctly communicated:

1
ca(s, r) = Wzﬂ:;s(ﬂ, o)r(o, p) (T11.2)

!Interactions involving groups of animals can generally be reduced, for the purposes of analysis, to simple
interactions between two individuals. If one animal gives an alarm call that is heard by a group of others, each of
these other animals can be considered to be involved in a communicative interaction with the calling animal.
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Figure IT1.1: An example communication system.

where |M| is the number of meanings. The maximum value of ca(s, r) is |S|/|M]|, giving a
maximum communicative accuracy of 1.0 as long as there are at least as many signals available
as there are meanings to be conveyed.

Figure I11.1 shows sample send and receive functions for communication involving three
meanings (1,2, and 3) and three signals (a,b, and ¢). To calculate ca(s, r), we calculate the

accuracy for each meaning using Equation (ITI.1):

Meaning 1 —  (1.0)(1.0) + (0.0)(0.0) + (0.0)(0.0) = 1.00
Meaning 2 —  (0.0)(0.0) + (0.6)(0.4) + (0.4)(0.6) = 0.48
Meaning 3 —  (0.0)(0.0) + (0.4)(0.6) + (0.6)(0.4) = 0.48

The communicative accuracy between s and 7 is the average of these three values, or 0.65.

In addition to knowing how well a given transmitter will be understood by a given
receiver, it is often important to calculate how well two individuals will intercommunicate. This
probability, called two-way communicative accuracy (cas), is simply the average of the two one-
way probabilities (assuming each takes turns sending and receiving with equal frequency). For
two individuals with send and receive functions s1,ry and ss,ry respectively, the calculation would

be:
(ca(s1, r2) + ca(sa, r1)) (T11.3)

N | —

602(81, 1, S2, 7”2) =

III.C Communicative accuracy of a population

The communicative behavior of a population can be represented in much the same way
as that of an individual. Assuming that each individual in the population is given equal weight,
the behavior of the population can be characterized as the expected behavior of an individual
selected randomly from it. This expected behavior can be expressed in terms of average send and

receive functions for the population. These functions, S and R, can be calculated by averaging



the send and receive probability functions (s; and r;) of all individuals in the population:

S o) =+ Sslm o) Rlow) =5 Yonilo, ) (111.4)

i i
where N is the number of individuals in the population.

These two new probability functions represent the transmission and reception behavior
of an average member of the population, and can themselves be used in the equations formulated
in the previous section. This allows us to calculate values for communicative accuracy involving
entire populations. The probability with which a particular individual (with send and receive
functions s and r) will communicate accurately with a population (described by send and receive
functions S and R) is cas(s, 7, S, R). The average communicative accuracy within the population

is ca(S, R, S, R), which will simply be written as ca(S, R).

III.D Optimal communication

As mentioned earlier, if we assume that there are at least as many signals as there
are meanings, the maximum communicative accuracy achievable is 1.0. In order to achieve this

optimal state of communication, a population must satisfy three independent requirements:

Coordination: Each individual’s send and receive functions must communicate with each other
at least as well as either would communicate with any other system. Thus, for any individual

in the population with send function s; and receive function r;:

ca(s;, r;) > ca(s;, vo) (TT1.5)

for any other receive function r, and:
ca(s;, ;) > ca(s,, i) (T11.6)

for any other send function s,.

Distinctiveness: In each individual’s send function, each signal must be sent for exactly one
meaning. In each individual’s receive function, each signal must be interpreted as exactly
one meaning. Thus, for each meaning y, there is a signal ¢ such that s(u, o) = 1.0, and
s(n, o) = 0.0 for all meanings n # pu. Also, for each meaning pu, there is a signal o such

that r(o, ) = 1.0, and r(x, p) = 0.0 for all signals x # ¢.?

2This condition only holds strictly if there are equal numbers of signals and meanings. In cases where there are
more signals than meanings, it is possible to have equivalence classes of signals, where each member of the class
is interpreted identically to the others by the population. In cases where there are fewer signals than meanings,
the requirement of distinctiveness cannot be satisfied, and optimal communication cannot be achieved.
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Consensus: All individuals must have the same communication system. Thus, for any two

individuals with send and receive functions s;, r; and s;, r;:
si(n, o) = sj(p, o) ri(o, p) = rj(o, p) (I1.7)
for any meaning y and signal o.3

If any one of these requirements is not fully met, the population will not communicate optimally.

To prove this, we will consider each requirement in turn.

Lack of coordination

Suppose that a population has consensus and that each individual’s system is fully
distinctive, but that some individual’s system 1s not fully coordinated. This means that there 1s
some other communication system that would communicate more accurately with this individual
than this individual communicates with itself. Because all individual’s in the population have
the same system, this means that, for any two individuals, there exists a communication system
that would communicate with either one of them more accurately than they communicate with

each other. In this case, the population’s communicative behavior cannot be optimal.

Lack of distinctiveness

Suppose that a population has consensus and that each individual has a fully coordi-
nated communication system, but that some individiual’s system 1is not fully distinctive. This
individual, then, transmits the same signal for more than one meaning, or interprets a signal as
more than one meaning. This results in an ambiguous situation, and the individual will not com-
municate optimally with any member of the population. Thus, the population’s communicative

behavior cannot be optimal.

Lack of consensus

Finally, suppose that each individual has a fully coordinated, fully distinctive communi-
cation system, but that not every individual has the same system. This means that there exists
some individual that, for a given meaning sends a different signal than some other individual does,
or, for a given signal, interprets that signal differently than does some other individual. If we
assume equal numbers of signals and meanings, this will necessarily result in a miscommunication

between the two individuals.

3The requirement of consensus has a similar exception to the requirement of distinctiveness in cases where
there are more signals that meanings. If there is an equivalence class of signals, individuals can then transmit any
member of the equivalence class without affecting communicative accuracy.
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Player 2:
GotoA | Goto B
Player 1: Goto A 2,2 0,0
Go to B 0,0 1,1

Figure IT1.2: An example game. To people want to meet for dinner, and they would both prefer

go to restaurant A.

III.E Game-theoretic notions of communication

The mathematical theory of games, first put forward by Von Neumann and Morgenstern
(1953), is a technique for describing behavior in economic situations. The basic model involves
an interaction between a finite number of participants, each of whom can take one of a number
of possible courses of action. Depending on the combination of actions taken by the players,
each receives a payoff. Nash (1951) laid the foundation for the study of games in which the
participants choose actions independently. By assuming that people behave in a rational, self-
interested manner, it is possible to predict the outcome of such interactions. More specifically,
certain pairs of actions are stable and others are not. Stable action pairs (called Nash equilibria)
are those where no player can better their situation by unilaterally changing their course of
action.

Consider the example of two people meeting for dinner. Suppose that there are two
possible restaurants (A and B), and they each must decide independently which one to go to. If
they do not want to end up at different restaurants, and furthermore, both prefer restaurant A.
A payoff matrix for this situation is shown in Figure II1.2. This game has two pure-strategy Nash
equilibria — the situation where both players go to restaurant A and the situation where they
both go to restaurant B. Despite the fact that both players would prefer to eat at restaurant
A (making it an efficient equilibrium in the terminology of game theory), classical game theory
simply predicts that the result of the game will be one of the two Nash equilibria.

The inability of classical game theory to rule out inefficient equilibria serves as the
motivation for the introduction of communication into a game. The idea here i1s that if the
players were able to communicate with one another, they would be better able to coordinate on
an efficient equilibrium. While this seem true intuitively, it has proven difficult for economists to
demonstrate it formally. The basic problem is that communication, implemented as a cost-free
interaction before the game itself (termed cheap-talk), does not alter the payoff structure. The

result is that the signals are meaningless and inefficient equilibria still cannot be eliminated.
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Farrell (1988) considered a version of a communication game very similar to the model
presented earlier in this chapter. He showed that, while optimal systems of communication are
Nash equilibria, there are also other, inefficient equilibria. This is true even in cases where the
individuals’ interests coincide. These sub-optimal equilibria involve situations where a signal is
sent for more than one meaning, or more than one signal is interpreted as the same meaning.

This result is rather disturbing, as it fails to predict that rational individuals will com-
municate effectively with each other even when it is in their best interest to do so. One possible
explanation of this apparent dilemma is that the apparatus of classical game theory is too simple
to account for the phenomenon. More satisfactory results have been achieved within the frame-
work of evolutionary game theory. This framework will be discussed in section IV.A and the

results obtained from it will be reviewed in section IV.F.



Chapter IV

Evolved communication systems

The vast majority of existing communication systems are innate, the behavior of trans-
mitting and receiving signals being present at birth and remaining fixed throughout an individ-
ual’s lifetime. These systems of communication, then, have been tuned by natural selection. This

chapter will investigate the conditions necessary for such systems to emerge.

IV.A Evolutionary game theory

Evolutionary game theory is an extension to classical game theory. The basic model
remains the same, but is extended to apply to populations of individuals in an evolving population
(Hamilton, 1964; Hamilton, 1967; Maynard Smith, 1982). In the evolutionary case, the action an
individual takes in a game is determined by natural selection, rather than rational choice. The
payoff an individual receives from playing the game against other members of the population
provides a fitness metric that can be used as the basis for selection.

Evolutionary game theory allows predictions to be made about what conditions are
required for a population of individuals to maintain a stable state. Maynard Smith formalized
this by introducing the notion of Evolutionary Stable Strategy (ESS) (Maynard Smith and Price,
1973; Maynard Smith, 1982). A strategy of play in a game is evolutionarily stable if a population
of individuals all playing this strategy cannot be invaded by any other strategy. This means that
a strategy A is an ESS if the payoff it receives by playing others of strategy A is greater than
the payoff any mutant B gets playing individuals with strategy A. Mathematically:

P(A, A) > P(B, A) (IV.1)

22
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A strategy can also be stable if:
P(A, A) = P(B,A) and P(A, B) > P(B, B) (Tv.2)

One can see from this formulation that any ESS will also be a Nash equilibrium. Since no mutant
can play better against strategy A than A can play against itself, their is no motivation for either
of two players playing strategy A to switch to anything else.

While evolutionary game theory can determine whether a strategy is stable, it says
nothing about whether such a strategy could come to dominate a population in the first place.
Such claims about achievability rather than simply stability turn out to be much more difficult
to make. This difficulty serves as the primary motivation for the use of computational, rather

than purely mathematical techniques when studying evolutionary dynamics.

IV.B Evolutionary Computation

FEvolutionary computation, variants of which have been introduced under different names
by different people, refers to the use of simulation techniques inspired by biological evolution to
try to solve computational problems. It involves creating populations of simulated “individuals”
and subjecting them to simulated, fitness-based selection pressures. The most commonly referred-
to variants are genetic algorithms (Holland, 1975), evolutionary programming (Fogel, Owens, and
Walsh, 1966), and evolutionary strategies (Rechenberg, 1973).

More recently, similar techniques have been used in an area somewhat dubiously known
as Artificial life (Langton, 1989). In this framework, rather than using evolution to as a means of
computation, computation is used as a means for studying evolution. The simulations that will
be presented in this chapter are of this latter kind, using computational simulation techniques as
a means of exploring changes that may have occurred in real biological systems over evolutionary
time.

Most of the simulations I will present are generation-based. In a generation-based model,
the individuals in a population are evaluated and reproduce (based on fitness) to create a new
generation of individuals. It is important to clarify how the word fitness is generally used in the
area of evolutionary computation. In biology, fitness is a technical term that is generally defined
as the number of offspring an individual has during the course of their lifetime. In evolutionary
simulations, the programmer decides on some relevant means of measuring an individual’s ability
to perform the task of interest. This evaluation, often called a fitness function yields a number
which T will refer to as the individual’s fitness-evaluation. The number of offspring an individual

has 1s determined based on this fitness-evaluation.
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There is a key difference between the way evolutionary computation techniques are used
in the simulations presented in this dissertation, and the way it they are used when applied typical
problems of function optimization. Optimization problems generally have a fixed fitness function.
This means that there is a static function that, when applied, gives the quality of a genome with
respect to a particular, fixed problem. The simulations presented here use what is called relative
fitness, where the fitness-evaluation of a particular individual depends on interactions with the
rest of the population (the class of behavior that evolutionary game theory is designed for).
The use of relative fitness is required when the fitness-relevant task is social. In the case of
communication, it does not make sense to evaluate the ability of a particular, 1solated individual

to communicate. What is important is an individuals ability to communicate with others.

IV.C Related work

A number of other researchers have used evolutionary computation techniques to study
the evolution of communication. This work has generally focused on the emergence of commu-
nication as a way of mediating activity in some other task. Werner and Dyer (1991) studied the
evolution of mating signals that allowed immobile “females” to direct mobile but blind “males”
to their location. MacLennan and Burghardt (1994) evolved populations of finite-state machines
in a task where communication provided a mechanism for cooperative behavior. Ackley and
Littman (1994) looked at the evolution of signals that allowed simulated organisms to help each
other avoid predators. Levin (1995) used genetic algorithm techniques to study the evolution of
correspondences between agent’s internal states and externally observable behaviors. A number
of researchers have used a grid-like environment scattered with “food” particles to study how
communication might evolve to facilitate coordinated foraging behavior. Cangelosi and Parisi
(1996) use such a model to evolve networks to classify edible/inedible food and pass this infor-
mation on to others via a communication system. Di Paolo (1996) presents a similar simulation
framework.

While the evolutionary simulations that will be discussed in the next sections share
much in common with the work described above, they are generally more abstract and less tied
to a particular ecological context. This allows for the investigation of the pressures necessary to

evolve systems of communication independently of the pressures imposed by any particular task.
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Transmission Genes Reception Genes
Signal Meaning
made interpreted

Meaning | 0 d Signal a 1

to encode | 1 a observed | b 2
2 b c 3
3 c d 0

Figure IV.1: Structure of an example genome. Note that this is a perfect communication system,
as the reception system is the inverse of the transmission system. It is perfect in the sense that
if all individuals in a population used it, communication would always succeed. For example, in
response to meaning ’0’, signal 'd’ is sent. Signal 'd’ is interpreted as ’0’, which is the original

meaning.
IV.D Simulation framework

IV.D.1 Structure of the genetic representation

To use evolutionary computation techniques in conjunction with the communication
system formalism describe in section III, a suitable genetic representation must be found. The
communication system formalism is, by its very nature, probabilistic. For ease of representation,
however, the systems used in the following simulations will be deterministic. This can be thought
of as constraining the system to send a single signal with probability 1.0 for each meaning, and
interpreting a each signal as a single meaning with probability 1.0.

This simplification allows us to express a communication system in the form of a look-up
table. For each meaning, we keep track of what signal is sent for it. For each signal, we keep
track of what meaning it is interpreted as. An example of such a look-up table can bee seen in
Figure IV.1.

This look-up table is then used as an individual’s genome. The signals given in response
to each meaning are put on the genome in order, followed by the meanings each signal is inter-
preted as. The look-up table shown in Figure IV.1 would be represented in genetic form as is

shown in Figure 1V.2.2

Tt is important to note that this does not mean that the system will be forced to be fully distinctive. The
same signal can be sent for multiple meanings, and multiple signals can be interpreted as the same meaning.

2To ensure that this specific genetic representation is not critical to my results, I have also tried other repre-
sentations. The results I will report here are robust with respect to such changes.
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Figure IV.2: The genetic representation of a communication system. The entries in lookup-tables

representing the transmission and reception systems are simply placed one after another.

IV.D.2 Fitness and reproduction

Now that we have a genetic representation, we need to define a fitness function in
order to evaluate individuals and allow the process of selection to operate. The fitness functions
used in the simulations I will present are all based on the communicative accuracy measure
described in chapter III. The evaluation of an individual is done by placing it in a number of
communicative interactions with randomly selected other members of the population. In each
interaction, one individual is designated to be the transmitter, and produces a signal based on a
meaning. The other individual, designated to be the receiver, produces a response to the signal
provided by the transmitter. Successful communication between the two individuals is considered
to have occurred when the receiver’s response to a signal produced by the transmitter matches
the meaning the transmitter encoded. The process is then repeated, with the roles of transmitter
and receiver reversed.

After each interaction, both individuals involved receive a contribution to their fitness-
evaluation that depends on the success of the interaction and the particulars of the simulation
involved. An individual’s final fitness-evaluation is determined by summing all of the contribu-
tions it has received and then dividing this value by the number of interactions the individual
was involved in.

The number of offspring an individual has is proportional (probabilistically) to its
fitness-evaluation. This means that if an individual has twice the fitness of another, will be
expected to be represented with twice the frequency in the new population. For each slot to
be filled in the new population, an individual is selected to reproduce. The probability that a
particular individual is chosen is proportional to its fitness-evaluation. This results in a new
population consisting of copies of individuals from the previous population.

The new population is then subjected to the process of mutation in order to provide
new genetic variation. Because the entries that make up the genome have no inherent ordering,
if one is effected by a mutation it will change randomly to any value in the valid range (including,
possibly, the original value). When a mutation rate is given for a particular simulation, this value
is the percent chance that any particular gene (look-up table entry) on any individual’s genome

will be changed in a generation.
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Success | Failure
Transmitter 1.0 0.0
Receiver 1.0 0.0

Figure IV.3: Payoff matrix for common interest communication. Both the sender and the receiver
get a high (1.0) payoff when communication between them is successful, and a low (0.0) payoff

when 1t 1s not.

IV.E Simulation parameters

Unless otherwise stated, the size of the populations used in all simulations is 100 indi-
viduals. The mutation rates used are generally quite low (on the order of 1 in 1000) and will be
only be reported where variation in the mutation rate has been found to qualitatively affect the

results of the simulation.

IV.F Situations of common interest

Now that the simulation framework has been defined, the only additional requirement
needed to do an evolutionary simulation is a fully-specified fitness function for communicative
interactions. The first scenario that I will consider assumes that communication between two
animals is a matter of common interest. That is to say that both sender and receiver have a fitness-
related stake in the outcome of a communicative exchange. Through the use of evolutionary game
theory, it has been shown analytically that optimal communication is the only outcome that 1s
evolutionarily stable in this situation (Warneryd, 1993; Blume, Kim, and Sobel, 1993; Kim and
Sobel, 1995; Skyrms, 1996). Furthermore, it can be proven that such optimal systems are not
only stable, but guaranteed to emerge (Batali and Oliphant, forthcoming).

Simulations can be designed in which the fitness function reflects this common interest
scenario. After an interaction, both the sender and the receiver receive a high contribution to
their fitness-evaluation if communication between them was successful, and a low contribution if
it was not. This can be done via a very simple payoff matrix, as shown in Figure IV.3. Based on
this payoff scheme, the best fitness-evaluation an individual could hope to achieve would be 1.0
(resulting from successful communication in every interaction) and the worst fitness would be
0.0 (resulting from communication failure in every interaction). The fitness-evaluation, then, is
an estimate of the individual’s two-way communicative accuracy with the population, as defined
in section II1.C.

Bearing out the theoretical prediction, simulated populations using such a payoff matrix
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Figure IV.4: Communicative accuracy increasing to near optimality using a common interest

regime. Four meanings and four signals are used. Results are averaged over ten simulation runs.

always converge on one of the possible optimal communication systems.? Figure IV.4 shows
simulation results using a common interest payoff as a fitness function. After approximately
1000 generations, the population is communicating at near optimality. The variability observed
after generation 1000 is due to the new mutations occurring in each generation.

MacLennan and Burghardt (1994) use a common-interest framework similar to that
described above. While their results are somewhat difficult to assess, as they use a measure of
entropy rather than communicative accuracy, their populations seem to fall significantly short
of optimal communication (although performance is above chance). Because their simulations
involved a more complicated form of interaction amongst individuals, it seems likely that this
additional complexity is responsible for the discrepancy between their results and those shown

here.

IV.G Lack of common interest

In the previous simulation, the consequences of a communicative interaction were the
same for both the sender and the receiver. If communication was successful, both benefited. If
communication failed, both paid the price. Communication in the real world may not always
reflect this assumption, however, and 1t is probably often the case that the environment in which

communication evolves is not quite like the simulations just described.

3Making the simplifying assumption that the number of signals available for use is the same as the number
of meanings (say, N), the number of optimal systems is the factorial (N!). This simply reflects the number of
possible ways that the signals can be arranged, while still conveying each meaning uniquely. If there are more
signals than there are meanings, the number of optimal systems increases. If the number of signals is less than
the number of environmental states, no optimal system is possible.
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Success | Failure
Transmitter n/a n/a

Receiver 1.0 0.0

Figure IV.5: Payoff matrix for communication without common interest. Selective pressure is

placed only on the receiver.

Consider the example of animal alarm call systems. The main problem with applying
a common-interest framework in such cases is that, while the benefit to the receiver clear, it
is much less obvious that the transmitter of an alarm gets any direct benefit from successful
communication. After all, the animal giving the signal has already seen the predator. In fact,
giving an alarm call may be detrimental if it calls attention to the transmitter (although there is
evidence that some species have evolved calls that are difficult to localize (Marler, 1955; Marler,
1957; Konishi, 1973)). While arguments can be made that alarm calls are given to reduce risk to
the transmitter (Trivers, 1971; Charnov and Krebs, 1975), they are difficult to assess. Regardless,
an explanation of communication that does not require a direct benefit to the transmitter is
desirable.

In order to investigate the effects a lack of common interest has , it is possible to
carry out simulations identical to the previous ones, except that instead of evaluating both the
transmitter and the receiver based on the success of an attempted communication, only the
receiver is evaluated®. The payoff matrix reflecting this non common interest situation is shown
in Figure IV.5.

Figure IV.6 shows simulation results using this new payoff matrix. After 5000 gener-
ations, communicative accuracy is still low. The population is far from achieving an optimal
communication system. This failure results directly from the payoff matrix. In a communicative
interaction, only the receiver is evaluated, resulting in a lack of selection pressure on genes used
to determine transmission behavior. These genes are left only to the action of genetic drift.

Communicative accuracy hovers around 50%, meaning that communication is successful
half of the time, on average. This is surprising, as chance performance given four signals and
four meanings would be 25% accuracy. Even though there is no selective pressure on transmis-
sion, there is still an above-chance level of communication occurring. The reason for this will be
discussed in Section V. For the moment, the important result is that while optimal communi-

cation systems are achieved in situations of common interest, communicative accuracy remains

4This reflects the assumption that transmission behavior is neutral with respect to fitness. As was mentioned
previously, it may be the case that such behavior is actually detrimental. Simulations using such a payoff matrix
will be considered in section V.D.
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Figure IV.6: Communicative accuracy when no selective pressure is placed on the transmitter.

Four meanings and four signals are used. Results are averaged over ten simulation runs.

sub-optimal in cases where the transmitter has no stake in the outcome of the exchange.

IV.G.1 The evolution of altruism

The results of the previous section demonstrate that transmitting accurately when there
is no fitness benefit to be had by it is something that will not, as a rule, be favored by natural
selection. Accurate transmission does, however, bestow a fitness advantage on the receiver of
the interaction. Hence we have a situation where a behavior that is not advantageous to an
individual itself is beneficial to others. In this way, communication in the absence of common
interest can be seen as an altruistic act. Given this, the study of communicative behavior can

gain from drawing on ideas from the evolution of altruism literature.

IV.G.2 The prisoner’s dilemma

Much attention has been focused on studying the evolution of apparently altruistic
behavior. A formalism known as the prisoner’s dilemma has been adopted as the standard for
studying the evolution of cooperative behavior.

Consider the following situation. Both you and an accomplice have been arrested for a
crime that the two of you have committed and you have been placed in separate cells and are
not allowed to communicate with each other. The prosecutor gives you each the opportunity to
give evidence against the other. You are told that if neither of you give evidence, you will both
be put in prison for two years. If, on the other hand, you both give evidence, you will each serve

four years. Finally, if only one of you gives evidence, that person will go free, while the other



31

Coop | Defect
Coop | R/R | S/T
Defect | T/S P/P

Figure IV.7: Payoff matrix for the prisoner’s dilemma

serves a five year sentence. What should you do?

Taken from a rational, self-interested point of view, the correct decision is simple. Your
accomplice can do one of two things — give evidence against you (termed defection) or keep silent
(termed cooperation). If they cooperate, your best decision is to defect on them, because then
you will go free. If, on the other hand, they defect on you, you had still better defect on them and
serve only two years, because if you cooperate and stay silent you will serve five years. Thus, each
of you, acting in your own best interest, should defect on the other and you will both serve four
years. This result, while perfectly rational, is frustrating because if only you both had cooperated
you would each serve only two years.

If we convert the penalties into positive payoffs, the structure of the prisoner’s dilemma
can be expressed as a payoff matrix, as shown in Figure IV.7. In each cell of the matrix, the
payoff to the row player listed first, followed by the payoff to the column player. The dilemma
occurs when "> R > P > S and 2R > T + S (an example of suitable values would be T=5,
R=3, P=1, S=0). Although mutual cooperation is the best solution from the joint perspective of
both players, defection is the best choice on a self-interested basis. If an individual can expect to
encounter a percentage of cooperators F'c and a percentage of defectors F'd (where Fe+ Fd = 1)
over the course of an evaluation cycle, then the expected average payoff for a cooperator would
be:

Pe=R-Fc+ S -Fd (Tv.3)

and the expected average payoff for a defector would be:
Pd=T -Fc+ P -Fd (TV.4)

Because T' > R and P > S, defectors always have an advantage, regardless of the makeup of
the population. Although each player is acting in their own perceived best interest, they end up
with a result that is non-optimal for both of them.

To demonstrate this result in simulation, we can create a population of simulated in-
dividuals and represent them using a single gene denoting a playing strategy of cooperation or
defection. We can then simulate evolutionary change in such a population using a genetic algo-

rithm. For a measure of fitness for natural selection to operate on, we can use the average success
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Figure IV.8: Percentage of cooperators in a population playing the prisoner’s dilemma over the
course of 5000 simulated generations. The unavoidable result is that all cooperation disappears

from the populations. Results are averaged over 10 simulation runs.

an individual has when it is placed in the dilemma against other members of the population.
The classic result found in simulations of this kind is that the entire population quickly evolves
to be defectors. This makes perfect sense because, as we saw earlier, it 1s always in one’s best
interest to defect. An example of such a simulation can be seen in Figure IV.8. The population
is initialized with roughly 50% cooperators and 50% defectors. By generation 3000, there are no
cooperators left.

Despite this mathematically airtight conclusion, there are numerous examples of seem-
ingly altruistic behavior in the animal world. Attempts at reconciling this apparent contradiction
within the prisoner’s dilemma framework involve modifying the nature of the game in a num-
ber of different ways. Two of these ways, each also used to approach the dilemma of altruistic

communication, are presented in the next two sections.

IV.G.3 Reciprocal altruism

Dissatisfied with mathematical inevitability of defection in the standard formulation
of the prisoner’s dilemma, researchers turned to a more complex version of the game (Axelrod,
1980a; Axelrod, 1980b; Axelrod and Hamilton, 1981). This variant, called the iterated prisoner’s
dilemma, involves individuals playing each other more than once. In order to benefit from
experience gained in previous games against the same opponent, individuals are given a multiple-
game history that documents both their actions and those of their opponent. They are also given

a mechanism that allows them to modify their future behavior based their history of interaction
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with an opponent. This gives the potential for individuals to cooperate with those who have
cooperated with them in the past and defect on others. Such strategies involved what is called
reciprocal altruism (Trivers, 1971), and allow cooperation to arise in the iterated game.

The simplest, and most commonly referred to of these strategies is called Tit-For-
Tat (TFT) because its behavior in a particular interaction just involves doing exactly what

> Thus, if its opponent cooperated last turn, TFT will

its opponent did in the last interaction.
cooperate and if its opponent defected, TFT will retaliate by defecting as well. This provides a
cooperative strategy (TFT will cooperate with those that cooperate with it) that is resistant to
exploitation by defectors (TFT will defect on those that defect on it). While defectors do slightly
better than TFT (getting an initial defection in, before TFT retaliates), they do much worse
against other defectors than TFT does against itself. This gives TFT an overall advantage in a

mixed population. In simulations of the iterated game, cooperative strategies like TFT come to

dominate the population (Axelrod, 1987).

Reciprocal communication

It seems reasonable that reciprocal altruism might provide a means for establishing
perfect communication much as it facilitates cooperation in the prisoner’s dilemma. To investi-
gate this experimentally requires modifications to the structure of the genome that was used in
prior simulations. Individuals must now have some mechanism to respond differentially based on
past interactions. In the simplest case, being able to act based on one past interaction makes it
necessary to have two modes of action — one if the past interaction resulted in successful com-
munication and another if communication was unsuccessful. This can be done by encoding not
one, but two transmission systems in the genome. The individual playing the role of transmitter
then uses one of their two transmission systems: one if the last interaction was successful, and
the other if it was not.

It is also necessary to have another gene in order to specify the initial assumption an
individual makes about other players. This gene is used to determine which of an individual’s two
communication systems will be used in the first round that is played against a new opponent (the
result of the previous round can not be used, because there is not yet any history of interaction
between the two individuals).

The only other required modification to the simulation framework is that, instead of
being based on single interactions between a pair of individuals, a number of interactions are

required in order to allow the role of past interaction to have an effect. The number of interactions

5The Tit-For-Tat strategy first appeared as an entry by Anatol Rapoport in a competition held by Axelrod.
Although it was the simplest of all the strategies, it was the winner of the tournament.
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Figure 1V.9: Communicative accuracy in a reciprocal altruism scenario. No direct selective
pressure is placed on the transmitter. Four meanings and four signals are used. Results are

averaged over ten simulation runs.

is not especially important, as long as it is more than one. For reasons of efficiency, the simulations
reported here are done using two interactions.

Figure IV.9 shows the results of a simulation using this new, iterated form of communi-
cation. The fitness function is identical to that used in section IV.G where pressure is placed only
on the receiver. As can be seen in the graph, the iterated version of the game allows communica-
tive accuracy to approach the optimum. This occurs because of the evolution of a communication

system that operates much like the Tit-For-Tat strategy in the prisoner’s dilemma.

How the reciprocal strategy works

The mechanism underlying the reciprocal strategy can be seen by looking at the commu-
nication system settled on by the population when it has reached a high level of communicative
accuracy. The cooperative transmission system (the one used if the last interaction was a suc-
cess) evolves to send a unique signal for each meaning. A corresponding reception system evolves
such that, when paired with the cooperative transmission system, communication is successful.
The retaliatory transmission system (the one used if the last interaction was unsuccessful) is not
tuned to be the same as the cooperative system, and hence will tend not communicate successfully
with the reception system. Finally, the gene the determines an individual’s initial assumption
about others evolves such that interactions always start by using the cooperative communication
system.

An example of the kind of genome the populations converge on is shown in Figure
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Figure IV.10: A sample genome encoding a reciprocal strategy. The first group of four entries
represent the retaliatory transmission system, the second group of entries encode the cooperative
system, the third group of entries encode the reception system, and the last entry represents the

initial assumption made about other individuals. This genome is unpacked in Figure IV.11.

Transmission Genes Reception Genes
Retaliatory | Cooperative Meaning
Signal Signal interpreted
Meaning | 0 c c Signal | a 2
to encode | 1 b b observed | b 1
2 c a c 0
3 b d d 3

Figure IV.11: The operation of the reciprocal strategy encoded by the genome in Figure IV.10.
The cooperative transmission system encodes each meaning with a unique signal that is under-
stood by the reception system. The retaliatory transmission system encodes the set of meanings
ambiguously, using only two signals. Because the initial assumption gene is set to ’1’, the coop-

erative system will always be used to begin a series of interactions.

IV.10, with its two transmission systems and the reception system being explained in Figure
IV.11. This strategy results in a population that both communicates successfully and is resistant
to exploitation by other strategies. The high level of communicative accuracy occurs because the
reception system in use by the population accurately receives signals produced by the cooperative
transmission system, and because individuals default to using the cooperative system when they
interact with a new individual. The resistance to exploitation results from the retaliatory trans-
mission system not matching the population’s reception system. This means that if a mutant
that does not transmit accurately enters the population, they will be responded to through the
use of a less accurate transmission system. This maintains pressure on accurate transmission,

even though it is not directly enforced by the fitness function.

Stability of the reciprocal strategy

One would expect, then, that after a reciprocally altruistic communication strategy
evolved in a population, it would remain fixed from that point on. This is not what happens,

however. Instead, the population transitions from one reciprocal strategy to another, equally ef-
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fective but different, reciprocal strategy. This happens repeatedly over the course of evolutionary
time.

Such a transition can be seen in Figure IV.12a. Because the effects of such transitions
are damped out when results are averaged over a number of simulations, the graph shows the
results of a single simulation run. Communicative accuracy begins at an optimal level because
the population is seeded with an effective reciprocal strategy. The transition from one system to
another is evidenced by the drop in communicative accuracy that reaches its lowest level around
generation 600.

The reason for this drop in communicative accuracy is complex, and depends on a
number of factors. As can be seen in Figure IV.12b, the drops in communicative accuracy are
closely associated with drops in the frequency of the seeded cooperative transmission system
(shown in the dashed line). This occurs because the matching reception system (shown in the
solid line) is still dominating the population. Any reduction in the frequency of the seeded
cooperative transmission system causes a mismatch with the reception system and leads to a
decrease in accuracy.

The pressure that maintains the cooperative transmission system depends on the retal-
iatory transmission system mismatching with the reception system. This allows the retaliatory
system to fulfill its retaliatory function — transmitting non-optimal signals when the previous
interaction with another individual was unsuccessful. As can be seen in Figure IV.12¢c, the co-
operative transmission system declines in frequency at the time of an increase in the frequency
of a retaliatory transmission system that is identical to 1t. When the cooperative and retaliatory
transmission systems are identical, the retaliatory system no longer has any negative impact, and
there is no longer any positive pressure for individuals to maintain their cooperative systems. In
this situation, the cooperative transmission system is allowed to drift, decreasing the accuracy
with which 1t transmits signals.

Figure IV.12d shows how the system recovers and completes the transition to a new
system. A new cooperative transmission system (dashed line) becomes established in the pop-
ulation, and the corresponding reception system (solid line) is then selected for. By generation

700 this has resulted in a new, optimal system.

The problem of drift

This kind of phenomenon is also seen in simulations of the iterated prisoner’s dilemma.
The Tit-For-Tat strategy shows instability over long periods of time (Lindgren, 1991; Batali and

Kitcher, 1995). Once a population has converged on a cooperative, reciprocal strategy, there
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Figure IV.12: A single run of a reciprocal altruism scenario. Two meanings and two signals
are used. The initial population has been seeded to an optimal system. Plot a) shows that the
system does not remain stable over time. Plot b) shows the frequencies of the seeded reception
system (solid line) and cooperative transmission system (dashed line) system. The decline in
these systems causes the decline of communicative accuracy. Plot c¢) shows the frequency of
the retaliatory transmission system that matches the seeded cooperative transmission system.
The increase in this frequency allows the frequency of the cooperative transmission system to
drift. Plot d) shows the frequency of the other possible optimal reception system (solid line) and
its corresponding cooperative transmission system (dashed line). The increase in these values

account for the recovery in the population’s communicative accuracy.
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is no longer any pressure to maintain the part of the strategy that reciprocates defection with
defection. Because all individuals in the population always cooperate, this part of the genome
is never indexed, and is thus subject to drift without selective pressure. Once it has drifted
sufficiently, the TFT strategy is compromised and is unable to retaliate against any mutant
strategies that always defect.

In the case of communication, the situation is both worse, and better than that of the
prisoner’s dilemma. It is worse because not only is there no pressure to maintain the retaliatory
part of the reciprocal strategy when the entire population is communicating cooperatively, there is
no pressure to maintain it under any circumstances. The payoff matrix in the prisoner’s dilemma
is such that responding to defection with defection carries a fitness benefit over responding with
cooperation. In the communication game, there is no such difference in fitness. An individual
gains no selective advantage by retaliating to non-optimal transmission with non-optimal trans-
mission of its own. This results in the retaliatory transmission system being in a continual state
of drift.

This is compensated for, however, by the fact that the genome that defines an indi-
viduals’ communication system is more complex than the one generally used in the prisoner’s
dilemma. A single point-mutation is enough to weaken TFT by changing its retaliatory behavior
from defection to cooperation. In the case of communication, however, the retaliatory transmis-
sion system must match the cooperative one exactly in order for the effect of retaliation to be
neutralized. As the number of signals and meanings increases, the chance of this happening be-
comes very small. For an equal number, N, of meanings and signals, the retaliatory transmission

system must chance upon one system in NV through random drift.

Cognitive requirements of reciprocation

Reciprocal strategies require a higher level of social sophistication than is needed in
strategies involving only isolated interactions. In particular, in order to behavior reciprocally, an
animal must be able to discriminate others and maintain a memory of past interactions. While
reciprocal altruism may play an important role in explaining the behavior of animals with a
high degree of social intelligence, its cognitive requirements have led some to discount it as an
explanation for communicative behavior in other species, such as alarm calls in birds (Trivers,
1971). In the next section, an alternate explanation for altruistic behavior that requires less

social sophistication is explored.
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IV.G.4 Kin selection and spatial organization

Another possible solution involves changing the locus at which selection is presumed to
operate. Ethologists have argued that this locus, rather than being at the level of the individual,
is better understood as being at the level of the gene (Hamilton, 1963; Hamilton, 1964; May-
nard Smith, 1965; Dawkins, 1976). Because a given gene will exist in more that one individual,
an apparently altruistic act may well be selfish with respect to a gene. In particular, related
individuals will generally expect to share genes in common (50% for siblings and parent/child re-
lationships, reducing by half at each additional level of removal), providing a potential motivation
for altruistic behavior through what is known as kin selection. In such cases, an individual is not
seen as maximizing just their individual fitness, but rather they are maximizing their nclusive
fitness — taking into related individuals into account.

One of the most striking examples of altruistic behavior is that of social insects, where
the majority of individuals do not reproduce. Among bees, the workers exist solely to support
the queen bee and her offspring and never mate themselves. This situation is difficult to explain
from the perspective of individual fitness. Because the workers have no offspring, their individual
fitness would be zero. It so happens, however, the the workers are very closely related to the
offspring of the queen that they take care of. In fact, in the common case where the worker is
the daughter of the queen herself, such a worker can expect to share a full 3/4 of her genes with
her sisters. This is because the queen bee mates only once in her lifetime, and all of a male bee’s
sperm are identical genetically. Because of this, while a worker’s actions may not be in her own
best interest, they may well be in the best interest of her genes.

The key factor that allows for the apparently altruistic behavior in such situations is
that interactions take place in such a way that an altruistic individual’s selfless actions often
benefit related individuals. One way to accomplish this is for individuals to be intelligent enough
to recognize their degree of relatedness to others, acting in a more altruistic manner the more
genes they expect to share. This seems, however, to require a level of sophistication in the
individual’s perceptual and cognitive abilities above and beyond that which can be expected in
many species.

A more realistic solution, perhaps, i1s to rely on the structure of the environment to
ensure that most interaction occurs among individuals that are sufficiently related that altruistic
behavior is warranted (as is the case with the worker bee). Tt is often some form of spatial
organization (such as grouping into hives) that provides the mechanism for biasing the distri-
bution of interactions to favor those between related individuals. The next two sections present

the potential for the spatial organization of a population to allow for the emergence of altru-
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istic behavior where none evolves in a non-spatial population. First, simulations involving the
prisoner’s dilemma will be presented, and then the framework will be applied to the problem of

communication.

Evidence from prisoner’s dilemma simulations

The earliest work done on spatializing the prisoner’s dilemma was done by Nowak
and May (1992). They used the prisoner’s dilemma as an update rule for two-dimensional
cellular automata. In their simulations, cells could be in one of two states (cooperate or defect),
and at each time step, every cell was replaced by the cell bordering it that had the highest
summed payoff from playing the game with its eight neighbors. The result they found was not
the mathematically-expected convergence on defection. Instead they saw intricate patterns of
cooperation and defection.

While this result seemed encouraging, it has been criticized as being an artifact of the
simulation conditions used. Huberman and Glance argued that the results depend on the use of
a synchronous updating mechanism in which all cells in the space are updated simultaneously
(Huberman and Glance, 1993). They demonstrated that when asynchronous updating (updating
one cell at each time step) is used, the population quickly degrades into the typical situation
where all members are defecting.

Despite this result, it still seems intuitive that organizing a population spatially should
facilitate cooperative behavior. Consider a population where spatial organization is taken into
account. In a such a population, individuals will be more likely to interact with others that
are close to them than they will be with those farther away. Also, if offspring are placed into
the population at a location near that of their parents, individuals will tend to be more closely
related to those near them. Because individuals are biased toward interacting with those close to
them, and because those individuals close to them tend to be related to them, we get a situation
where individuals are biased toward interacting with others that share their playing strategy,
providing the mechanism for a kind of kin selection effect.

To investigate the effect of adding a spatial component, simulations can be carried
out where the population is organized in a one-dimensional space (a ring). Individuals play
the prisoner’s dilemma game against others picked from a normal distribution around them,
averaging five positions away. As can be seen in Figure IV.13, this simple change is enough
to provide a situation where cooperators have the advantage. Because selection for interaction
and reproduction is stochastic, this result is significantly different than that of Nowak and May;,

where the persistence of cooperation depended on the deterministic nature of the update rule
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Figure IV.13: Percentage of cooperators in a spatially organized population where prisoner’s
dilemmas interactions are more likely to occur with others that are spatially close. This spa-
tial organization allows cooperation to dominate the population. Results are averaged over 10

simulation runs.

and the stable patterns it produced. In order to be completely sure that these simulations are
not subject to to objections of Huberman and Glance, I have done similar simulations using an
asynchronous updating mechanism. In this situation, where a single member of the population

reproduces and another individual dies, the results are not significantly different.

Why space helps

The dramatic change from convergence on defection to convergence on cooperation
occurs because organizing a population spatially increases the chances that cooperators will play
cooperators and defectors will play defectors. The cooperators thus increase each other’s fitness-
evaluations, while defectors have a negative impact on each other. The end result is a situation
where cooperators prevail.

The convergence on cooperative behavior can be accounted for by looking at how spatial
organization affects the expected payoffs of the game. The original formulation of the payoffs
(shown in equations IV.3 and IV .4) is based on the assumption that individuals will interact with
the same percentage of cooperators and defectors regardless of their own game-playing strategy.
If this assumption does not hold, neither does the mathematical result the predicts defection as

the outcome. A more generalized version of the payoff equations can be formulated as follows:
Pc=R -Fec+S-Fed (TV.5)

Pd=T-Fdc+ P-Fdd (1V.6)
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where Fce is the percentage of the time a cooperator plays against a cooperator and Fed is
the percentage of the time a cooperator plays against a defector, etc. In the non-spatial case
Fee = Fde = Fe and Fed = Fdd = Fd, but this symmetry is broken when spatial organization
is added.

As a result, the expected number of cooperators and defectors an individual will play
against depends on their own status, providing a mechanism for cooperation to spread through
the population. Getting back to equations IV.5 and IV.6, what spatial organization does is to
increase the probabilities F'ce and F'dd, thereby increasing the R - Fec and P - Fdd terms. Since
R > P), this benefits the cooperators.

How this plays out spatially over the course of a simulation can be seen if we look at
the structure of the population as it unfolds over time. Figure IV.14 shows a contour map of a
sample spatial population evolving from generation to generation. The vertical axis represents
the members of the population (the ring of individuals has been cut, and laid out as a line).
The higher, darker areas of the plot represent concentrations of defectors, while the lower, lighter
regions are areas of cooperation. Initially, there is an even mix of cooperation and defection,
but cooperation quickly takes hold. Subsequently, defectors can appear in the population due
to mutations, but they are not able to last for long and cannot infiltrate the existing group of

cooperators.

Space in the iterated game

In addition to providing pressure to cooperate in the non-iterated prisoner’s dilemma,
spatial organization has been shown to strengthen cooperation in the iterated game (Grim, 1996).

Populations in such a game become dominated, not by Tit-For-Tat, but by a more generous

strategy that will often cooperate even when it has been defected on once. ©

Kin selection and the evolution of communication

Evolving optimal systems of communication, while a more complex situation than the
prisoner’s dilemma, involves less altruism. While there is no positive pressure to transmit accurate
signals, we are operating under the assumption that there is no explicit pressure against such
transmission, either. Given this, it seems reasonable that organizing a population spatially could
lead to convergence on perfect communication in much the same way that 1t lead to convergence
on cooperation in the prisoner’s dilemma. Further encouragement is given by analytic work in

ethology showing that kin selection can provide a plausible account for the existence of alarm calls,

6The strategies that occur in Grim’s simulations are a more generous version of the strategy called Generous
Tit-For-Tat by Nowak and Sigmund (1992).
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Figure IV.14: A contour map of a spatial population evolving over time. The vertical axis rep-
resents the 100 individuals in the population. Shaded areas represent areas containing defectors.
The population begins with an even mix of cooperators and defectors, but the cooperators quickly

take over. Once cooperation has been established, defectors can appear through mutation, but

soon die out again.
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Figure IV.15: Communicative accuracy when spatial organization is used and no selective pres-
sure is placed on the transmitter. The standard deviation of the spatial distribution is 5 locations
in the population. Four meanings and four signals are used. Results are averaged over ten sim-

ulation runs.

given that the degree of relatedness is sufficient (Hamilton, 1963; Hamilton, 1964; Maynard Smith,
1965). This theoretical work is supported by field evidence in animals such as the Belding’s ground
squirrel, where alarm call frequency is related to the expected presence of related individuals
(Sherman, 1977).

Following the structure used in the spatialized version of the prisoner’s dilemma, similar
simulations can be carried to investigate the effect of space on the evolution of communication.
The structure of these simulations is identical to those shown in figure 1V.6, where optimal
communication failed to evolve when no pressure was placed on the transmitter. The only
difference here is that selection of communication partners is biased spatially, as is the location of
an individual in a new population relative to the position of its parent in the previous population.
Both are based on a normal distribution, averaging five population locations away. As can be seen
in Figure IV.15, the addition of spatial organization results in the population quickly converging

to an optimal communication system.

Why space helps

The reason coordinated communication evolves in such cases is analogous to the rea-
son cooperation evolves in the spatialized prisoner’s dilemma. With respect to communication,
cooperation means having a transmission system that sends a unique signal for each meaning.
Reception systems that understand any such transmission system can easily be evolved through

direct selective pressure. Once such reception behavior has become established in the popu-
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lation, a cooperative transmission system must send signals that match this reception system.
Transmission systems are uncooperative to the degree that they are ambiguous or send signals
that others cannot understand, with the worst possible system sending the same signal for each
meaning, or sending signals that are maximally uncoordinated with the population’s reception
behavior.

Communication fails to evolve in the non-spatial case because individuals will be ex-
pected to interact with cooperative and uncooperative transmitters with a probability that is
just based on the frequency of these systems in the population. Whether their own transmission
system is cooperative or not makes no difference. Spatial organization changes this. Just as it
increased the likelihood of cooperator/cooperator and defector/defector interactions in the pris-
oner’s dilemma, it also increases the likelithood that cooperative transmitters will interact with
other cooperative transmitters and that uncooperative individuals will interaction with other
uncooperative individuals. This results in a change to the expected payoff of an individual based

on its transmission strategy, and provides selective pressure for cooperative transmission.

Varying the distance of spatial interactions

A factor that is critical to the particular results of spatial simulations is the size of
the standard deviation of the normal distribution that is used to define the space. Increasing
the standard deviation increases the average distance over which individuals interact, and places
new individuals farther away in the population from the location that their parents were in.
This weakens the effect that promotes like-individual interactions, and reduces the benefit that
spatial organization gives to cooperative behavior. This can be seen in Figure IV.16a, where the
standard deviation has been increased to 10 population locations. Weakening the spatial effect
has resulted in a lower attained level of communicative accuracy. As the size of the standard
deviation is increased to large numbers relative to the size of the population, the spatial effect
becomes negligible. By the time that the deviation is up to 20 population locations, as shown in

Figure IV.16b, the results are essentially the same as in the non-spatial case.

Related work

Similar results have been shown by Di Paolo (1996), who attributes the degree of com-
municative success in his model of foraging behavior to the formation of spatial clusters of
individuals. Ackley and Littman (1994) present a model where predator avoidance is facilitated
by communication among individuals. They suggest that the communicative success that they

observe may be due to spatial effects.
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Figure TV.16: Communicative accuracy with weakened spatial effects. Plot a) shows results
where the standard deviation of the spatial distribution is 10 locations in the population, and
Plot b) shows a deviation of 20. Four meanings and four signals are used. Results are averaged

over ten simulation runs.

IV.H Discussion

The simulation work presented in this chapter has shown an number of situations in
which innate systems of communication can be tuned to near-optimal performance by natural
selection. If the situation involves a common-interest scenario, where coordinated activity results
in a selective advantage to both sender and receiver, both analytic and simulation work indicate
that communication will emerge. Because many communicative situations do not seem to fit
the common interest framework, it is important to show that, in such cases, communication can
still evolve. In particular, when accurate communication bestows no direct selective advantage
on the transmitter, some additional mechanism is required. In these situations, it has been
demonstrated that factors such as reciprocal altruism and kin selection can impose the necessary
pressure to tune the system.

The existence of common interest, kin effects, and reciprocal effects, acting in isolation
or in concert, are likely to account for the majority of the innate communicative behaviors
observed in animal species. Possible additional effects, such as the imposition of honest signaling
through costly signals (Zahavi, 1975; Zahavi, 1977; Grafen, 1990), may account for additional
data. Natural selection, acting through these mediums, seems well equipped to tune innate
systems of communication, and the origin of this innate behavior, when examined carefully,

appears relatively unmysterious.



Chapter V

The evolution of exploitation and

manipulation

In section II.B, true communication was contrasted with the related behaviors of ma-
nipulation and exploitation. In this chapter, this distinction will be explored further with the

use of evolutionary simulations.

V.A Exploitation of random drift

In section IV.G it was observed that, in simulations where there is only selective pres-
sure placed on the reception behavior of an individual’s communication system, communicative
accuracy 1s still above chance performance. The simulations results are re-shown in Figure V.1.
Given four signals and for meanings, chance performance would be 25%, while the performance
observed centers around 50% accuracy. Figure V.2 shows simulation results for a set of simula-
tions identical to those in Figure V.1, except that all selective pressure has been removed from
the system. In this case, the expected value of 25% is seen.

The difference in the observed results in the two simulations shows that selection can
play a role to increase communicative accuracy above chance performance even when transmission
behavior is subject only to random drift. The reason for this is that random drift is not the
same thing as random behavior. If the transmission behavior is truly random, then selection is
powerless to improve performance. If simulations are run with selective pressure on reception, but
with a random signal transmission (rather than using the transmission genes of a transmitting

individual), performance is at chance levels (results not shown).
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Figure V.1: Communicative accuracy when no selective pressure is placed on the transmitter.

Four meanings and four signals are used. Results are averaged over ten simulation runs.
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Figure V.2: Communicative accuracy when there is no selective pressure on either transmission
or reception behavior. Four meanings and four signals are used. Results are averaged over ten

simulation runs.
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Figure V.3: Communicative accuracy (in the solid line) and the frequency of the most frequent
of the two informative transmission systems (in the dashed line). There is no selective pressure
on transmission. Two environmental states and two signals are used. Results are from a single

simulation run.

The above-chance performance observed in Figure V.1 must then be attributed to some
degree of regularity in transmission behavior, even though this behavior is subject only to drift.
Selection then operates on the reception behavior, tuning it to exploit these regularities in trans-
mission.

To analyze this situation more closely, it is helpful to use the simplest possible commu-
nication task: two meanings and two signals. In this task, there are four possible transmission
systems and four possible reception systems. Two of the transmission systems are completely
uninformative, as they involve always transmitting a single one of the two signals, regardless of
the meaning. The other two transmission systems are potentially fully informative, as they send
a unique signal for each meaning.

Figure V.3 shows a single simulation run done using this simple task, with pressure only
on the receiver. Plotted are both communicative accuracy (in the solid line, here expressed as
a percentage) and the frequency in the population of the most frequent of the two informative
transmission systems (in the dashed line). From the figure, it can be clearly seen that the
reception behavior of the population is closely tracking the most frequent of the informative
transmission systems. It is often the case that one of these transmission systems is at a relatively
high frequency in the population, allowing for a high level of communicative accuracy with the
corresponding reception system. Because selection can tune reception behavior faster than the
transmission behavior drifts, exploitation is possible. A mathematical analysis of this effect has

been done by Batali (unpublished).
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In general, the communicative accuracy of the population is roughly halfway between
the frequency the most frequent informative transmission system and the optimal value. This
happens because the non-informative transmission systems send the same signal in every situ-
ation, resulting in an additional communicative performance at chance levels. This results in a
baseline performance of 50% accuracy when the population’s transmission behavior is maximally
uninformative.

As has been pointed out, the above-chance performance is due to the reception behav-
ior of the population being tuned by selection to exploit regularities in transmission behavior.
Despite the fact that information is being transferred from the sender to the receiver, this ex-
ploitative behavior is not communicative under the definition given in section I1.B. Because the
transmission behavior of the population has not been tuned in response to reception behavior,

individuals in these simulations are not truly communicating with one another.

V.B Exploitation of reliable behavior

In the case of the exploitation shown in the previous section, the regularities in trans-
mission behavior that were exploited were the result of random drift, and hence not very reliable.
Exploitation is much more effective in cases where the regularities occur as a result of an observ-
able manifestation of some relevant internal state of another individual. A striking example of
this can be seen in Cangelosi and Parisi (1996). This paper looks at a particular set of condi-
tions under which they claim that a system of communication emerges in a population of neural
networks. The fitness-relevant task used in the simulations they present is the ability to dis-
criminate food items based on their edibility. Some food is edible (resulting in a positive energy
contribution to the individual eating it) and some is poisonous (resulting in a loss of energy).
The observable characteristics of the food items are such that it is possible to learn to classify
them.

Communication enters into the simulation by supposing that, in some cases, an indi-
vidual is placed in a position of deciding whether or not to eat a food item without being able to
see its observable characteristics. Another individual, however, can see the food item, and can
give a signal to the first individual. This communicative interaction is shown in Figure V.4.

Simulations involving communicative interactions of this sort resulted in signaling be-
havior that was sufficient to allow individuals to successfully discriminate food items that they
could not see. Because fitness was based only on how well an individual did at consuming appro-
priate food, and not on how well an individual’s signaling succeeded in giving information to the

receiver, there was no selective pressure to favor accurate signaling. Thus the interactions among



51

Action

Listener

Perceptua
| nput

Figure V.4: A signaling interaction between two neural networks. The speaker can perceive a
food item, but does not take a action itself. Rather, it sends a signal to another individual who
takes action with the signal, but no direct perception, as input. The dashed boxes indicate parts
of the network architecture that are not relevant for this interaction. After Cangelosi and Parisi

(1996).
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the individuals in the simulations are best described as exploitative, rather than communicative.

The exploitation observed in this case is particularly effective because of the network
architecture used in the simulations. As Figure V.4 shows, the output layer responsible for action
(to eat or not) and the output layer responsible for encoding a signal are both connected to the
same hidden layer in the network. Because this hidden layer i1s intimately connected to the
fitness-relevant task of discrimating food items based on direct observation, 1t must necessarily
encode a useful representation of the perceived food item. Because the signal output layer is also
connected to this same hidden layer, 1t will spontaneously produce output that is, at least to some
degree, correlated with the perceived input. It is this correlation that the listening individual is
tuned by selection to exploit, resulting in a higher level of performance than would otherwise be

expected.

V.C Manipulation

Manipulation is simply the mirror-image of exploitation. It occurs in situations where
selective pressure is placed on transmission behavior, but not on reception behavior. A clear
example of such a situation occurs in simulations done by Levin (1995). Interested in how
correspondences might be established and understood between an animal’s internal states (such
as anger or hunger) and externally observable behaviors (such as body position or display of
teeth), Levin sets up an evolutionary simulation framework virtually identical to the one used
here in the previous chapter.

Levin states that he is simulating a system in which selection “rewards mutual under-
standing” in an interaction population (p. 169). The fitness function he uses, however is based on
the “average understanding of its internal states by others” (p. 170). Thus the fitness-evaluation
of an individual is based only on how well others understand it, and not on how well it un-
derstands others. Selective pressure is therefore placed only on transmission behavior, with an
individual’s reception genes left to drift.

Levin’s results are difficult to assess in detail because he reports only the performance
of the best individual in each generation, rather than the average performance of the popula-
tion. Even if the best individual is taken to be representative of the population, the results he
observes, while above chance, are significantly below optimal. Levin points to the above-chance
performance as an indication that some degree of communication has emerged in the population.
I would argue, however, that the behavior he has observed would more correctly be described as
manipulation. Just as reception behavior evolved to exploit random regularities in transmission

in the simulations described in section V.A, Levin’s results are due to transmission behavior
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Success | Failure
Transmitter 0.0 1.0
Receiver 1.0 0.0

Figure V.5: Payoff matrix for communication with negative pressure on transmission. Positive

pressure is placed on the receiver.

evolving to manipulate random drift in reception behavior.

V.D Suppression

All of the simulations presented so far has assumed that there is either a positive pressure
on transmission behavior or no pressure at all. It is possible, however, that in certain situations it
is actually against the transmitter’s best interest to provide the receiver with information. This
would be the case in any situation where the receiver is exploiting regularities in the sender’s
behavior and using them against the sender (as is the case in the example given in Figure T1.3
of chapter I1.B, where one poker player exploits behaviors that give away the fact that another
player is bluffing).

Negative pressure on transmission can be quite easily taken into account in the structure
of a simulation. Figure V.5 shows a payoff matrix for a communicative interaction where there
is pressure on the receiver to understand the transmitter, and pressure on the transmitter not
to be understood. The results of an evolutionary simulation using this payoff matrix as a fitness
function are shown in Figure V.6.

Performance, rather that being above-chance (as was the case with no pressure on
transmission — see Figure V.1), has dropped to chance levels. This means that selection has
succeeded in tuning the transmission behavior of the population so that any regularities that
might be exploited have been effectively suppressed.

If we go one step farther, and change the payoff matrix such the positive pressure on
reception is removed (see Figure V.7), we get the results shown in Figure V.8. The communica-
tive accuracy of the population is essentially reduced to zero. This occurs because the reception
behavior of the population is now subject only to random drift. This allows selection to tune
transmission behavior so that, rather than being uninformative, it is now maximally misinforma-
tive. This is essentially a reversal of the results of Levin’s simulations described in the previous
section. Rather than transmission being tune to manipulate understanding in a receiver, it is

tuned to manipulate misunderstanding.
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Figure V.6: Communicative accuracy with negative pressure on transmission and positive pres-
sure on reception. Four signals and four meanings are used. Results are averaged over 40

simulation runs.

Success | Failure
Transmitter 0.0 1.0
Receiver n/a n/a

Figure V.7: Payoff matrix for communication with negative pressure on transmission and no

pressure on reception
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Figure V.8: Communicative accuracy with negative pressure on transmission and no pressure
on reception. Four signals and four meanings are used. Results are averaged over 40 simulation

runs.
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Similar results are obtained if negative pressure is placed on reception behavior, rather
than transmission behavior. In this case, reception can be seen as being tuned by selection to
ignore signals that would cause it to behave against its own best interest.

Another interesting variation is to modify the nature of the negative pressure being
applied. While the simulations presented in this section show that transmission behavior will be
suppressed if there is a cost to transmitting accurately, it can also be shown that transmission
behavior is suppressed if there is a cost imposed on signaling itself. Batali (unpublished) presents
simulations where a transmitter is allowed the use of one cost-free signal, but the use of each
additional signal is penalized. As this cost is increased, the communicative accuracy achieved
by the population decreases (presumably because fewer signals are used by senders, resulting in

ambiguities).



Chapter VI

Learned communication systems

All of the communication systems described up to this point have been innate systems,
genetically specified and tuned by evolutionary processes. Natural selection is a very effective
means of constructing and maintaining such systems. While innate behavior accounts for the vast
majority of existing systems, there are some, most notably human language, that are learned.
If the system is to be learned, rather than being directly specified genetically, the learning
mechanism will now be responsible for establishing and maintaining coordination.

In order to do this, a satisfactory learning mechanisms must be able to:

e Acquire a pre-existing optimal system of communication when it is introduced into a pop-

ulation that uses it.
e Maintain a pre-existing optimal system of communication against reasonable levels of noise.

e Improve a non-optimal system of communication in such a way that, as new individuals
who use the learning mechanism are added to a population, the communicative accuracy

of the population increases and eventually reaches an optimal state.

Thus, we are requiring more of a learning mechanism than is generally demanded. We
are not only interested in how a new individual might acquire an existing system, but also how

such systems are created in the first place.

VI.A Reinforcement learning

One way in which a learning mechanism might operate is to essentially use the same

method used by natural selection: trial-and-error with reinforcement. The majority of other
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simulation approaches to the study of learned communication use some form of reinforcement
learning paradigm. Hutchins and Hazelhurst (1995) simulate the establishment of communication
in populations of interacting neural networks. The reinforcement regime that they use involves
back-propagation of error based on mismatches between the signals used by two individuals
involved in a communicative interaction. Yanco and Stein (1993) use reinforcement learning to
develop a shared communication system among a small number of mobile robots involved in
a coordination task. Steels (1996) uses a mixture of reinforcement and observational learning
to explore the construction of shared vocabularies. The properties of this model in a spatially
distributed environment are described by Steels and McIntyre (1997)

While these reinforcement learning techniques have reported varying degrees of success,
all of them have resulted in significant or optimal levels of communicative accuracy in their
simulated populations. Trial-and-error learning, then, does seem able to construct communication
systems. As has been pointed out by Pulliam and Dunford, however, “the obvious problem with
trial-and-error learning is error” (1980, p.435). An error signal that works quite well at the
timescale of evolution may be rather less useful at the timescale of an individuals lifetime. Much
of communication occurs in situations where failure brings a high cost. Even in less costly
situations, reinforcement learning is problematic. In many situations, it is not clear that a
reliable error signal exists at all. In the case of human language, the clearest example we have
of a learned communication system, it is argued that children do not get sufficient reinforcement

from their parents (Wexler and Culicover, 1980; Crain, 1991).

VI.B Observational learning

Because of the problems with reinforcement learning in communication, the simulations
presented in this chapter will involve learning by observing the behavior of others, rather than
using trial-and-error. Observational learning does not require a reinforcement signal, making it
both less costly, and free of the need for feedback that may not be available. Boyd and Richerson
(1995) give a formal analysis of utility of observational learning under different conditions. They
argue that the observational learning will outperform reinforcement learning as environmental
stability increases (making it sensible to learn from others) and the probability of independent
individual success decreases (making it costly for an individual to learn on their own).

Compared with those who have looked at communication within a reinforcement paradigm,
fewer researchers have studied observational learning models. Billard and Dautenhahn (1997)
uses a form of observational learning in a situation involving two robotic agents — one the teacher

and one the learner — engaged in a simple following task. Hurford (1989) uses an observational
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learning paradigm and addresses many of the same issues that will be discussed here. Because
his work is so relevant, I will give an analysis of his results in section VI.D.5, relating them to
the results I present.

Perhaps one reason for the comparative lack of research in this area is the difficulty that
observational learning mechanisms have in improving the communicative ability of a population.
It makes intuitive sense that it should be possible to learn an existing communication system by
observing others, but it is less obvious how repeated observation might construct such a system.
Because observational learning uses no reinforcement signal, there is no external feedback about
the communicative utility of particular behavior. In constructing a system, a purely observational
learning procedure must do “blind” hillclimbing — following a fitness landscape without being
able to sample 1t directly. As will be seen in the simulations presented in this chapter, learning

procedures will vary in their ability to do this.

VI.C The observational learning model

The simulations that will be presented in this chapter involve populations of individuals
with send and receive functions as described in section III. These communication functions,
rather than being tuned by evolution, will now be constructed through a learning procedure,
taking observations of the behavior of others as data.

It is assumed that the life of an individual proceeds in two stages: a learning stage and
a behaving stage. During the learning stage, an individual observes the behavior of the other
individuals in the population, and uses these observations to construct its own communication
system. After learning, this communication system remains fixed. During the behaving stage,

individuals interact with one another, providing the basis for the learning of new individuals.

VI.C.1 Population dynamics

Beginning with an initial population with randomized send and receive functions, new
individuals are periodically introduced, learning to communicate and becoming behaving mem-
bers of the population. In addition, individuals are periodically removed from the population,
modeling death. This occurs in a continuous cycle, as is shown in Figure VI.1.

In this way, the population can be seen as a dynamical system, with the addition of
new individuals and the removal of old individuals determining the change in the population over
time. More concretely, if we have a transition function, T', that determines the effects of adding

a new individual (with send and receive functions spey and rpey respectively) to a population,
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Figure VI.1: The learning cycle. Old individuals are continually replaced by new ones in the
population. New individuals learn from an observed sample of behavior produced by the existing

population.

the change in the population can be described by:

Pt+1 — T(Snewa Tnew, Pt) (Vll)

where P, represents the state of the population at a given time.!

This dynamic describes the way the communicative behavior of the population will
change over time. Because the function, 7', that determines the transition from one state of the
population to another is likely to be quite simple (such as simply adding the new individual to
the existing set), the behavior of the system will be largely governed by how the send and receive
functions of a new individual are determined by the learning procedure. In order to be able to
construct and maintain effective communicative behavior, the learning procedure must be such

that it results in a dynamical system in which accurate communication systems are attractors.

VI.C.2 Observing the behavior of others

New individuals learn their communication systems by observing others. The send and
receive functions of the population are not available directly to a learner, however, but rather are
reflected by an observed sample of behavior. The sample that a learner will see is determined by
an observation function, O. This function maps the actual population send and receive functions,

S and R, into samples of observable behavior, Ssm, and Rspmp, as is shown here:

Ssmp = OS (S) Rsmp = Or(Ssmp7 R) (VI?)

I The function T will also reflect the effects of removing individuals from the population.
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a) b)
R a b c Rsmp a b ¢
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8 102 08 0.0 3 2 6 0
c) d)

Figure VI.2: Dependence of reception on transmission. Figures a) and b) show the population’s
average send function, and an observed sample of it. Figures c) and d) show the population’s
average receive function and an observed sample of it (expressed as the number of observed
instances of the signal/meaning pair). Because a signal must be sent in order for it to be received,
reception behavior to signals that are sent rarely will be underrepresented or not represented at

all.

The reason that observation function for reception O, is dependent on the observed
send sample is explained in Figure VI.2. Communication is by its very nature a directed process.
Reception comes after transmission and operates on the signals that transmission produces.
Because of this, it is impossible to observe a population’s reception system directly. What is
observed instead is the result of receiving the signals produced by a sample of transmission
behavior. In Figure VI.2c, the probability with which an individual from the population will
interpret signal ¢ as meaning 1 is 1.0. In the sample of reception behavior, however, this mapping
is never observed (Figure VI.2d). This occurs because member of the population rarely send signal

¢ for any meaning, and in this particular sample of transmission behavior, it is never sent.

VI.C.3 Creating a new individual

Given that we now have samples of transmission and reception behavior, they can now
be used to determine the send and receive functions of the new individual that is being exposed

them. This is done using a learning function, L, that operates in the following way:
Spew = Ls (Ssmp7 Rsmp) Tnew = Lr(Ssmp ) Rsmp) (VI3)

The majority of work in this chapter will be primarily devoted to exploring the properties of
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various kinds of mechanisms that might be used to instantiate this learning function.

VI.C.4 Simulation framework

Unless otherwise specified, all simulations presented here will implement the functions

described above in the following way:

e The transition function, T'(Spew, Pnew, Pt), is simply a set operation on P;. A randomly
selected member of the population is removed from the set, being replaced by a new indi-
vidual with send function s,¢, and receive function r,e,,. This ensures that the population

remains at a constant size.

e The observation functions, O, and O, produce the observed samples of behavior, Ss,,, and
Rsmp, by sampling a fixed number of communicative interactions. Unless otherwise speci-
fied, three interactions are observed for each meaning?. For each interaction, a transmitter
and a receiver are randomly chosen from the population. The signal the transmitter pro-
duces in response to the given meanings is recorded in S;,,,. This signal is then presented
to the receiver, and the meaning the receiver interprets it as is recorded in Rspp. Ssmp and
Rsmp, then, are simply matrices that contain counts of the number of times a particular

signal /meaning pairing was observed in the send and receive behavior of the population.

e The learning functions, Ly and L, vary with the particular learning strategy that is being

investigated.

All simulations involve populations of 100 individuals, unless otherwise specified. The
unit of time in the simulations is a round, which involves the removal of one individuals from
the simulation at random, and the addition of a new individual to the population. Each new
individual is learns according to the particular learning procedure being investigated in the

simulation.

VI.D Statistical learning procedures

The following sections describe a number of statistical procedures that could be used
to implement the learning functions L; and L,. The different learning procedures I present have

varying degrees of success at constructing and maintaining systems of communication. I first

2This is slightly unrealistic, as it assumes that each meaning is actually observed with equal frequency. It
allows simulation times to be faster, however, since fewer interactions are needed to have all meanings represented
in the sample.
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describe procedures that attempt simply to reproduce the statistical properties of a sample and

then turn to procedures that attempt to take into account the communicative function of signals.

VI.D.1 Imitative learning

Perhaps the most obvious way to construct a communication system from the behavior
of others i1s just to imitate the behavior that is observed. The word imuitate 1s used here to
mean “reproduce as faithfully as possible.” An imitative learning strategy, then, attempts to
reconstruct the population’s send and receive behavior as accurately as it can from the observed
sample. This can be done by simply sending and receiving signals with the probabilities observed
in the sample.

This may seems to be the best way to learn a communication system; indeed, an imi-
tative learning strategy can, given a large enough sample of behavior, learn an existing system.
The problem with imitation is that learning an extant system is, as was pointed out in the pre-
vious section, only one of the requirements placed on a learning mechanism. Imitative learning
strategies, because they are designed to faithfully reproduce a population’s communicative be-
havior, cannot improve sub-optimal systems. Faced with a system where individuals send and
receive signals with low accuracy, an imitative strategy will learn to communicate in an equally
inaccurate way. In addition, Figure VI.3 shows that such a strategy fails to maintain an optimal
system against even very low levels of noise. The system quickly degrades to a chance level of

performance.

Imitate-Choose

It is possible to improve an imitative strategy by imitating the statistical mode of the
observed sample of behavior, rather than the actual observed distribution. This can be done by
sending, for each meaning, the signal that the population most often sends for that meaning,
and receiving each signal as the meaning the population most often receives that signal as. This
learning procedure, which we will call Imitate-Choose, is outlined in Figure VI.43.

Unlike the pure imitative strategy, the Imitate-Choose procedure allows a population
to maintain an optimal system against moderate amounts of noise. The slight deviations caused
by noise are ignored in favor of the dominant behavior of the population. Despite this, however,
the Imitate-Choose strategy is unable to reliably improve sub-optimal communication systems,

as is shown in Figure VI.5.

3Tn all cases where the a maximum value is calculated in the description of this and other learning procedures,
if the maximum is shared over more than one value, one is chosen randomly.



63

0.6 | ]

0.4 1

Communicative Accuracy

0.2 r J

0 ldOO 20‘00 3060 4(;00 5000

Rounds
Figure VI.3: Starting with an optimally coordinated communication system, an imitative strategy
fails to maintain it the presence of a low noise level. Sampling is done such that a signal is
guaranteed to be observed being sent for every meaning. There is a 1% chance that the signal
used in a communicative interaction will be observed incorrectly. Four signals and four meanings

are used. Results are averaged over 10 simulation runs.

For each meaning p:

s.1: Find the signal &, for which S, (¢, £,) is maximum.

s.2: Set spew(t, £x) = 1.0, and set spew(p, 0) = 0 for all o #

Ky

For each signal o:

r.1: Find the meaning 5, for which Rsmp (0, 1,) is maximum.

r.2: Set Ppew(0, o) = 1.0, and set rpey (o, ) = 0 for all p #

Mo -

Figure VI.4: The Imitate-Choose learning procedure.
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Figure VI.5: Performance of the Imitate-Choose learning procedure. Imitate-Choose fails to
reliably improve populations with random initial communication systems. Four meanings and

for signals are used. Results of 10 simulation runs are shown superimposed.

Recall that in section II1.D, optimal communication in a population was characterized
in terms of three requirements: coordination, distinctiveness, and consensus. The Imitate-Choose
procedure enforces consensus, resulting in its ability to resist noise. It does not, however, enforce
either distinctiveness or coordination. Essentially, all that Imitate-Choose does is to exaggerate
the initial biases of the population. Because each new individual imitates the dominant behavior
of the population, consensus is eventually reached. There is no guarantee, however, that the
system that is converged upon will communicate accurately, as it is effectively chosen randomly.
As Figure V1.5 shows, the communicative accuracy of the population stabilizes, communicating
accurately about some particular number of meanings (in this case, 0, 1, or 2 out of four). The
expected communicative accuracy of a population using the Imitate-Choose strategy is the same
as the expected communicative accuracy of a random transmission system paired with a random
reception system. This expected value is 1/|M]. Tt is 0.25 in the case of the simulations shown

in Figure VL.5, which is the approximate value of communicative accuracy observed.

VI.D.2 Saussurean learning

One of the things that the Imitate-Choose procedure described in the previous section
failed to do was to enforce coordination between transmission and reception behavior. Because co-
ordination is so critical to accurate communication, one might suppose that this linkage between
transmission and reception behavior should be imposed directly by the learning procedure. Hur-

ford (1989) calls such learning strategies that assume a bi-directional mapping between meaning
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For each meaning p:

s.1: Find the signal k, for which S, (¢, £,) is maximum.

s.2: Set spew(t, £x) = 1.0, and set spew(p, 0) = 0 for all o #

Ky.

For each signal o:

r.1: Find the meaning 5, for which spey (0, 75) is maximum.

r.2: Set Ppew(No, ) = 1.0, and set rpew (o, p) = 0 for all y #

Mo -

Figure VI.6: The Saussurean learning procedure.

and signal Saussurean, as this association between a form and a meaning is termed a Saussurean
sign, after de Saussure (1959).

Figure VI.6 gives the definition of a Saussurean learning procedure. The send function
of the new individual is derived in the same way as was done in the Imitate-Choose procedure.
The construction of the reception function is also similar to Imitate-Choose, except that, instead
of deriving from the population’s reception behavior it derives from the individual’s own newly
constructed send function. The new reception function is forced to be the send function’s “other
half” of the Saussurean sign.

Figure V1.7 shows results of simulations using this Saussurean learning procedure. While
performance is better than was achieved with the Imitate-Choose procedure, populations using
the Saussurean strategy still fail to reliably converge on optimal communication systems. The
reason that the Saussurean strategy performs better than Imitate-Choose is that, in addition to
enforcing consensus, it also enforces coordination (in fact, it was designed to do so). The reason
it does not always construct a perfect system is that it does not enforce distinctiveness.

The transmission portion of the Saussurean strategy is derived just as was done with
Imitate-Choose. Just like Imitate-Choose, it simply exaggerates the dominant transmission be-
havior in the random initial population, resulting in the population converging on a random
transmission system. This random system might send a unique signal for every meaning, but it

is equally likely to send the same signal for every meaning.
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Figure VI.7: Performance of the Saussurean learning procedure. The Saussurean strategy exhibits
performance that is better than chance, but fails to reliably produce an optimal system from
random initial conditions. Four meanings and four signals are used. Results of 10 simulation

runs are shown superimposed.

Expected performance of the Saussurean strategy

The expected performance of the Saussurean strategy can be mathematically predicted.
Because the transmission system is constructed by the Saussurean procedure through imitation,
biases in the random transmission behavior of the initial population will simply be exaggerated
over time. This effectively results in the population converging on a random transmission system
(just as was the case with the Imitate-Choose procedure). The expected number of unique signals
expressed by a random transmission system encoding m meanings into s signals can be calculated

as follows:

nu = s(1— (1= (1/5))™) (V1.4)

Because the Saussurean learning strategy mirrors its reception from it’s transmission,
it will correctly receive every unique signal that it sends. This means that it will correctly
communicate with itself for n, of the m meanings, resulting in an expected communicative
accuracy of n,/m. Because the Saussurean strategy enforces consensus, this value will be the
expected communicative accuracy of a population of Saussureans. A simulation averaging the
performance of a number of runs involving populations is shown in Figure V1.8, along with
the mathematically-expected performance of the strategy. The simulation results conform very
closely to the level of accuracy that is predicted.

The expected performance of the Saussurean learning procedure depends critically on

the number of meanings and signals that are used. More specifically, it depends on the ratio
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Figure VI.8: Average performance of the Saussurean learning procedure and the predicted value
based on Equation VI.4. Four meanings and four signals are used. Results are averaged over 40

simulation runs.

of the number of signals to the number of meanings. As the number of signals increases for a
fixed number of meanings, the probability of sending a unique signals for a given meaning also
increases.

The expected communicative accuracy (n,/m) can be closely approximated by the

expression:

(s/m)(1 —e™™/*) (VL5)

Taking r to be the ratio s/m, the expected accuracy can be then expressed as:
r(1—e"t/m) (VL6)

Figure VI.9 gives a plot of this expression for varying values of r. By the time the ratio
has reached 10 : 1, the expected performance is very close to 1.0. Given this, the Saussurean
strategy can be quite effective, provided that there are many more signals than there are meanings

to express.

VI.D.3 Bayesian learning

Despite the success of the the Saussurean strategy, there are a number of reasons to
look for a better learning procedure. First, the requirement that signals be plentiful is one that
may or may not be met in a given ecological scenario. Second, the a prior: incorporation of
the Saussurean sign as a part of the learning mechanism is less satisfying than the possibility of

having it emerge as a consequence of the learning dynamic.
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Figure VI.9: Expected Saussurean performance as the number of signals increases relative to the

number of meanings.

To attempt to address these issues, we will consider another way to think about the
task of the learner. Rather than imitating the behavior of the population (and the Saussurean
strategy is still, at its heart, an imitative strategy), a learner could instead try to construct a
communication system based on its expected utility for communicating with the population. In
other words, a learner should try to maximize its ability to communicate with the average member
of the population. To do this, it is necessary to a) create a send function that maximizes the
probability of being understood by the population’s average reception behavior, and b) create a
receive function that maximizes the probability of correctly interpreting the population’s average
transmission behavior.

This amounts to doing a bayesian maximization of the conditional probability of com-
municative success. The formulation of such a learning strategy, which we will call the Bayesian
learning procedure, is shown in Figure VI.10. It is important to note that this learning proce-
dure involves the direct use of the average receive function of a population, rather than a sample
biased by transmission behavior. As was pointed out in section VI.C.2, this assumption is not

realistic and it will be addressed shortly.

Proof of Bayesian optimality

It can be proven that the Bayesian strategy produces the best possible communication
system for use with a given population. In order to carry out this proof, we will first consider
the construction of the send function. For a particular meaning p, let k£ be the signal most often

interpreted as p by members of the population whose average receive function is R. Thus, for
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For each meaning p:

s.1: Find the signal &, for which R(x,, p) is maximum.

s.2: Set spew(t, £x) = 1.0, and set spew(p, 0) = 0 for all o #

Ky

For each signal o:

r.1: Find the meaning 5, for which S(7,, ¢) is maximum.

r.2: Set Ppew(0, o) = 1.0, and set rpey (o, g) = 0 for all py #

Mo -

Figure VI.10: The Bayesian learning procedure.

any signal o:

R(o, p) < R(k, p) (VL)
Because any weighted average of a set of numbers cannot exceed the largest number in the set,
we know that, for any send function s:

Y s(u, 0) R0, p) < R(k, ) (VL8)

o
This means that the maximum possible communicative accuracy that any send function can have
with respect to meaning p is R(o, p) (see Equation III.1). Because the Bayesian procedure will
construct a send function, s, that will send signal & for meaning g with probability 1.0, and will
send other signals with probability 0.0, its probability of communicative success for meaning p
will be R(k, p). Thus, from Equation VI.8:

Y s(w, o) R(o, 1) <D s, o) R(o, ) (VL9)

o o

for each meaning, pu. Because we have shown that the send function produced by the Bayesian
learning procedure will communicate any given meaning at least as well as any other possible

send function, it follows from Equation II1.2 that:
ca(s, R) < ca(sp, R) (VI.10)

meaning that no other send function could communicate with the population better than ss.
A virtually identical proof can be used to show that no other possible receive function

performs better than the receive function, 7y, produced by the Bayesian procedure. Given this,



70

for a population whose average send and receive functions are S and R respectively:
cas(s, r, S, R) < cas(sp, ™, S, R) (VI.11)

for any possible send function, s, and receive function, r. The Bayesian learning procedure
results in a communication system that communicates as accurately as is possible with a given

population.

Increasing a population’s communicative accuracy

It has been proven that that the learning strategy is guaranteed to produce the best

possible system for communicating with the current population. It follows then, that such a

system will communicate with the population as well or better that the population communicates

within itself. Substituting the population average send and receive functions, S and R, for s and
r in Equation VI.11, we get:

caz(S, R) < cas(sp, v, S, R) (VI.12)

If new individuals continually replace old ones in the population, we can expect the
communicative accuracy of the population to increase, until such time that the population com-
municates within itself as well as any send or receive function could possibly communicate with

it.

Implementing the Bayesian learning procedure

Simulation results showing the average performance of populations of Bayesian learners

in shown in Figure VI.11.

Approximating the Bayesian learning procedure

Although the Bayesian learning procedure produces optimal systems of communication,
it 1s based on the use of an unrealistic sampling function for reception behavior. This can be
easily corrected by modifying the Bayesian strategy outlined in Figure VI.10 so that it uses S,
and Rymp rather than S and R directly. This procedure cannot truly be called Bayesian, since it
is based on a biased sample of reception behavior, rather than the true conditional probabilities.
The performance of this new strategy, which I will call Invert, is shown in Figure VI.12.

While performance is very good, perfect communication is not reliably achieved. Even
if the number of rounds is increased, the average communicative accuracy fails to increase much
beyond the value reached at round 5000. A closer look at these simulation results is shown in

Figure VI.13. In one of the ten simulation runs shown, the communicative accuracy stops at a
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Figure VI.11: Average performance of the Bayesian learning procedure. Four meanings and four

signals are used. Results are averaged over 40 simulation runs.
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Figure VI.12: Average performance of the Invert learning procedure. Four meanings and four

signals are used. Results are averaged over 40 simulation runs.
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Figure VI.13: Failure of the Invert learning procedure. One of ten runs fails to reach perfect
communication. Four meanings and four signals are used. Ten simulation runs are shown super-

imposed.

a b c d
1.0 0.0 0.0 0.0
0.0 00 1.0 0.0
0.0 1.0 0.0 0.0
0.0 1.0 0.0 0.0

a b c d

1.0 0.0 0.0 n/a
0.0 0.0 1.0 n/a
0.0 0.5 0.0 n/a.
0.0 05 0.0 n/a
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Figure VI.14: A coordinated, but not optimal communication system. Signal ’b’ is sent ambigu-

ously for both meanings 3 and 4, and signal ’d’ is never sent.

value of .75 (three of four meanings communicated accurately). Such sub-optimal performance
is infrequent, but occurs reliably in approximately one run in ten.

In section IT1.D, it was shown that a population can be converged on a fully coordinated
system, but still lack the required distinctiveness for optimal communication. This is exactly what
is happening in the single failed run in Figure VI.13. The problem can be illustrated by looking
at the communication system converged on in the single failed case in Figure VI.13. This system,
shown in Figure VI.14, is ambiguous, sending signal ’b’ for both meanings 3 and 4. Signal ’d’ is
never sent by members of the population. The reception system does the best it can, interpreting
signal b’ as meanings 3 and 4 with equal probability. The reception behavior with respect to

signal ’d’ is undefined, as it is never observed.
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Figure VI.15: Normalizing a sample of reception behavior. Figure a) shows an example of
a sample of a population’s receive behavior. Figure b) shows the sample after it has been

normalized, making all columns sum to 1.0.

Although this system is sub-optimal, 1t is still fully coordinated in that the send and
receive functions communicate with each other at least as well as either would communicate with
any other system. From observations of this system’s send function, s, the Bayesian learning

4 From observations of receive function r, it will

procedure will produce receive function r.
produce send function s. This system is an example of one of the inefficient equilibria discussed
with respect to game theory in section III.E. The situation is inescapable, and the communicative

accuracy of the population cannot increase.

VI.D.4 Normalization

The problem with the Invert strategy results from the fact that it is not a true Bayesian
strategy. The observed sample of reception behavior is biased by the population’s send behavior.
Reception behavior to signals that are sent with low frequency is underrepresented in the sample.
One way to correct for this is to normalize the sample of reception behavior so that it provides
a better estimate of the true dispositions of the population. This normalization operation is
shown in Figure VI.15. The columns are normalized so that they each sum to 1.0, representing
the probability that a signal will be interpreted as a meaning, rather than the number of times
the pairing was observed. As can be seen from the figure, this changes the signal that will be
chosen for meaning '0’. Before normalization, signal ’a’ would be chosen for both meanings.
After normalization, signal 'b’ will be chosen for meaning ’0’. Normalization of the sample of
transmission behavior can be carried out in a similar way, but is less critical if all meanings are
equally likely to be signaled.

The performance of this new learning procedure, which I will call Normalize®, is shown

in Figure VI.16. As can be seen from the figure, the normalization of the observed sample is

4 Actually, it will choose randomly to interpret signal ’b’ as either meaning 3 or meaning 4, resulting in receive
function r at the population level.
5This learning strategy is functionally identical to the strategy called Obverter in Oliphant and Batali (1997).
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Figure VI.16: Performance of the Normalize learning procedure. In every simulation run, the
Normalize strategy results in an optimal communication system. Four signals and meanings are

used. Results are averaged over 40 simulation runs.

effective, and every simulation run achieves optimal performance. In fact, performance is better
than that of the actual Bayesian learning procedure itself. This is likely due to the fact that
normalization, in addition to countering biases due to skewed observation of reception behavior,

also helps to compensate for the error involved in sampling in general.

Scalability

The performance of the Normalize strategy scales well for increased numbers of mean-
ings. Figure VI.17 shows that, while the time it takes a population to converge on an optimal
system increases with the number of meanings, optimal communication is nevertheless always
achieved. The increase in convergence time is likely due to a lowered starting point — the chance
level of communicative accuracy decreases as the number of meanings goes up.

It is important to be clear that the increase in time shown here 1s in terms of the number
of rounds 1t takes the population to reach an optimal state, not the amount of time that 1t takes
each new individual to learn. Learning involves observing three communicative interactions based
on the transmission of each meaning. Thus, as the number of meanings increase, so does the
number of observed samples of behavior. This reflects the number of observations required to
get a representative sample of a larger system, and is not reflected by the number of rounds.

Time to convergence is also affected by the size of the population, as can be seen in
Figure VI.18. As the number of individuals in the population increases, so does the number of

rounds required to reach an optimal state of communication. This increase seems to be linear in
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Figure VI.17: Performance of the Normalize learning procedure for varying numbers of signals
and meanings. The number of signals and meanings is equal in each case. Time to converge
increases only slightly with the number of signals/meanings. Results for each plot are averaged

over 40 simulation runs.

the size of the population, and likely reflects the additional time to reach consensus in a larger

population.

VI.D.5 Analysis of Hurford

The work presented in Hurford (1989) inspired many of the ideas presented in this
section on statistical learning procedures. Hurford carried out a series of simulations closely
related to the ones presented here. Because of this, it is useful to give an overview of the work
that he did, and describe how it differs from the simulations presented here.

Hurford was primarily interested in the evolution of the Saussurean sign, investigating
how an imposed bi-directional mapping between form and meaning might evolve as part of a
language learning procedure. In order to do this, he pitted three difference learning strategies

against one another in an evolutionary scenario. The three strategies he proposed were:
Imitator: Equivalent to the Imitate-Choose learning procedure presented in Section VI.D.1.
Saussurean: Equivalent to the Saussurean learning procedure presented in Section VI.D.2.
Calculator: Equivalent to the Bayesian learning procedure presented in Section VI.D.3.

The performance of these three learning strategies in Hurford’s simulations are largely
consistent with the analytic and simulation results presented in the previous sections. Hurford

examined the performance of populations of each of the three strategies, using a communicative
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Figure VI.18: Performance of the Normalize learning procedure for varying population sizes. Time
to converge seems to be linear in the size of the population. Results for each plot are averaged

over 40 simulation runs.

task that involved 5 meanings and 7 signals. For a population of Imitators, Hurford had an
average of 1 out of 5 meanings being communicated accurately (Hurford, 1989 p.220). Given the
random performance of the Imitate-Choose strategy, this is exactly what would be expected.

For a population of Saussureans, Hurford had an average of 3.7 out of 5 meanings being
communicated accurately (Hurford, 1989 p.221). For 5 meanings and 7 signals, the expected
number of meanings communicated accurately by the Saussurean learning procedure is 3.76 (see
Equation VI.4).

Hurford’s results for the Calculator strategy, however, differ greatly from the results
expected of a Bayesian learner. He found that Calculators failed to improve a population’s com-
municative accuracy, and even reduced initially perfect systems to chance level performance. This
seems surprising, as Bayesian learners should produce highly effective communication systems.
This discrepancy can be reconciled by looking at a critical way in which Hurford’s simulations
differed from the ones presented here. While the present simulations maintain a steady flow of
individuals into and out of the population, Hurford used a generation-based model, where the
entire population of individuals was replaced all at once.

This difference, while not affecting the Imitator and Saussurean procedures, has a dra-
matic effect on the Calculator strategy. A Calculator models its transmission behavior on the
reception behavior of others, and its reception behavior on the transmission behavior of others.
As Figure VI.19 shows, a generation-based model causes the calculator to base its behavior on the
population’s behavior in the previous generation. This results in a situation where a calculator’s

behavior is optimized with respect to a population of individuals that no longer exists. What
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Figure VI.19: A population of Calculators over time. Because there is no overlap of individuals

from one generation to the next, each generation is optimized to communicate with the previous

generation, and not the other individuals in the current population. After Hurford (1989).

occurs in such a simulation is that the population constructs highly coordinated send and receive
functions that are offset by one generation. Each generation is able to communicate well with
the previous generation, but not their own.

As a result of this problem, Hurford concluded that the Saussurean procedure was
superior to Calculator. The simulations presented here, however, show that Calculator (here
called Bayesian) is the more effective strategy, and that it will produce optimal communication

systems.

VI.LE Network learning mechanisms

The statistical learning mechanisms described in the previous section all involve con-
structing a new learning system based on statistical properties of an observed sample of behavior.
An important question that has not yet been addressed is whether we really expect animals to
be able to carry out such statistical operations. It seems rather unlikely that any animal, includ-
ing humans, are likely to carry out such complicated mental bookkeeping and calculation in the
course of learning a communication system.® However, it is also unlikely that when a little-league
player learns to throw a baseball, she is doing the mental math required to calculate the trajec-
tory. In both cases, we expect that the necessary calculation is done by exploiting properties of
the underlying neural mechanism, rather than being done through conscious mental calculation.
This section presents a number of different network models that might be used to instantiate

some of the statistical learning procedures explored earlier.”

6 Although it can be shown that, under certain circumstances, such calculations can be reduced to a potentially
reasonably level (see the Unit-Statistic learning procedure described in Oliphant and Batali (1997)).

71t is slightly misleading to contrast network learning procedures with statistical learning procedures as network
learning rules are, of course, also statistical. The distinction I intend is between learning that is explicitly statistical
and learning in a network that is more implicitly statistical.
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Figure VI.20: The associative network model. Signals and meanings are each represented by a

layer of units, with the interconnecting weights storing the association between them.

VI.E.1 The network model

The networks used in the section use an associative learning framework, where an as-
sociation between pairs of input and output patterns is learned. In this case, the input patterns
are signals, and the output patterns are meanings. The general network architecture can be seen
in Figure VI.20. A signal is represented on the input layer by turning on a single one of the input
units. A meaning is represented on the output layer by turning on a signal one of the output
units. Associations between signal an meaning are represented by the bi-directional weights that
connect each input unit to every output unit.

More formally, the networks consist of a set of input units, S, and a set of output units,
M . Individual units will be referred to as S; and M;, with w;; designating the weight connecting
input unit S; and M;. Because the weights are bi-directional, networks of this form are inherently
internally coordinated, and the weights can be thought of as implementing a Saussurean sign.

The simulation regime used for populations of networks is virtually identical to the
framework used for the statistical learning procedures presented earlier. There are only several
small differences that should be notes. First, the networks begin with all weights set to zero,
producing random initial behavior through having no bias, rather that giving the network a
random bias (as was the case in with the statistical learning procedures). The second difference

is that when an individual is used as a model for a learner, it is also trained on its own response.
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Figure VI.21: Winner-take-all recall. A particular signal is being interpreted by the network.

The resulting meaning is the mostly highly activated unit, as indicated by the arrow.

This is necessary to ensure consistency in cases where the network has no bias in the current
situation (something that happens very often in the early rounds, where the population consists
almost entirely of the initial, unbiased networks used to begin the simulation).

All learning is done based on observed samples of transmission behavior only. Because
the networks impose an inherent link between transmission and reception behavior, observations
of either behavior are sufficient. While the learning rule that modifies the weights in response
to the presentation of pairs of patterns will vary depending on the type of network, all of the
simulations presented in this section use a winner-take-all output strategy. In this paradigm, the
most highly active output unit is set to be active, while the other units are turned off. Thus,
to use the network to interpret a particular signal, the unit corresponding to signal is activated,

and the output unit, with the largest net input:
a; = ESiwij (V113)

is the winner. This procedure is diagrammed in Figure VI.21. Recall operates in a corresponding

way for transmission behavior.

VI.E.2 Willshaw networks

Perhaps the most basic kind of associative networks are Willshaw networks, designed

to associate pairs of sparse binary patterns (Willshaw, Buneman, and Longuet-Higgins, 1969;
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Figure VI.22: Training in a Willshaw network. A weight is set to 1 if the input and output units

1t connects are both active.

Willshaw, 1971). The learning rule used by these networks simply sets a weight, w;;, to 1 if
both S; and M; are activated for a given pair of input and output patterns. This learning rule
is diagrammed in Figure VI.22.

In assessing the suitability of the Willshaw learning rule for communication, the issue
is not whether or not such networks can learn an existing system, but rather whether then
can construct a system. Any reasonable associative network should be able to learn an optimal
communication system because the sets of vectors representing both the signals and the meanings
are orthogonal, resulting in no intercorrelations. This results in the easiest possible data set to
learn.

As can be seen in Figure VI.23, populations of Willshaw networks fail to construct a
communication system. This occurs because, although the networks can learn a well-structured
existing mapping, they are exceedingly bad at creating such structure. There is no way for a
Willshaw network to represent one of two existing associations as being stronger than another.
Because of this, there is no way for any one association to become exaggerated in the popu-
lation. The networks maintain a collection of equally strong associations, resulting in random

performance and a chance level of communicative accuracy.
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Figure VI.23: Performance of the Willshaw network. The Willshaw learning rule is unable to
bring a population above chance performance. Four signals and four meanings are used. Results

are averaged over ten simulation runs.

VI.E.3 Cumulative-Association networks

To correct the problem that Willshaw networks have in discriminating different levels
of association, one can simply increment a weight when an association is perceived, rather than
just setting the weight to 1. The weight update rule for such a network, which I will call a

Cumulative- Association network, is as follows:

Awy; = 1 ifS;=1and M; =1; (VL14)
0 otherwise;

This new learning rule results in the performance shown in Figure VI.24. While popula-
tions of Cumulative-Association networks increase communicative accuracy above chance levels,
they do not reach an optimum state. In fact, the performance is identical to that of the Saus-
surean learning strategy described in section VI.D.2. This is because the Cumulative- Association
network is essentially a network implementation of the Saussurean procedure, resulting is similar
disadvantages for similar reasons. Like the Saussurean procedure, the Cumulative-Association
rule does not impose distinctiveness, resulting in the same signal being sent for multiple meanings,
and the same meaning being interpreted for multiple signals.

One possible solution to this problem is to use the same technique that was used suc-
cessfully to construct the Normalize learning strategy in section VI.D.4. Such a procedure will

be explored in the next section.
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Figure VI.24: Performance of the Cumulative-Association network. The level of communicative
accuracy reached is identical to the performance of the Saussurean learning strategy. Four signals

and four meanings are used. Results are averaged over ten simulation runs.

VI.E.4 Hebbian networks

It turns out that there is a very simple way to obtain the effects of normalization in a
network learning model. In the case of the statistical learning procedure, normalization involved
converting a row or column in a sample matrix into probabilities. This can be done by summing
all of the values in the row or column, and dividing each number by this sum. Normalization,
then, can be seen as essentially a form of lateral inhibition, with each entry in the matrix being
inhibited by its neighbors.

Lateral inhibition is a common operation in network learning. In this case, adding
lateral inhibition to the Cumulative-Association rule described in the previous section results
in a form of Hebbian learning rule (Hebb, 1949). Inhibition is implemented by decreasing the
strength of a connection between a signal unit and a meaning unit if one, but not both of them

are active. This results in the following weight update rule:

1 if S;=1and M; = 1;
Aw;j = 0 if S; =0and M; =0; (VI.15)

—1 otherwise;

This new update rule is diagrammed in Figure VI.25.

It is important to note that this update rule does not increase the weights if both units
are not firing, as is done in the most common formulation of the Hebbian learning rule. This
results in better performance, and is in fact more compatible with the original hypothesis of Hebb

(1949). Tt is also important that the networks use binary units rather than the signed (+1,—1)
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Figure VI.25: Training in a Hebbian network. A weight is increased if the input and output units

it connects are both active. The weight is decreased if one, but not both of the units are active.

units that are used for mathematical convenience in the most standard formulation of Hebbian
networks. Aside from the resulting problems in making analogies with real neural activity, using
signed units in a task where patterns are sparse creates a great deal of spurious correlation. Two
different patterns, each with one unit active, will be correlated in all but two of their units. This
makes the task of the network unnecessarily difficult, and standard Hebbian networks cannot do
the encoding task at all.

The performance of populations of networks using this formulation of the Hebbian
learning rule is shown in Figure VI.26. As was the case with the Normalize learning procedure,
the addition of lateral inhibition to the network learning rule results in the ability to achieve

optimal performance.

Scalability

The performance of populations of Hebbian networks with varying numbers of meanings,
and varying population sizes scales in much the same way as did the performance of the Normalize
learning procedure. Figure VI.27 shows how performance changes with the number of signals
and meanings. Figure VI.28 shows the effect of varying population sizes.

If each figure is compared with the corresponding one (Figure VI.17 and Figure VI.18)

in section VI.D.4, it can be seen that, in general, populations of Hebbian networks converge
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Figure VI.26: Performance of the Hebbian network. Populations of Hebbian networks are able
to construct optimal communication systems. Four signals and meanings are used. Results are

averaged over 10 simulation runs.
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Figure VI.27: Performance of the Hebbian network using varying numbers of signals and mean-
ings. The number of signals and meanings is equal in each case. Results for each plot are averaged

over ten simulation runs.
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Figure VI.28: Network populations of varying sizes establishing a conventional encoding for ten

input patterns. All plots are averaged over ten simulation runs.

faster than populations of learners using the Normalize strategy®. This is likely due to the fact
that the coordination between transmission and reception behavior is inherently imposed in the

network model, while it must be established by the Normalize learning procedure.

Multiple-unit meanings

Using Hebbian networks, it is also possible to deal with more complex meaning patterns
than the ones used in the previous simulations. Instead of turning a single unit on in the vector
to represent a particular meaning, a pattern across multiple units can be used. This allows the
meanings to be structured according to some task-based metric. It also provides a way in which
meanings can be more or less similar to each other, as patterns can overlap, sharing some of the
same units.

The addition of structure transforms the problem into a form of vector quantization
(Kohonen, 1989). The problem of correlations between the new structured meanings can be
avoided by adding a conscience mechanism to the winner-take-all output threshold, as is done
in other vector quantization tasks (Grossberg, 1976; Bienenstock, Cooper, and Munro, 1982).
Additional details about this type of network, and results demonstrating its performance can be

found in Oliphant (forthcoming). .

8 These simulations differ slightly from those done with the Normalize strategy in that the plots are only
averaged over ten simulation runs. Also, Figure VI.27 does not include a plot for 50 signals/meanings. This is due
to the combinatorial nature of these simulations — they are a serial simulation of a parallel task. These differences
should not, however, significantly affect the comparison.
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VI.F Discussion

This chapter has detailed the performance of a number of learning mechanisms operating
within an observational learning paradigm. This kind of learning, while more realistic than
reinforcement learning, has the disadvantage of lacking a feedback mechanism. Being unable
to try a number of different communicative behaviors and choosing the one that s the most
successful, an observational learning system must calculate, given a sample of the behavior of
others, what communicative behavior w:ll be the most successful.

Learning strategies that simply imitate the observed behavior of others are not sufficient.
Imitation of a bad communication system results in a bad communication system. This means
that perfect reproduction of observed behavior results in an inability to increase the population’s
performance. Rather than producing an individual communication system that mimics the com-
munication of the population, a learning mechanism should construct an individual system that
will increase the population’s communication accuracy.

This is exactly what the Bayesian learning strategies do. From a sample of a popula-
tion’s behavior, they construct a communication system that will have the maximum possible
communicative accuracy with that population. Such learning mechanisms, if used by a popula-
tion of individuals, will increase the population’s communicative accuracy over time. With the
addition of lateral inhibition, the communicative accuracy of the population will eventually reach
an optimal level.

It may seem that this kind of learning strategy would require that the learner possess
an inordinate ability to calculate and predict. In the case of communication, however, this turns
out not to be the case. Hebbian learning, perhaps the most simple, biologically plausible learning
mechanism one could ask for, instantiates the required statistical properties. Given this, it seems
that the ability to construct and maintain a learned system of communication should be, at least

computationally, within the means of virtually any animal species.



Chapter VII

Learned communication in

non-human animals

VII.A Why are the so few learned communication sys-
tems?

In the previous chapter, it was argued that the computational requirements of learned
communication appear to be modest enough to be satisfied by most animals. Given this, why do

we see so few examples of learned systems of communication in non-human animal species?

VII.A.1 Evolution may be sufficient

One reason why many species do not have learned communication may be that natural
selection is doing a perfectly satisfactory job of maintaining the system. The animals may simply
not have very much to say, and evolution is good enough to give them a way to say it. This
scenario seems particularly likely in the case of animals that engage in relatively simple kinds of
social interactions, the nature of which remain stable over long periods of time. Most animals
really only need communication for a few basic purposes, such as attracting mates, defending
territory, and sounding the alarm in response to predators. If communication boils down to a few
variants of “I'm tough!” (for the benefit of both potential mates and competitors) and “Look
out!”, evolution can, and does provide the means.

In animals with a more complicated social framework, however, it 1s more likely that

learning will have advantages over evolution. As social interactions become more complex, the
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number of communicative signals may increase. Learning is better able to keep pace with an
enlarged signal repertoire than is a genetic representation in which each signal must be created
and maintained by natural selection. In particular, evolution is unable to allow for communicative
productivity within an individual’s lifetime. Signals that referred to a particular individual in

the population, for example, would be impossible.

VII.A.2 Learning has associated costs

It is also possible that, for a given species, the benefits of learning might be outweighed
by associated costs. While evolution may be slow to respond to change, it has the advantage of
making behavior available early on in life. If making accurate use of a communicative behavior
is critical at a young age, a learned system which takes time to become established may be
disadvantageous.

Learning to communicate, particularly in fitness-critical situations, may be a luxury
that can only be supported by investing in an initial period involving a high level of parental
care. This investment in childcare is made increasingly in the higher primates, culminating in
the western model of human society where children are not considered full members of society

until the age of 18.

VII.A.3 The ability to learn is absent

Let us assume that, at least in some situations, the advantages of learned communication
are greater than the disadvantages. In such cases learned communication might still be absent
because the animals lack a critical ability that such learning requires. Although I have shown
Hebbian learning is computationally sufficient to establish communication in a population of
animals, it was assumed that the data, in the form of observed signal/meaning pairs, were
available to the learning mechanism.

The question remains, then, whether or not animals are capable of observing others,
extracting the relevant information, and making it available to be learned. In doing observational
learning!, the animal may be capable of doing the learning, but not the observation. The degree
to which animals are able to learn observationally is a controversial subject, particularly in the
case of apes. In chimpanzees, it seems likely that the use of tools and communicative gestures

is, to some degree, transmitted through some form of social learning (Goodall, 1986; Nishida,

1T use the term observational learning to refer to learning that involves what others (such as Tomasello, 1990)
call true imitation. This means that it is to be contrasted with other forms of social learning such as observational
conditioning (Whiten and Ham, 1992). I reserve the use of the term imitation to refer to observational learning
in which no additional structure is imposed on the input.
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1987; Whiten and Custance, 1996). Tt is less clear, however, whether this social learning is truly
observational (Tomasello, 1990; Tomasello, 1996).

VII.B Observational learning and communication

The next several sections present examples in which aspects of an animal’s communica-
tive behavior appear to be learned socially. These examples will be discussed with regard to two

issues: what aspects of the animal’s behavior are learned, and what form of learning is involved.

VIIL.B.1 Bird song

Song in male oscine birds, the most-studied example of which is the white-crowned
sparrow, is often pointed to as a case of learned communication. In order to develop normal song,
these birds must be exposed to the song of others of their kind. If a bird is raised in isolation, it
develops a simpler song (Marler, 1970). Furthermore, such song has regional dialects, where birds
of the same species but living in different geographical areas have distinct versions of song. While
some birds learn to sing a single song, others, such as nightingales, learn to produce hundreds
(Hultsch, 1993).

While it is clear that learning plays an important role in the development of song, it
does not seem that the learned aspects involve tuning a system of communication. Bird song is
certainly a form of communication, playing an important role in male-female courtship interac-
tions and male-male territorial disputes, but this communicative function is innately specified.
Birds do not learn a mapping between a songs form and its communicative function. In most
species, even the basic form of the song is specified by an innate template (Konishi, 1965). This
leads to the conclusion by avian researchers that “the ability to imitate sound may be as reflex-
ive and cognitively uncomplicated as the ability to breathe” (West and King, p.172). Bird song
appears to be a case which the learned behavior depends only on the behavior of the model, and
not on a perceived relationship between the model’s behavior and its consequence.

This is not to say that variations in singing behavior, such as increased song repertoire,
have no utility. Evidence from song playback and other techniques indicates that females respond
to variations in male song (Searcy, 1992). Increased song complexity and variability seem to
mainly serve as an attention-getting device, operating much like the car alarms that cycle from

one pattern of sound to another.
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VII.B.2 Vervet monkey alarm calls

The alarm call system of vervet monkeys, as discussed in section 77, involves the use of
specific vocal signals in response to a variety of predators. Unlike birdsong, the vocal calls do not
appear to be learned. Comparisons of recordings of spontaneous calls given by immature animals
to alarm calls given by adults indicates that learning is relatively unimportant in determining
the acoustic properties of calling behavior (Seyfarth and Cheney, 1986; Hauser, 1996). The set
of alarm calls appears to be innately constrained.

Vervets do, however, learn to fine-tune the use of alarm calls through experience. Sey-
farth and Cheney (1986), in analyzing the use of the eagle alarm call, have found that it initially
is used by infants and juveniles in response to perceptually similar non-predatory species such as
vultures. Only later in life does it get narrowed to be a response to the eagles that prey on the
vervets. While learning plays a role in tuning the specificity of an alarm call, it seems that the
general danger categories such as “airborne eagle-like predator” are determined innately (Hauser,
1996). Because adult vervets generally ignore false-alarm calls by infants, it seems likely that
these categories get narrowed through selective reinforcement; only in the case of a true predator
will an infant’s alarm call generate a response from others.

Given the innate constraints on both the repertoire of signals and the general classes of
meaning with which they are associated, it is difficult to call vervet communication, at least as
it is observed in nature, a truly learned system. Furthermore, the learning that does take place
is likely to be based on reinforcement, rather than observation of correlations between alarm
calls and evasive responses in others. It would be very interesting, however, to know how closely
tied the calls are to the danger category they are associated with. Could vervets learn through
observation a system in which the usage of eagle and snake calls were switched? Such a question
seems virtually impossible to test in the wild, however, and I am not aware of any study that

addresses it.

VII.B.3 Communicative gestures in chimpanzees

Chimpanzees use a wide variety of gestural signals to mediate social interaction, using
them in situations such as play, caregiving, and aggressive and sexual interactions. At least some
aspects of this gestural communication appear to be learned. Evidence that this is the case
comes from situations where a gesture is local to a particular population of animals (Nishida,
1987; Tomasello, 1990). If a gesture is wide-spread among one group of animals, and not used in
another group of the same sub-species, it seems likely that the behavior was invented by some

individual and then passed on through learning. It is difficult to be sure, however, as Tomasello
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(1990) points out that it is always possible that the observed behavioral differences between
different groups of animals result from subtle differences in the ecologies they inhabit.

Tomasello and his colleagues have carried out extensive observational studies of gestur-
ing in captive chimpanzees placed in a physical and social setting designed to resemble that which
exists in the wild (Tomasello, George, Kruger, Farrar, and Evans, 1985; Tomasello, Gust, and
Frost, 1989; Tomasello, Call, Nagell, Olguin, and Carpenter, 1994). These studies have provided
additional evidence that chimpanzees learn gestural signals. The communicative behavior of the
animals changes ontogenetically, apparently adapting to the changing social environment as the
animal grows from infant to adult (Tomasello, Gust, and Frost, 1989).

While the animals do seem to learn to use gestures, such learning is not necessarily
observational. Many of the gestures learned by young individual,such as the solicitation of
nursing, were never directed at them, and would have been difficult to observe in others. In
addition, many of the gestures were unique, used only by a single individual. In light of this
data, Tomasello argues that gesture learning occurs through a process of ontogenetic ritualization,
which is essentially the learning equivalent of ritualization in the evolution of display behavior
(Tomasello, 1996). He concludes that “each signal is created anew from individual, though

perhaps common, social interactions, with no attempt to reproduce the behavior of a conspecific”

(Tomasello, 1990, p.302).

VII.B.4 Language-trained animals

A large number of studies on animals such as apes, dolphins, and parrots have demon-
strated the ability of the animals to learn to use human-designed systems of communication
(Hayes and Hayes, 1951; Gardener and Gardener, 1969; Premack, 1971; Herman, Richards, and
Wolz, 1984; Pepperberg, 1987). While such studies show that the animals in question do seem to
be able to learn simple communication systems, they involve explicit language training through
reinforcement. Thus they do not provide a test of the animal’s observational learning abilities.

Work done by Savage-Rumbaugh with the chimpanzee Kanzi is a possible exception
(Savage-Rumbaugh, Mcdonald, Sevcik, Hopkins, and Rubert, 1986). Kanzi’s mother was being
trained in an explicit language task like the ones mentioned above. While the mother failed to
master the communication task, Kanzi showed communicative ability even though he had not
been trained. He apparently picked the ability up by observing the training of his mother.

The case of Kanzi presents perhaps the strongest evidence for observationally learned
communication in non-human animals. It is problematic for a number reasons, however. First,

it is a single case, and did not occur within the context of an experimental setting. Second, the
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behavior that Kanzi observed involved the carefully structured teaching of his mother, a situation

very different than simply observing communication in everyday use by conspecifics.



Chapter VIII

Discussion

VIII.A Natural selection and its limitations

The vast majority of animal communication systems are innate. Evolution, as has
been demonstrated in chapter 1V, is well-equipped to construct and maintain simple systems
of communication. This i1s particularly clear in situations where communication is in the direct
best interest of both transmitter and receiver. In other cases, factors such as kin selection and
reciprocal altruism help to modify the situation such that natural selection still manages to
promote communicative behavior.

Evolution has its disadvantages, however. Any change to an innate system of commu-
nication requires modification of a genetically-encoded representation, and the timescale of such
evolutionary change is very slow. This places limitations both on the possible complexity of an
innate communication system! and on the ability of the system to respond quickly to changing
demands. As has been mentioned previously, communication with respect to subjects introduced

during an individual’s lifetime is impossible.

VIII.B Observational learning is required

The solution to the limitation of innate systems of communication is for communication
behavior to be learned. Not just any form of learning will do, however, and T have argued that
communication must be learned through observing the behavior of others, rather than through

individual trial-and-error.

T have done simulations looking at the ability of natural selection to construct and maintain a communication
system as a function of the number of signals and meanings involved. Preliminary results indicate, not surprisingly,
that the time to converge increases with the size of the system.

93
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As was pointed out in section VI.A| reinforcement learning has the significant disad-
vantage of only being effective where error involves a low cost. Trial-and-error learning is also
largely restricted to situations where experimenting with behaviors is likely to succeed. If an an-
imal never finds a behavior that is successful, the behavior cannot be learned by reinforcement.
Observational learning is essential in such situations. Even the behavior is difficult to acquire, it
need only be discovered once, and can then be passed on to others by observation. Reinforcement
learning requires that each individual create the behavior anew.

In the few cases (with the possible exception of Kanzi) where non-human animals seem
to be able to learn communicative behaviors, this learning involves reinforcement rather that
observation. Furthermore, the learning occurs in exactly the situations that reinforcement learn-
ing is suited to. In the case of vervet monkeys, the repertoire of signals and the categories of
meaning are innately fixed. This facilitates trial-and-error learning by strictly limiting the set of
behaviors an animal needs to try. In particular, stumbling upon the correct acoustical properties
of a vocal signal would be extremely difficult if the set of possibilities was not restricted. Innately
specifying the set of signals and meanings, however, negates what is perhaps the primary benefit
of a learned system — extendability.

The examples of learned communication in chimpanzees are a result of a ritualized
history of interaction between individuals. These gestures tend to be simple, ritualized shortcuts,
where a component of a behavior is used as a signal for the entire sequence of action. An example
is an infant touching its mother’s arm as a nursing request. This signal is a ritualized version of
an action that initially involved the infant moving its mother’s arm to get access to the nipple
(Tomasello, 1990). Communication involving more arbitrary relationships between signal and
meaning would be much more difficult to establish through such ritualization.

Even if reinforcement learning was functionally able to establish any given system of
communication, the timecourse involved still represents a severe limitation. Re-inventing the
wheel over and over again makes it difficult to find time for building a cart. It is difficult to
imagine, for example, a situation in which human language had to be re-negotiated for every pair

of individuals, rather than a pre-established conventional system being learned.

VIII.C Imitation is not enough

Researchers studying social learning in animals have concentrated on whether or not
animals can learn by imitating others, and have given less thought to the computational require-
ments of such learning (Heyes and Galef, 1996). The simulation work done here in chapter VI

shows that the kind of observational learning strategy used makes a critical difference. While
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simple imitation is sufficient to learn an existing system of communication under ideal conditions,
it 1s not capable of maintaining such a system against noise, or constructing it in the first place.
Because it lacks the benefit of a reinforcement signal, a purely observational learning procedure
must not simply imitate the behavior it observes, but also impose structure on it. Without
the imposition of such structure, imitators of ineffective communicative behavior will be equally
ineffective themselves.

This distinction, contrasting a learning mechanism that can only learn an existing com-
munication system and one that can also construct such a system, is extremely important. Pinker
(1994) argues that children do not simply learn their language, but reinvent it in each generation.
Strong evidence for this claim comes from work on creole languages (Bickerton, 1981; Bickerton,
1990). Children, when exposed to the relatively unstructured pidgin language that occur when
members of different language communities are thrown together, do not simply reproduce the
pidgin. Instead, they construct a much more richly structured creole language. Structure is
continually imposed at each generation. If it was not, language would degrade over time.

Given that simple imitation is not enough to account for socially transmitted systems
of communication, the simulation work I present could well have revealed some computational
requirement above and beyond what could be expected of most animals. Instead the requirements
seem to be rather modest. The basic principles of Hebbian learning happen to impose exactly
the kind of structure that is necessary for a population of interacting individuals to construct

and maintain a simple system of communication.

VIII.D Observational learning as a bottleneck in language

evolution

Most approaches to the evolution of language point to the evolution of syntax as the
primary barrier differentiating the communicative abilities of man and other species (Chomsky,
1990; Bickerton, 1990; Pinker, 1994). While the use of syntactic language certainly poses signifi-
cant challenges that must be overcome, another, more basic, bottleneck exists. Although virtually
every animal species uses some form of communication, very few of these systems are learned.
Innate communication is the norm, while learned communication is a very rare exception.

Given this, a serious problem in the evolution of language seems to be the ability to
utilize any form of learned communication system, be it syntactic or not. Because of the critical
importance of the ability to observe from others in learning a communication system, I argue that

a lack of observational learning contributes greatly to holding back the communicative ability of
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even highly social species. This claim is supported by the evidence from social learning studies
in animals. While human infants come into the world as virtual imitation machines (Meltzoff,
1996), it seems that the ability to learn by observing others is rare, if present at all, in other
animals.

Because humans appear to be the only animals that possess either observational learning
or syntactic language, it is difficult to assess the relative difficulty in achieving these skills. We
do not know how long it took our human ancestors to make the progression from simple learned
systems of communication to more complex, language-like systems. It is possible that the ability
to communicate by combining sequences of signals requires cognitive skill that other animals do
not have, significantly above and beyond the ability to learn observationally. That this might
be true 1s supported, perhaps, by the failure of non-human animals to use syntactic language in
reinforcement training studies.

It 1s also possible, however, that observational learning is the primary factor limiting
the evolution of language ability. Perhaps, once animals can learn to communicate by observing
others, the achievement of syntactic communication is an extension that is comparatively less
difficult. Recent work involving computational simulations of the origins of syntax support this
view (Batali, 1997; Worden, 1997; Kirby, 1997; Hutchins and Hazelhurst, 1997).

What, then, is unique about human language? It involves the use of syntactic structure
and it is learned by observing others. While most attention is generally focused on syntax, I argue
that the ability to learn observationally may be an equally, if not more important evolutionary

milestone.



Appendix A

Simulation software used

All of the simulations reported in this dissertation were carried out using custom-
designed software written in C4+.

The evolutionary simulations were done using an open-ended package, designed to allow
for use in a wide variety of studies. Creation of a new simulation involves specifying a genetic
representation and a procedure that implements a fitness function. All other operations are
carried out by general-purpose functions in the simulator. Because this software may be useful
to others, a public release is possible at some point in the future.

The simulations involving learning were done using two different simulation programs:
one implementing the statistical learning procedures, and the other implementing the network

learning procedures.

97



Bibliography

Ackley, D. and M. Littman (1994). Altruism in the evolution of communication. In R. Brooks
and P. Maes (Eds.), Proceedings of the fourth artificial life workshop, Cambridge, MA, pp.
40-48. MIT Press.

Axelrod, R. (1980a). Effective choice in the prisoner’s dilemma. Journal of Conflict Resolu-
tion 24, 3-25.

Axelrod, R. (1980b). More effective choice in the prisoner’s dilemma. Journal of Conflict
Resolution 24, 379-403.

Axelrod, R. (1987). The evolution of strategies in the iterated prisoner’s dilemma. In L. Davis
(Ed.), Genetic algorithms and simulated annealing, Chapter 3, pp. 32-41. Los Altos, CA:
Morgan Kaufmann Publishers, Inc.

Axelrod, R. and W. Hamilton (1981). The evolution of cooperation. Science 211, 1390-1396.

Batali, J. (1995). Small signaling systems can evolve in the absence of benefit to the information
sender. Unpublished manuscript.

Batali, J. (1997). Computational simulations of the emergence of grammar. In J. Hurford,
C. Knight, and M. Studdert-Kennedy (Eds.), Evolution of Language: Social and Cognitive
Bases for the Emergence of Phonology and Syntaz. Cambridge University Press.

Batali, J. and P. Kitcher (1995). Evolution of altruism in optional and compulsory games.
Journal of Theoretical Biology 175, 161-171.

Batali, J. and M. Oliphant (forthcoming). A model of simple communication systems.
Bickerton, D. (1981). Roots of language. Ann Arbor, MI: Karoma.
Bickerton, D. (1990). Species and language. Chicago: Chicago University Press.

Bienenstock, E., L. Cooper, and P. Munro (1982). Theory for the development of neuron
selectivity: Orientation specificity and binocular interaction in visual cortex. Journal of
Neuroscience 2, 32-48.

Billard, A. and K. Dautenhahn (1997). The social aspect of communication: a case study in the
use and usefulness of communication for embodied agents. In 1997 European Conference
on Artifictal Life, Brighton, England.

Blume, A., Y. Kim, and J. Sobel (1993). Evolutionary stability in games of communication.
Games and Economic Behavior 5, 547-575.

Boyd, R. and P. Richerson (1995). Why does culture increase human adaptability. Ethology
and Sociobiology 16, 125-143.

98



99

Bradbury, J. and S. Vehrencamp (forthcoming). Principles of animal communication. Sun-
derland, MA: Sinauer Associates.

Brandon, R. and N. Hornstein (1986). From icons to symbols: some speculations on the origins
of language. Biololgy and Philosophy 1, 169-189.

Burghardt, G. (1970). Defining communication. In J. Johnston Jr., D. Moulton, and A. Turk
(Eds.), Communication by chemical signals. Appleton-Century-Crofts.

Cangelosi, A. and D. Parisi (1996, January). The emergence of a ’language’ in an evolving
population of neural networks. Technical Report NSAL-96-004, Institute of Psychology,
National Research Council, Rome.

Charnov, E. and J. Krebs (1975). The evolution of alarm calls: altruism or manipulation?
American Naturalist 109, 107-112.

Cheney, D. and R. Seyfarth (1990). How monkeys see the world: Inside the mind of another
species. Chicago: University of Chicago Press.

Cheney, D. and R. Seyfarth (1996). Function and intention in the calls of non-human primates.
Proceedings of the British Academy 88, 59-76.

Chomsky, N. (1990). Language and mind. In Ways of communicating, pp. 56-80. Cambridge,
UK: Cambridge University Press.

Crain, S. (1991). Language acquisition in the absence of experience. Behavioral and Brain
Sciences 14, 597-611.

Daumer, K. (1958). Blumenfarbed wie sie die bienen sehen. Z. vergl. Physiol. 41, 49-110.
Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.

Dawkins, R. and J. Krebs (1978). Title. In J. Krebs and N. Davies (Eds.), Behavioral ecology:
an evolutionary approach. Blackwell Scientific.

de Saussure, F. (1959). Course in general linguistics. New York: McGraw-Hill.
Dennett, D. (1987). The intentional stance. Cambridge, Massachusetts: MIT /Bradford Books.

Di Paolo, E. (1996). An investigation into the evolution of communicative behaviors. Technical
Report Cognitive Science Research Paper 445, School of Cognitive and Computing Sciences,
University of Sussex.

Farrell, J. (1988). Communication, coordination and nash equilibrium. Economics Letters 27,

209-214.

Fogel, L., A. Owens, and M. Walsh (1966). Artificial Intelligence through Simulated Evolution.
New York: Wiley and Sons.

Gardener, B. and P. Gardener (1969). Teaching sign language to a chimpanzee. Science 163,
664-672.

Goodall, J. (1986). The chimpanzees of Gombe. Cambridge, MA: Harvard University Press.
Grafen, A. (1990). Biological signals as handicaps. Journal of Theoretical Biology 144, 517-546.
Grice, H. (1957). Meaning. Philosophical Review 66, 377-388.



100

Grim, P. (1996). Spatialization and generosity in the stochastic prisoner’s dilemma. BioSys-

tems 37, 3—-17.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding: Ti. feedback,
expectation, olfaction, illusions. Biological Cybernetics 23, 187-202.

Hamilton, W. (1963). The evolution of altruistic behavior. American Naturalist 97, 354-356.

Hamilton, W. (1964). The genetical evolution of social behaviour (i and ii). Journal of
Theoretical Biology 156, 1-52.

Hamilton, W. (1967). Extraordinary sex ratios. Science 156, 477-88.
Hauser, M. (1996). The evolution of communication. Cambridge, Massachusetts: MIT Press.

Hayes, K. and C. Hayes (1951). The intellectual development of a home-raised chimpanzee.
Proceedings of the American Philosophical Society 95, 105.

Hebb, D. (1949). The organization of behavior. New York: John Wiley & Sons.

Herman, L., D. Richards, and J. Wolz (1984). Comprehension of sentences by bottlenosed
dolphins. Cognition 16, 129-219.

Heyes, C. and B. Galef (1996). Social Learning in Animals: The Roots of Culture. San Diego:
Academic Press.

Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: The University
of Michigan Press.

Huberman, B. and N. Glance (1993). Evolutionary games and computer simulations. Proceed-

ings of the National Academy of Sciences (USA) 90(16), 7T715-7718.

Hultsch, H. (1993). Tracing the memory mechanisms in the song acquisition of nightingales.
Netherlands Journal of Zoology 43, 155-171.

Hurford, J. (1989). Biological evolution of the saussurean sign as a component of the language
acquisition device. Lingua 77, 187-222.

Hutchins, E. and B. Hazelhurst (1995). How to invent a lexicon: the development of shared
symbols in interaction. In N. Gilbert and R. Conte (Eds.), Artificial Societies: The com-
puter stmulation of social life. London: UCL Press.

Hutchins, E. and B. Hazelhurst (1997). The emergence of propositions from the coordination
of talk and action in a shared world. forthcoming.

Kim, Y. and J. Sobel (1995). An evolutionary approach to pre-play communication. Econo-
metrica 65(5), 1181-1193.

Kirby, S. (1997). Language evolution without natural selection: From vocabulary to syntax in
a population of learners. Manuscript in preparation.

Kohonen, T. (1989). Self-organization and associative memory (3rd ed.). Berlin: Springer-
Verlag.

Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-
crowned sparrow. Zeitschrift fur Tierpsychogie 22, 7T70-783.

Konishi, M. (1973). Locatable and nonlocatable acoustic signals for barn owls. American

Naturalist 107, 775-785.



101

Langton, C. (1989). Artificial Life. Redwood City: Addison-Wesley.

Levin, M. (1995). The evolution of understanding: a genetic algorithm model of the evolution
of communication. BioSystems 36, 167-178.

Lewis, D. (1969). Convention: A philosophical study. Harvard University Press.
Lewis, D. and D. Gower (1980). Biology of communication. New York: Wiley.

Lindgren, K. (1991). Evolutionary phenomena in simple dynamics. In C. Langton, C. Taylor,
J. Farmer, and S. Rasmussen (Eds.), Artificial life II, pp. 295-311. Redwood City, CA:
Addison-Wesley.

Lloyd, J. (1984). On deception, a way of all flesh, and firefly signaling and systematics. In
R. Dawkins and M. Ridley (Eds.), Ozford surveys in evolutionary biology, pp. 48-54. New
York: Oxford University Press.

MacLennan, B. and G. Burghardt (1994). Synthetic ethology and the evolution of cooperative
communication. Adaptive Behavior 2(2), 161-187.

Marler, P. (1955). Characteristics of some animal calls. Nature 176, 6-8.

Marler, P. (1957). Specific distinctiveness in the communication signals of birds. Behavior 11,

13-39.

Marler, P. (1970). A comparative approach to vocal learning: song development in white-
crowned sparrows. Journal of Comparative and Physiological Psychology 71, 1-25.

Maynard Smith, J. (1965). The evolution of alarm calls. American Naturalist 99, 59-63.

Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge Uni-
versity Press.

Maynard Smith, J. and G. Price (1973). The logic of animal conflict. Nature 246, 15-18.

Meltzoff, A. (1996). The human infant as imitative generalist: a 20-year progress report on
infant imitation with implication s of comparative psychology. In C. Heyes and B. Galef
(Eds.), Social Learning in Animals: The Roots of Culture, pp. 347-370. San Diego: Aca-
demic Press.

Moynihan, M. (1970). Control, suppression, decay, disappearance and replacement of displays.
Journal of Theoretical Biology 29, 85-112.

Nash, J. (1951). Noncooperative games. Annals of Mathematics 54, 289-295.

Nishida, T. (1987). Local traditions and cultural transmission. In B. Smuts, D. Cheney,
R. Seyfarth, R. Wrangham, and T. Strusaker (Eds.), Primate Societies. Chicago: University
of Chicago Press.

Nowak, M. and R. May (1992). Evolutionary games and spatial chaos. Nature 359, 826-829.

Nowak, M. and K. Sigmund (1992). Tit for tat in heterogeneous populations. Nature 355,
250-252.

Oliphant, M. (1994). Evolving cooperation in the non-iterated prisoner’s dilemma: The impor-
tance of spatial organization. In R. Brooks and P. Maes (Eds.), Proceedings of the fourth
artificial life workshop, Cambridge, MA, pp. 349-352. MIT Press.



102

Oliphant, M. (1995). Selfish genes and altruistic behavior. In P. Enrado (Ed.), Ezplorations
wn artificial life, pp. 32-35. San Francisco, CA: Al Expert Presents.

Oliphant, M. (1996). The dilemma of saussurean communication. BioSystems 37(1-2), 31-38.

Oliphant, M. (1997). Self-organized coordination in populations of interacting associative
networks. Forthcoming.

Oliphant, M. and J. Batali (1997). Learning and the emergence of coordinated communication.
Forthcoming.

Pepperberg, 1. (1987). Evidence for conceptual quantitative abilities in the african parrot:
Labeling of cardinal sets. Ethology 75, 37-61.

Pinker, S. (1994). The language instinct. New York: William Morrow.
Premack, D. (1971). Language in chimpanzee? Science 172, 808-822.

Pulliam, H. and C. Dunford (1980). Programmed to learn. New York: Columbia University
Press.

Rechenberg, 1. (1973). Evolutionsstrategie: optimierung technischer systeme nach prinzipien
der biologischen evolution. Stuttgart: Frommann-Holzboog.

Savage-Rumbaugh, E., K. Mcdonald, R. Sevcik, W. Hopkins, and E. Rubert (1986). Sponta-
neous symbol acquisition and communicative use by pygmy chimpanzees (pan paniscus).
Journal of Ezxperimental Psychology: General 115, 211-235.

Searcy, W. (1992). Song repertoire and mate choice in birds. American Zoologist 32, 71-80.
Sebeok, T. (1977). How animals communicate. Bloomington: Indiana University Press.

Seyfarth, R. and D. Cheney (1986). Vocal development in vervet monkeys. Animal Behavior 3/,
1640-1658.

Seyfarth, R., D. Cheney, and P. Marler (1980a). Monkey responses to three different alarm
calls: evidence for predator classification and semantic communication. Science 210, 801—

803.

Seyfarth, R., D. Cheney, and P. Marler (1980b). Vervet monkey alarm calls: semantic com-
munication in a free-ranging environment. Animal Behavior 28, 1070-1094.

Sherman, P. (1977). Nepotism and the evolution of alarm calls. Science 197, 1246-1253.
Skyrms, B. (1996). Evolution of the social contract. Cambridge University Press.
Smith, W. (1977). The behavior of communicating. Cambridge, MA: Harvard University Press.

Steels, L. (1996). Self-organizing vocabularies. In Proceedings of the V Alife Conference, Nara,
Japan.

Steels, L. and A. McIntyre (1997). Spatially distributed naming games. In Fourth Furopean
Conference on Artificial Life, Brighton, England.

Strusaker, T. (1967). Auditory communication among vervet monkeys (cercopithecus aethiops).
In S. Altmann (Ed.), Social Communication among Primates, pp. 281-324. Chicago: Uni-
versity of Chicago Press.



103

Tinbergen, N. (1952). Derived activities: Their causation, biological significance, origin and
emancipation during evolution. Quarterly Review of Biology 27, 1-32.

Tomasello, M. (1990). Cultural transmission in the tool use and communicatory signaling of
chimpanzees? In S. Parker and K. Gibson (Eds.), Language and intelligence in monkeys and
apes: Comparative developmental perspectives. Cambridge: Cambridge University Press.

Tomasello, M. (1996). Do apes ape? In C. Heyes and B. Galef (Eds.), Social Learning in
Anwmals: The Roots of Culture, pp. 319-436. San Diego: Academic Press.

Tomasello, M., J. Call, K. Nagell, R. Olguin, and M. Carpenter (1994). The learning and use of
gestural signals by young chimpanzees: a trans-generational study. Primates 35, 137-154.

Tomasello, M., B. George, A. Kruger, J. Farrar, and E. Evans (1985). The development of
gestural communication in young chimpanzees. Journal of Human FEvolution 14, 175-186.

Tomasello, M., D. Gust, and T. Frost (1989). A longitudinal investigation of gestural commu-
nication in young chimpanzees. Primates 30, 35-50.

Trivers, R. (1971). The evolution of reciprocal altruism. Quarterly Review of Biology 46,
35-57.

von Frisch, K. (1974). Decoding the language of the bee. Science 185, 663-668.

Von Neumann, J. and O. Morgenstern (1953). Theory of games and economic behavior. Prince-
ton: Princeton University Press.

Warneryd, K. (1993). Cheap talk, coordination, and evolutionary stability. Games and Eco-
nomic Behavior 5, 532-546.

Werner, G. and M. Dyer (1991). Evolution of communication in artificial organisms. In
C. Langton, C. Taylor, J. Farmer, and S. Rasmussen (Eds.), Artificial life II, pp. 659-687.
Redwood City, CA: Addison-Wesley.

West, M. and A. King (1996). Social learning: synergy and songbirds. In C. Heyes and B. Galef
(Eds.), Social Learning in Animals, pp. 155-178. San Diego: Academic Press.

Wexler, K. and P. Culicover (1980). Formal principles of language acquisition. Cambridge,
MA: MIT Press.

Whiten, A. and D. Custance (1996). Studies of imitation in chimpanzees and children. In
C. Heyes and B. Galef (Eds.), Social Learning in Animals: The Roots of Culture, pp.
291-318. San Diego: Academic Press.

Whiten, A. and R. Ham (1992). On the nature and evolution of imitation in the animal
kingdom: reappraisal of a century of research. In P. Slater, C. Rosenblatt, C. Beer, and
M. Milinski (Eds.), Advances in the Study of Behavior, Volume 21, pp. 239-283. New York:
Academic Press.

Wiley, R. (1983). The evolution of communication. In T. Halliday and P. Slater (Eds.), Animal
behavior. W.H. Freeman and Co.

Willshaw, D. (1971). Models of distributed associative memory. Ph. D. thesis, University of
Edinburgh.

Willshaw, D.; O. Buneman, and H. Longuet-Higgins (1969). Non-holographic associative mem-
ory. Nature 222, 960-962.



104

Wilson, E. (1965). Chemical communication in the social insects. Science 149, 1064-1071.
Wilson, E. (1975). Sociobiology: the new synthesis. Cambridge, MA: Harvard University Press.

Worden, R. (1997). The evolution of language from social intelligence. In J. Hurford, C. Knight,
and M. Studdert-Kennedy (Eds.), Evolution of Language: Social and Cognitive Bases for
the Emergence of Phonology and Syntaz. Cambridge University Press.

Yanco, H. and L. Stein (1993). An adaptive communication protocol for cooperating mobile
robots. In J. Meyer, H. Roitblat, and S. Wilson (Eds.), From Animal to Animats 2:
Proceedings of the Second International Conference on Simulation of Adaptive Behavior.
MIT Press.

Zahavi, A. (1975). Mate selection - a selection for handicap. Journal of Theoretical Biology 53,
205-214.

Zahavi, A. (1977). The cost of honesty (further remarks on the handicap principle). Journal
of Theoretical Biology 67, 603-605.



