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Design of Evolvable Computer Languages

Charles Ofria, Christoph Adami, and Travis C. Collier

Abstract—We investigate common design decisions for constructing a
computational genetic language in an autoadaptive system. Such languages
must support self-replication and are typically Turing-complete so as not
to limit the types of computations they can perform. We examine the im-
portance of using templates to denote locations in the genome, the methods
by which those templates are located (direct-matching versus complement-
matching), methods used in the calculation of genome length and the size
and complexity of the language. For each test, we examine the effects on the
rate of evolution of the populations and isolate those factors that contribute
to it, most notably the organisms’ ability to withstand mutations.

Index Terms—Auto-adaptive systems, computer languages, digital life,
evolvability, robustness.

I. INTRODUCTION

As current trends in the growth of computer hardware and software
continue, we face difficulties with the development of complex op-
erating systems and the programs designed to run under them. Com-
puter programs can comprise many millions of lines of code, yet are
intended to interact smoothly with other software, written indepen-
dently. These systems are becoming effectively untestable and their
behavior is unpredictable. New paradigms of code generation, testing,
and assembly are borrowing principles from nature, by interpreting
living organisms as complex machines that are constructed from—and
operating on—“software” (the genome) several billions of lines long,
assembled from multiple sources, and operating in a robust and fault-
tolerant manner.

Early experiments in genetic programming [8] and evolutionary
programming [5] focused on the evolution of tree-like structures in
which each “atom” already had a functionality related to the problem
to be solved. Also, genetic algorithms [6] can be viewed as a tool
to evolve specialized problem-solving code. In both instances, the
brittleness of the coding—the tendency of evolved code to easily break
under mutations—seems to go hand-in-hand with the specialization
of the atomic instructions used and, therefore, as the price to pay to
ensure fast adaptation.

Unlike traditional genetic programming and genetic algorithms, in
systems of self-replicating computer codes (autoadaptive systems) ro-
bustness to mutations is intrinsically selected for, as high-fidelity infor-
mation transmission equates to having more living offspring in the next
generation. All of the systems discussed in this paper consist of popu-
lations of computer programs coded in Turing-complete programming
languages and made to exist in a noisy environment. The individual
programs must produce copies of themselves (self-replicate) to survive
over long periods of time. Errors in replication are akin to mutations
in biological systems and drive the evolutionary process. The under-
lying genetic language used in any of these systems is of critical im-
portance, as it shapes the range of mutational effects that are possible

Manuscript received November 9, 2000; revised December 26, 2001. This
work was supported in part by Microsoft Research and in part by the National
Science Foundation under Award PHY-9723972 and Award DEB-9981397.

C. Ofria is with the Department of Computer Science and Engi-
neering, Michigan State University, East Lansing, MI 48824 USA (e-mail:
charles@alife.org).

C. Adami is with the Jet Propulsion Laboratory, California Institute of Tech-
nology, Pasadena, CA 91109 USA.

T. Collier is with the Division of Organizmic Biology, Ecology, and Evolu-
tion, University of California at Los Angeles, Los Angeles, CA 90095 USA.

Publisher Item Identifier 10.1109/TEVC.2002.802442.

in the system and determines the ways in which genetic space can be
exploited [10].

Evolution of fault tolerance as well as mutation sensitivity has been
considered previously in the context of the evolution of robot con-
trollers, where fault tolerance was explicitly included in the fitness
function [15]. Mutational robustness has been explored independently
by van Nimwegenet al. [16] and the concept of “neutrality” discussed
there is similar to the one used here.

In this paper, we are taking initial steps in examining what charac-
teristics are required to develop a genetic language that is flexible in
the computations it can perform (computationally universal in both a
theoretical and practical sense) and is highly evolvable. Rather than
settling for a single instance of such an “artificial chemistry,” we ex-
plicitly test elements that influence the adaptability of programs using
the avida platform (see below). In particular, we study the role that evo-
lution plays in generating populations of programs that react to noisy
environments in a robust and predictable manner, while maintaining
evolvability.

II. EXPLORING ARTIFICIAL CHEMISTRIES

Isolating those aspects of an instruction set’s design that are directly
responsible for evolvability is of fundamental importance if dedicated
evolvable instruction sets are to be designed. The original experiments
with populations of self-replicating programs performed by Rasmussen
[12] in the Coreworld system seemed to rule out evolution because
these programs turned out to be extremely fragile: self-replicating dig-
ital organisms written in the redcode language could not survive even
miniscule amounts of stochasticity in the replication process, leading
to “dying” populations. Thus, redcode represents a computationally ef-
fective chemistry that, however, does not survive mutations (i.e., it is
extremely brittle).

A critical step was taken by Ray [13], who recognized that the brit-
tleness of redcode is due primarily to theargumentedinstruction set:
independent mutations in the instruction and its arguments are unlikely
to lead to a meaningful combination. In experiments with a version of
redcode designed to run on the avida system we determined that, in
fact, over 99.7% of all nontrivial1 mutations are deleterious in this ar-
chitecture, making evolvability in this language very limited. Those
few mutations that were not deleterious were almost entirely neutral.
After the first 70 generations, not a single mutation in any of the 100
trials was beneficial and all trials progressed for at least 2000 genera-
tions without significant adaptation.

These experiments have, however, shown that information can be
preserved in large populations if programs have protected memory.
When mutations are applied to an arbitrary population without any such
protection, a single broken organism may write to portions of hundreds
of others before it dies, effectively killing each of them and, in time,
bringing the entire population to extinction.

Memory protection and an argument-free instruction set led to
the first successful evolutionary experiments with an assembly-like
language in Ray’s tierra world. Rather than using arguments for direct
addressing, Ray’s instruction set relied on patterns of instructions
whose execution has no effect [no-operation (nop) instructions] for
relative addressing. Such instructions play a role analogous to untrans-
lated binding sites in biochemical code (e.g., promoter sequences).
Self-replicating programs survive well in the tierra world and can
adapt to user-specified fitness landscapes [1] and grow in complexity
[3].

1A trivial mutation is defined as one that affects only nonexecuted portions
of code.
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Fig. 1. Genome of a digital organism and its virtual CPU, with registers,
buffers, and stack architecture. Each genome and CPU occupies a position on
the lattice. Genomes are shaded according to genotype.

The artificial chemistry of the avida world2 (see, e.g., [2]) differs
significantly from the coreworld and tierra systems. In avida, each pro-
gram has a natural memory protection as it occupies a unique location
on a two-dimensional lattice that other programs cannot directly ac-
cess.3 (see Fig. 1). Consequently, interactions between programs are
local, constrained to neighboring lattice sites, and organisms cannot
corrupt the genome of other organisms by overwriting, as happens in
coreworld. This feature contributes significantly to the stability of pop-
ulations in this world, as it ensures that a program’s fidelity does not
depend on its neighbors. Avida also features a much more complex
environment than tierra, and the organisms evolve to reflect this com-
plexity. From a simple ancestor, adapted programs readily emerge, with
increased code lengths that accommodate the new “genes” (sequences
of instructions) used to take advantage of the environment [3]. Because
length changes are important in the evolution of complexity, we also
tested the size-change mechanisms allowed for in the various instruc-
tion set.

We have systematically tested (within the avida system) the
influence of design choices on evolvability by constructing several
chemistries:

Set I is the standard instruction set, with 28 instructions and min-
imal redundancy. It has three nop instructions (nop-A , nop-B , and
nop-C ) that are used to modify (i.e., act in conjunction with) other in-
structions. As there are no explicit arguments in the default instruction
set, this is the only way in which instructions can explicitly influence
the behavior of other instructions. Such instructions naturally lead to
epistasis in the code. The nop instructions can also be used to construct
patterns of instructions called templates that can be searched for (rela-
tive addressing). Each pattern of nop instructions has a complementary
pattern, obtained by replacingnop-A by nop-B , nop-B by nop-C ,
andnop-C by nop-A (cyclic complementarity).

This set contains four flow-control instructions. Thejump-f and
jump-b instructions move the instruction pointer to a complement
template, i.e., the nops that follow the jump instruction are read and
converted to a complement pattern, which is located in the forward or
backward direction (depending on which of the instructions is used).

2The avida software (including source code) is freely available at
http://dllab.caltech.edu.

3The instruction pointer cannot execute or overwrite code of neighboring or-
ganisms except in special chemistries that explicitly allow for this. Thus, the
phenomenon of parasitism [13] is excluded in the present experiments.

Thecall instruction uses the templates in a similar fashion, but will
push the address of the instruction that directly follows the initial tem-
plate onto the stack. Thereturn instruction will pop the first number
off of the stack and jump back to the address associated with it.

The set also contains three conditionals (if-n-equ , if-less ,
andif-bit-1 ) that will skip the following instruction if the condition
they are testing for is not met. These can be combined with the flow
control statements to give the digital organisms a significant ability to
regulate their execution.

For basic mathematics, the default instruction set supplies the organ-
isms with seven instructions:shift-r , shift-l , inc , dec , add ,
sub , andnand , all of which manipulate numbers in the registers.

Four instructions are for management of internal state, allowing the
organisms to control how numbers are moved around within their CPU.
Thepush , pop , swap-stk instructions all work with the stacks and
swap will exchange the contents of two registers.

Four sensory instructions are included so that the organisms can
obtain information about themselves and their environment. The
search-f and search-b instructions will find templates within
the genome (in the forward or backward direction) and return their
distance to the search command into a register. Theget and put
instructions will read numbers out of the environment or write them
back in, respectively.

The final three instructions are all specific to the replicative process
for the organisms. First, they mustallocate memory space to write
their offspring into. Then they must use thecopy command once on
each instruction to construct the offspring (typically by going through
a “copy loop”) and, finally, they mustdivide to release the offspring.

Set II tests the importance of cyclic complementarity of nop pat-
terns (defined in Set I). This direct-matching set is identical to standard
except that complementarity is direct rather than cyclic (i.e.,nop-A
matchesnop-A , notnop-B , etc.) The size of this set (the number of
different available instructions) is identical to standard.

Set III tests the rationality for including nop instructions at all. The
no-nop set lacks all three nop instructions entirely. The instructions
jump-f , jump-b , andcall all require a value in the BX register (as
opposed to a template) that set the distance to be jumped. Additionally,
thesearch-f andsearch-b instructions are removed. Finally, in-
stead ofpush andpop , the register-specificpush-AX , push-BX ,
push-CX , pop-AX , pop-BX , andpop-CX are used, for a total of
27 instructions in this set.

Set IV is designed to study the mechanism of length modification on
evolvability. It contains all of the instructions from standard, with the
single addition of thememsize instruction. In all of the other sets, an
organism must calculate its own genome length (memory size) before
they can allocate new memory to copy their offspring into. Often, this
size-calculation mechanism is fragile, forcing the organism’s lineage
to become stuck at a fixed genome length, severely limiting further
evolution. Thememsize instruction provides a single instruction that
will return the genome length without complex self-inspection, making
robust length changes possible. The size of this set is 29.

Set V tests the influence of instruction set size on the dynamics of
evolution. This long set comprises 84 unique instructions, with no
additional functionality beyond the standard set. The new instructions
are all variants of the normal instructions. For example, from the
conditionals provided in the standard set, any numerical comparison
can be constructed. However, the long set contains the additional
conditionals if-equ , if-grt , if- >=, if- <=, if-equ-0 ,
if-not-0 , if-grt-0 , if-less-0 , if- >=-0 , if- <=-0 ,
if-A! =B, if-B! =C, andif-A! =C.

For each experiment in each chemistry, we test the robustness to
mutations of any program that is ever most abundant (dominant)
in the population. This is done by iterating through every possible
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Fig. 2. (a) Genome robustness averaged over the dominant genotypes at the end of 100 trials for each of the five chemistries, with error bars indicatinga confidence
interval around this value, using standard error. (b) Genome length for the same genotypes, with error bars depicting the standard deviation across trials.

single-step mutation and examining each resulting organism in an
isolated test-CPU to determine its relative fitness as compared to the
wild type. We record the fraction of mutations that fall into each of the
categories of fatal, deleterious, neutral, or beneficial. In practice, all
deleterious mutations prove fatal for the mutant as it is out-competed.
Most beneficial mutations turn out to be fatal for the rest of the
population, as the edge in replicative ability spells doom for inferior
genotypes in this single-niche environment, yet the percentage of
advantageous mutations is so small that no statistical significance can
be attributed to it. Consequently, we can classify almost all mutations
as either neutral or effectively fatal. In this case, an obvious measure
of robustness is the fractionf� of single mutations of a genome that
are neutral or beneficial, i.e.,

f� =
N�

(D � 1)`
(1)

whereN� is the number of all neutral or beneficial single mutants of
the wild type,D is the size of the instruction set, and` is the genome
length.

III. RESULTS

Due to the contingent nature of evolution, trials with identical condi-
tions but different random number seeds can—and do—lead to wildly
different outcomes. Here, we have the opportunity to repeat such trials
many times (i.e., multiple replicas) to gain statistical significance and
extract global characteristics that set one chemistry apart from another.
We focus on two such measures: the fraction of neutral or beneficial
mutations to measure robustness [see Fig. 2(a)] and the average fitness
[relative replication rate with respect to the ancestor (see Fig. 3)] as a
function of time to measure evolvability. As in previous experiments
[3], [9], the programs adapt to a world in which all binary logical op-
erations on up to three random numbers (provided by the environment
when the digital organisms issues aget instruction and evaluated on a
put instruction) are rewarded with bonus resource (CPU time), which
effectively increases the replicatory speed of those organisms that de-
veloped the code necessary to trigger it.

For each of 100 replicas in each of the five chemistries,4 the robust-
ness measurement is obtained by extracting the dominant genotype at
the end of each trial and examining all possible one-point mutations in
order to calculate the fraction of them that are nondetrimental. These
values are then averaged across the replicas of a particular set to pro-
duce Fig. 2(a).

The robustness of the initial ancestor used in these experiments is
very low at 0.005 (no doubt due to the clumsy human design), but evo-
lution has moved it to the levels shown. We can see that there are signif-
icant differences in robustness between chemistries, and that this mea-
sure seems to be strongly correlated to sequence length [see Fig. 2(b)].

The robustness of a genome can be thought of as the fraction of its
length that is impervious to mutations and thus carries no information.
The amount of information about the environment the sequence evolves
in can then be approximated by the sequence length minus the number
of neutral instructions [3]. Thus, learning events (evolutionary transi-
tions in which information is being acquired) decrease robustness if the
sequence length stays constant, while size increases without commen-
surate acquisition of information increase robustness [3]. The mecha-
nism by which the sequence length changes, thus, is crucial for both
robustness and in turn evolvability [4], [7].

In three of the chemistries (sets I, II, and V), length changes are pos-
sible only as long as the program calculates its length by finding its
end (marked by a pattern ofnop instructions), which is the algorithm
used by the ancestral program. Any insertions or deletions that occur
in such an organism will be measured properly, and thus accounted for
in the offspring’s memory allocation. If, however, length is calculated
by some other means, such as a mathematical operation that produces
a result equal to the length, then this calculation is not likely to change
(and certainly not commensurately) when mutations have led to an al-
tered length.

The chemistry in which length changes are easiest is set IV, as it
contains a single instruction (mem-size ) that directly returns the se-
quence length without self-inspection. Ifmem-size is used for length
calculation (as was the case in 96 of the 100 trials in set IV) insert
or delete mutations become more neutral and length changes occur as
needed. The opposite extreme is set III in which no nop instructions are

4Each population of 60� 60 programs was allowed to adapt for 50 000 up-
dates subject to a mutation rate of 7.5� 10 errors per instruction copied,
as well as a 5% probability for a single insert or delete mutation per gestation
cycle.
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Fig. 3. Fitness averaged over 100 trials for each of the five chemistries, as a function of time (in updates).

available rendering template matching impossible. For the experiments
with this no-nop set, the standard ancestor must be replaced by one in
which the genome length is explicitly coded into the sequence. Con-
sequently, changes in length are rare as they involve significant code
rearrangements.

Instruction set II differs from the standard set only in that the search
for a pattern of nop’s seeks the pattern itself rather than its complement,
as described earlier. This seemingly innocuous change leads to impor-
tant differences in the evolutionary history. In the ancestral organism,
two pairs of patterns are required for correct functioning: a pattern at
the initial point of the search and its paired pattern (either a comple-
ment or direct match) to mark the end of the genome and a second
pair framing the copy loop of the organism. Since, in set I, the patterns
in each pair must be different, a total of four distinct patterns have to
be used. As such, they are cumbersome to maintain and with comple-
mentary template matching, we have witnessed that only 18% of the
replicas retain a flexible size-calculation structure. In most others, it
is replaced by one in which the organism’s search for its end returns
the location of the copy loop instead, then finds its own length (“acci-
dentally”) by manipulating this number, typically by doubling it. This
construct can require significantly fewer instructions and is therefore
selected for as it will decrease the organism’s replication time. While
this is an effective way to calculate program length, it is also brittle:
length changes can occur only if several instructions are changed in
a commensurate manner. As a consequence, the standard set develops
difficulties in adjusting the program’s length the moment the new al-
gorithm is locked in. On the contrary, in set II, the original algorithm is
maintained more frequently (in 29% of the replicas) because the direct
matching of templates tends to avoid such misdirected searches and is
therefore more difficult to replace.

The differences in the way length changes occur is reflected in both
evolvability and robustness. First, robustness is inherently higher for
chemistries that lead to the development of junk code, i.e., loci that do
not code for information [see Fig. 2(a)]. These are chemistries I and II
where length changes occur frequently, but the direct-matching chem-
istry (set II) holds the edge after 20 000 updates when 72.5% of the
trials in set I have locked in a nonrobust algorithm for length calcu-
lation (as compared to only 58% of set II) leading to problems in the
acquisition of more information. In fact, 44.5% of the trials in set I lock
in within the first 2000 updates (before there is much opportunity for
any computational tasks to be acquired), as compared to only 3% of set
II. If these early lock-ins are removed, the final average fitness of set

I is 74.76, greater than (though statistically equivalent to) the average
fitness of set II, 63.13.

The chemistry that is deprived of the possibility of relative ad-
dressing offered by templates of nop instructions (set III) is extremely
inflexible: length changes are infrequent [indicated by the small
lengths with a very low standard deviation, as shown in Fig. 2(b)],
leading to poor adaptation. In that respect, it is more akin to the
redcode chemistry mentioned earlier.

Populations in set IV change genome length most easily and use this
ability to eliminate junk code. Consequently, its robustness is lower
except for the early stages of evolution where, in fact, it increases to its
final robustness level almost immediately giving it a significant head
start in information acquisition (data not shown).

Set V, which consists of 84 instructions, lags in fitness. We attribute
this to the smaller rate of advantageous substitutions (due to the larger
set of instructions to choose from), while the versatility of the instruc-
tions seems to result in smaller sizes and less junk code.

IV. CONCLUSION

We have examined five artificial chemistries with respect to their
evolvability and found that the differences among them are attribut-
able mainly to their robustness to mutations and the manner in which
genome-size changes occur. While fitness continues to increase during
the evolutionary process, the robustness (on average) stays constant,
suggesting that the adaptive process has led the population to a “com-
fortable” level that avoids evolutionary dead ends.

Even though the artificial chemistries examined here (and the arti-
ficial physics represented by the avida world) may appear ad hoc, we
believe that some of the results we have seen (such as the tendency
of evolvability to go hand in hand with mutational robustness or neu-
trality) to be universal. This conviction stems from work unrelated to
the investigation of instruction set design, where avidian digital or-
ganism were used to study standard problems in evolutionary biology
[3], [9], [11], [17] and appeared to give results at least as independent
from the physics and chemistry it is framed in as experiments with bac-
teria as opposed to, say, flatworms, are thought to be.

It is clear that the present paper is not an exhaustive analysis of fac-
tors affecting the evolvability of computer programs, but rather the first
systematic one (Ray [14] examined four distinct instruction sets, but
with only a case study of each). We hope that further studies of this
issue within the avida world will ultimately lead to design decisions
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for an evolvable instruction set in a custom setting that will permit
the large-scale evolution of useful, robust, and fault-tolerant, computer
code.
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