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Understanding developmental and evolutionary aspects

of the language faculty requires comparing adult

languages users’ abilities with those of non-verbal

subjects, such as babies and non-human animals.

Classically, comparative work in this area has relied on

the rich theoretical frameworks developed by linguists

in the generative grammar tradition. However, the great

variety of generative theories and the fact that they are

models of language specifically makes it difficult to

know what to test in animals and children lacking the

expressive abilities of normal, mature adults. We

suggest that this problem can be mitigated by tapping

equally rich, but more formal mathematical approaches

to language.

Modern linguistics is dominated by an approach known as
the generative paradigm. Generative theory is built
around several core ideas about the nature of language
and its study. One important cornerstone of the approach
since its inception has been the way in which it envisions
building theories of human language. Under the genera-
tive framework, researchers construct clear, precise
models, called grammars, to describe the mature speaker’s
knowledge and use of language. These models are often
constructed using tools from logic, mathematics and the
theory of computation. The advantage of constructing
such precise, and often mathematically formalized models
is that the consequences of modeling decisions can be
deduced directly from assumptions [1].

One of the most important questions for generative
linguists and other language scientists is what biological
features endow our species with its linguistic ability. Often
this is expressed as the problem of determining the innate
resources the child has for acquiring language [2]. It can
also be reframed as an evolutionary question: Do we share
some, all, or none of the key components of the language
faculty with other species, and in cases where we are
uniquely endowed as a species, did these capacities evolve
for language in particular or for multiple domains of
cognition [3,4]? Clearly such questions about language
development and evolution require comparing normal
adult human language abilities with the corresponding
(if any) abilities in non-verbal subjects such as babies and
animals.
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However, there are several challenges for the compara-
tive experimentalist interested in turning generative
theories into testable empirical predictions. First, there
are a great number of generative theories of language to
choose from (e.g. just in the realm of syntactic theory [5–9]).
To varying degrees these theories have their own nota-
tions, their own terminology, and their own analogies with
other mathematical and scientific theories. Moreover,
because these theories characterize brain computations
and systems of knowledge at a very high level of
abstraction it is often the case that theories with radically
different appearances can ‘do the same work’ in not-so-
obvious ways (e.g. see [10]) The choice of which com-
ponents of which theories to explore in non-verbal subjects
is far from trivial.

Second, generative theories are built to account for the
knowledge and use of normal human adult language. As
such it is not always clear what they have to say about the
abilities of pre- or non-linguistic subjects, such as human
infants and non-human animals. It is therefore important
to isolate aspects of generative theories that can be
plausibly expected to show up in the non-verbal abilities
of test subjects.

The subfield of mathematical linguistics offers a
number of tools that allow abstract theories of language
and mental computation to be compared and contrasted
with one another (e.g. see [11]). We suggest that formu-
lating comparative hypotheses with enough precision to
make use of these tools can reduce some of the difficulties
mentioned above. We use one set of tools from mathe-
matical linguistics, formal language theory, to illustrate
the potential power of mathematical approaches, sketch-
ing its basic concepts and discussing how they were used
in one empirical example from the animal literature. We
fully acknowledge that this is an area with varied opinion
concerning the merits of different mathematical
approaches, and the theories that back them. Brevity,
however, forces us to be selective, focusing on a small
corner of this potentially broad research space.
Formal language universals

One of the major goals of linguistics is to discover universal
or near universal aspects of linguistic structure. Many such
phenomenahavebeen uncovered.These include things such
as the way in which the presence of words in a sentence
depends on the presence of other words [12], the distinction
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between word positions which must be filled versus those
which are optional [7], and the usefulness of constructing
grammars that consist of simple structure building oper-
ations and rich sets of basic structures [5,6,8,13–17]. These
also include statistical tendencies such as word order and
other typological universals [18,19].

There are other universals, which are so basic that they
are implicit in every linguistic theory and become most
obvious when we compare language with other animal
communication systems. These include the fact that
language is built up from a set of reusable units, that
these units combine hierarchically and recursively, and
that there is systematic correspondence between how units
combine and what the combination means [15,20–23].

We might expect such universals to be good targets in
our search for similarities and differences between human
adults and non-verbal subjects. However, even though
many such universals are inherent in all linguistic
theories, they are often encoded in very different ways in
different theories and it is not always clear how they can
be operationalized in a way that makes sense for non-
verbal subjects (see Box 1).
Box 1. The multiplicity of linguistic theories

The great number of linguistic theories reflects the degree to which

even foundational issues have been debated in the field over the years.

These debates go right to the core of the discipline and even concern

the very nature of language as a phenomenon. Even if we restrict

ourselves to generative theories, there is an enormous variety of

theoretical viewpoints. For instance, Figure I shows three views of

sentence (syntactic) structure chosen to illustrate the way in which

different theories use different primitive notions to analyze the

structure of the sentence ‘John says that Fred loves Mary ’. All three

structures to some degree capture the same underlying linguistic

intuitions but even at a glance they can be seen to be quite different.

Limiting ourselves further to theories that have received mathemat-

ical treatment we can discern several major streams of formalization.

Very early in the history of generative grammar connections were
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Figure I. Three ways of depicting the syntactic structure of the sentence ‘John says that

the dependencies between the words of the sentence [12]. (b) A traditional phrase stru

derivation based on combinatory categorial grammar that combines elements of the
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Take, for example, the notions of constituency and
dependency. These have been argued to exist in some form
in every linguistic theory [12,24]. Dependency refers to the
way that the presence of words in a sentence depends on
other words being present in the same sentence. For
instance, the definite article ‘the’ cannot occur in isolation
without a corresponding noun. Constituency refers to the
way that a sentence can be divided up into parts that can
in turn be divided into parts, and so on, hierarchically,
until we reach the level of words: for example, the familiar
division of sentences into subject and predicate, the
further division of predicates into verb and direct object,
and so on. The two notions are closely related. For
example, it is often the case that a constituent consists
of exactly of a word and the words that depend directly on
that word. However, different theories often take one or
the other notion as being ‘more primitive’, defining one in
terms of the other (see Box 1 for examples).

Given that the most basic notions of one theory may be
so different from the basic notions of another, it is difficult
to decide what phenomenon to look for in non-verbal
subjects. For example, suppose that we find hierarchical
made with the theory of automata (e.g. [32]) and this has been

developed extensively since. Around the same period the first definite

links were made between derivation in the linguistic sense and the

form of logical proofs [16,33]. More recent theoretical focus on

theories as sets of constraints have led to the application of another

major branch of logic, model theory, to linguistic problems [34,35].

The resource complexity of solving various linguistic problems has

been studied for quite some time [29,36]. Since the early fifties there

has been an interest in applying statistics and probability theory to

language and over recent years this has merged to a great extent with

more discrete models of language [37,38]. Approaches to language

often use tools from abstract algebra [39]. Finally, the field known as

‘formal language theory’ is perhaps the best example of an active area

of mathematical research whose origins actually lie in linguistics [27].
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Fred loves Mary ’. (a) An analysis by means of a dependency graph, emphasizing

cture tree, which gives center stage to the linguistic notion of constituency. (c) A

first two [16,31].
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structure in bird song. Is this an example of analogous
constituency, or is it better described by dependency, or is
the question moot because they are equivalent?

Mathematical approaches to linguistics

The importance of mathematical formalization is that it
allows us to think about concepts that we don’t under-
stand well, such as dependency and constituency, in terms
of concepts that are well understood, such as Turing
machines, sets, and functions. Usually, formalization
proceeds by first defining a concept we think is important
in the language of a well-understood branch of mathe-
matics such as set theory or logic. Once we have this
definition we can use mathematical principles to deduce
exact consequences of our definition, and then assess how
well these capture reality.

An example of this process concerns a well-known
formalism known as the context-free grammars. Chomsky
originally created this formalism by adapting some classic
work in logic and the foundations of mathematics to
model the notion of immediate constituent analysis – the
idea that sentences can be hierarchically decomposed into
parts until you get to the level of words [25]. One
important consequence of the mathematical formalization
of context-free and other types of grammars was, however,
that it introduced a concept – the formal language – that
allowed a wide variety of grammars to be compared with
one another. It also enabled Chomsky to put an end to an
important debate at the time, showing that context-free
grammars can capture linguistically relevant generaliz-
ations that are simply not possible with finite-state
grammars [26]. The clarity with which finite-state
approaches to language were shown to be inadequate
would have been impossible without mathematical for-
malization. This case demonstrates how mathematical
approaches are capable of resolving controversies con-
cerning the computational resources needed by adequate
theories of natural language. It is our hope that such
insights into the precise nature of the resources needed for
language will allow us ultimately to compare the compu-
tational abilities of adult humans with possible corre-
sponding abilities in other populations.

An example: formal language theory

Researchers have appealed to many different branches of
mathematics and computer science to formalize linguistic
theories, yielding a wide variety of useful tools for
comparing them. As an illustrative example, we focus
here on formal language theory [27] (see Box 1).

The two core concepts of formal language theory are the
‘formal language’ and the ‘class’ of formal languages. A
formal language is a simple, idealized model of a set of
sentences built up from some basic vocabulary. (We refer
to ‘sets of sentences’ and ‘vocabulary’ as an aid to the
reader in conceptualizing the elements of formal language
theory, although the symbols that make up the vocabulary
in a formal language can just as easily refer to phonemes,
morphemes or, in fact, any level of linguistic analysis.)
A class of languages is a set of formal languages satisfying
some property. A property in this sense can be thought of
as a statement about the languages that is true for all the
www.sciencedirect.com
languages in the class and none outside of it. In a simple
toy example, we might define the property ‘All sentences in
the language have exactly four words’. This gives us a
class: specifically, the set of all possible sets of sentences
where each sentence has exactly four words.

Usually we are concerned with classes of languages
defined by reference to a type of grammatical system, for
example, ‘All the languages that can be described by a
context-free grammar’. The important thing about this
kind of definition is that it links a group of models, context-
free grammars, in this case, with the actual sets of sentences
they can define. Other grammars may be very different from
context-free grammars in terms of notation and primitive
elements, but they too can be construed as defining sets of
sentences. As a result, classes of languages provide a point of
comparison for even very different models.

We prove that two kinds of grammar are different by
showing that their associated classes are not identical. We
demonstrate that they are the same by showing that their
classes contain exactly the same languages.

In short, by giving us a way to study abstract gram-
matical concepts in terms of actual sets of sentences,
formal language theory provides a way of comparing
between linguistic theories that is less dependent on
choices of notations and primitive concepts. Moreover,
because in many experimental settings, such as those that
use artificial languages (see Box 2), it is the actual
sentences of a language that we have access to, formal
language theory gives us a way to connect theory and
practice.

An application of formal language theory

A recent set of experiments by Fitch and Hauser (here-
after F&H) provides an example of how formalization can
be useful in comparative study of language [28]. Below we
describe the steps followed in applying formal language
theory to a comparative question in this study as a general
example of how this might proceed.

F&H report a study looking at grammatical compu-
tation in humans and cotton-top tamarin monkeys. They
use a methodology based on artificial languages in a
familiarization-discrimination paradigm (see Box 2).

Step 1: Choosing a property of interest

The main tool of formal language theory is the class of
languages, defined with respect to some property. In a
study comparing human and non-human cognitive
capacities, the goal is to choose a property that dis-
tinguishes humans from other species, in this case,
humans and tamarins. F&H selected hierarchical phrase
structure. In linguistic theory, hierarchy is used to
describe how the elements of a sentence can be recom-
bined to form an unbounded number of new sentences.
Hierarchical structure is a ubiquitous feature of natural
language syntax and F&H conjecture that it might be one
of the uniquely human components of the language
faculty, though not necessarily unique to language.

Step 2: Formalization

Before a property can be tested rigorously we must be
able to deduce which languages are in the class in
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Box 2. Experimental methods in language development and evolution

In recent years, there has been much renewed interest in experimen-

tation with a variety of methods using artificial languages [28,40–46].

An artificial language is a set of sentences, often constructed from

nonsense syllables, which has some property of interest to researchers.

There have been several different experimental paradigms employed

using artificial languages, but in general they use the following

procedure. First subjects are exposed to some artificial language that

is derived from some rule or principle. Next, subjects are given some

task that requires that they discriminate between exemplars that are

either consistent or inconsistent with the language they were exposed

to. The use of artificial languages has the advantage of allowing the

researcher to control carefully for the structure and information

present in the language and focus specifically on phenomena of

interest. These advantages are essential for testing human infants and

non-human animals.

Formal languages can be used as models of the artificial languages

in our experiments. Because formal languages can also be used as

models of natural language this allows us to connect experiments with

linguistic theory. Note however, that there are several challenges to

this approach. Often formal languages of interest are infinite. Of

course, the actual sets of sentences that we use in any given

experiment are finite. In practice this means that we must test

generalization cases. In these cases we test previously unheard

items that require the underlying rule to judge correctly.

Figure I illustrates the difficulties inherent in testing finite sets of

sentences. The finite set of sentences, 1, is contained in an infinite

number of other languages. Shown here are four. Set 2 is the balanced

a and b language: anbn. Set 3 is the language where any number of a’s

are followed by any number of b’s: ambw. Set 4 might be called the

‘mirror language’ where each a in the first half of the sentence is

replaced with a b in the second half and vice versa: wwM. Finally, Set 5,

the set of all sequences, is also a valid hypothesis.
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Figure I. Testing finite sets of sentences (see text for details).
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question and which are not. To do this we must
formalize the property. F&H do this using formal
language theory. One implication of hierarchical struc-
ture is that a grammar with this property should, in a
general sense, be able to generate nested components of
sentences within each other without restriction. How-
ever, this implies that any procedure able to check if
the subparts of a sentence are correct may have to
remember an indeterminate amount of information
about what it has seen so far while other parts are
checked first. This property of hierarchical structures is
known as ‘unbounded memory’. The distinction between
languages that require bounded and unbounded mem-
ory is mirrored by a distinction from formal language
theory between so-called finite-state grammars and
more powerful formalisms. F&H formalize structure
using this distinction.
www.sciencedirect.com
Step 3: Finding a set of sentences with the property and a

set without

Following steps 1 and 2, we must choose particular
languages to test. If test subjects can distinguish the two
sets, then the target property describes some aspect of
their computational ability. It is important here to find
sets of sentences that are distinguished only by the
property in question. To test their hypothesis, F&H
selected two sets of sentences: anbn and (ab)n. Figure 1
illustrates this choice. The first column shows several
strings drawn from the first language: the ‘balanced a’s
and b’s’ language. A variety of procedures could be used to
check if a sentence is a member of this language. For
example, the subject could check that each a matches with
a b in a nested fashion (i), or they could check that they
match in a linear fashion as in (ii). Another possibility is
that they keep track of some property of the entire
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a a

a a a  b b b

a a a a   b b b b

a

a b  a b  a b a b

?? ??? ?=

(i)

(ii)

(iii)

TRENDS in Cognitive Sciences 

b

a ba ba b

a bb b

Figure 1. Strategies to check whether sentences are members of the formal

languages anbn and (ab)n (see text for details).
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sequence of a’s for example, by counting them and then
seeing whether the cardinal value matches the b’s (iii).

The important difference between the two languages is
shown in the second column: all strategies the subject uses
to recognize anbn require an unbounded amount of
memory. The subject must remember a different state for
every possible first half of the string, then must check that
the entire second half corresponds correctly to the first. On
the other hand, any strategy used for (ab)n can essentially
‘flush’ the memory after every pair ab is seen, remember-
ing only that ‘all is well so far’. There is a fixed amount of
memory overhead from the beginning.
Step 4: Translating the sets of sentences into exposure

and test sets

The sets of sentences chosen in the previous step may or
may not be directly testable in an experiment. For
instance, as was the case with both test sets in F&H,
they may be infinite. To get around this, F&H tested
‘generalization cases’ where the length, n, in particular
test cases was different from the n’s used in familiariz-
ation. If the subjects extrapolate the basic pattern they
will be able to apply it to longer or shorter stimuli showing
that they can capture the fundamental generalization.
Fair tests of the generalization phase must of course, take
into account factors such as known limitations on working
memory in appropriate modalities.
Conclusion

On a general level, the problem we have discussed in this
article is simple: grammatical theories do not develop or
evolve (in the biological senses); the neural tissue that
implements particular grammars develops and the
genetic programs to build that neural tissue evolve. The
generative paradigm has greatly deepened our under-
standing of the nature of human language, but our current
understanding of how the pieces of generative theories
map into the circuits and networks of the brain is still very
limited. Because of the variety of generative theories and
their focus on describing adult language it is difficult to
know what phenomena to expect to be analogous or
homologous with non-linguistic abilities in non-verbal
www.sciencedirect.com
subjects. This presents a major problem for researchers
interested in comparative study.

We have argued that by formalizing our theories using
existing mathematical tools this problem can be miti-
gated. This is because theories that are formalized this
way can be described using a common conceptual
vocabulary with well-understood implications. Using this
common conceptual basis can allow us to find precise
universal properties of our linguistic systems that don’t
depend on notation. It may also be the case that such
precisely defined properties will also be interpretable in
lower level models of brain structure. For instance, we
may find properties that constrain plausible neural net-
work models.

The examples we give in this article – the combination
of formal language theory, and artificial language experi-
ments – are meant just as examples, not prescriptions.
There are many other possible routes for this kind of
research, and each will have its own peculiar problems. In
fact, it has been observed many times that formal
language theory is a rather crude tool in distinguishing
systems of grammar, and there may be equal limitations
with respect to empirical testing procedures [29,30]. New
experimental techniques will be needed and other areas of
mathematical, logical, and computational linguistics will
have to be appealed to for formalizing universals. We are
nonetheless optimistic that the careful application of
mathematical methods in a comparative experimental
setting will allow us to discover what facts about our
brains make language possible, perhaps uniquely so.
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