
Z. Phys. Chem.216 (2002) 5–20
 by Oldenbourg Wissenschaftsverlag, München

From Quasispecies to Universal Grammar

By Martin A. Nowak∗
Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

Dedicated to Prof. Dr. Peter Schuster
on the occasion of his 60th birthday

(Received June 22, 2001; accepted July 13, 2001)

Molecular Evolution / Sequence Space / Fitness Landscape /
Evolutionary Dynamics / Language Acquisition

The perspective of this paper is to compare mathematical models for the evolutionary
dynamics of genomes and languages. The quasispecies equation describes the evolution
of genetic sequences under the influence of mutation and selection. A central result is an
error threshold which specifies the minimum replication accuracy required for maintaining
genetic information of a certain length. The language equation describes the evolution of
communication, including the cultural evolution of grammar and the biological evolution
of universal grammar. A central result is a coherence threshold which specifies certain
conditions that universal grammar has to fulfill in order to induce coherent communication
in a population.

Languages and quasispecies have something in common. Quasispecies repli-
cate under the influence of mutation and selection and so do languages. A qua-
sispecies is an ensemble of related, but different chemical molecules carrying
genetic information. Any two individuals of a biological population have very
similar, but not necessarily identical genomic sequences. Similarily a group
of humans of the same speech community speak almost the same language,
but any two individuals may slightly differ with respect to certain linguistic
features in terms of phonetics, syntax or semantics. Ultimately, what we call
‘English’ is a social construct and there may be no two English speakers with
identical linguistic properties.

Quasispecies theory was originally invented, by Manfred Eigen and Peter
Schuster, to describe chemical kinetics guiding the origin of life [1–5]. There
are some parallels between the origin of life and the origin of language. Both
are mysterious. Both are major events in evolutionary history, that led to some-
thing totally new. Language led to the origin of a new mode of evolution. For
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billions of years of life on earth, evolution was almost completely restricted to
information in form of genetic sequences. Language allows the transfer of un-
limited, non-genetic information among individuals and from one generation to
the next. Thus language generates a new mode of evolution: cultural evolution.
Certainly higher animals can also have some form of cultural evolution, but
human language provides the machinery for unlimited cultural evolution [6].

When Eigen and Schuster conceived quasispecies theory they did not
want to reconstruct the historical events of the origin of life, but instead for-
mulate the natural laws that must have been operating. This is also my at-
tempt with respect to the evolution and origin of language. Let us understand
the fundamental principles that guide the evolution of language and animal
communication [7–20].

This paper is in two parts. First, I review some aspects of quasispecies the-
ory, then I will discuss mathematical models for the evolutionary dynamics of
language.

1. Quasispecies

The word, quasispecies, is confusing for many biologists, possibly because it
was invented by chemists. Manfred Eigen and Peter Schuster wanted to de-
velop a chemical theory for the origin of life. They described how populations
of RNA molecules could reproduce themselves. They noted that the spon-
taneous chemical reproduction of such comparatively simple molecules was
much less accurate than the genetic replication of any organism currently alive.
The first proliferation of biological information was thus an extremely error-
prone process. Random events would lead to mutations. The reproduction of
such molecules by base-pairing is not completely accurate, so a certain de-
gree of mis-matching is to be expected. Consequently a population of RNA
molecules that was the result of such an inaccurate replication process would
not be homogeneous, but a mixture of RNA molecules with different nu-
cleotide sequences.

Chemists refer to an ensemble of equal molecules as “species”. For ex-
ample, the “species” of all H2O molecules. In contrast, a species of RNA
molecules, derived by inaccurate reproduction, is not an ensemble ofidentical
molecules. Hence the term “quasispecies”. For biologists, the term is confusing
because a biological species is a complicated and in some sense losely defined
concept. How much more unspecific is then a “quasispecies”!

Eigen and Schuster were primarily interested in the origin of life. They as-
sumed that RNA was the first biological replicator. In the primordial soup, the
four nucleotides (adenin, guanosin, cytidin and thymidin) would spontaneously
form short chains, so called polymers. These polymers could in principle repro-
duce by base-pairing. Alongside of each polymer another polymer would form
which consisted of the complimentary sequence of nucleotides. Subsequently,
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the double-helix could split up and the two single strands would go on to form
new double helices, thereby imprinting their sequences on new polymers. This
process, which is now the basis of all life and is conducted by highly sophisti-
cated and accurate enzymes inside the cell, might have been occuring initially
very slowly and subject to high error rates.

This primitive genetic replication is a chemical process and can be de-
scribed by chemical kinetics, that is by equations specifying how the con-
centration of certain molecules change over time. The kinetics of RNA self-
replication assumes that molecules have different replication rates according
to their sequence. This means that some may produce “offspring” faster than
others; they are “fitter”. In addition the theory takes into account that replica-
tion is inaccurate. An offspring sequence need not be identical to its parent, but
may differ in certain positions. A substitution of one base for another is called
a “point mutation.” The equations do not lead to a population of identical se-
quences but to an ensemble of related but different sequences. This ensemble
is called quasispecies.

More precisely, Eigen and Schuster refer to theequilibrium distribution
of sequences that is formed by this mutation and selection process as qua-
sispecies. “Mutation” because reproduction is subject to errors. “Selection”
because sequences have different fitnesses. Eigen and Schuster go on to argue
that the target of natural selection is not the fittest sequence, but the quasis-
pecies. Natural selection will not just chose the fittest type, but an ensemble of
different variants. The fittest sequence may only represent a very small fraction
of the quasispecies; it may indeed not be present at all.

An important concept of quasispecies theory is theerror-threshold. If
the mutation rate is too high, that is if too many mistakes occur in any one
replication event, then the population will be unable to maintain any genetic
information. In the long run the composition of the quasispecies will only be
determined by randomness. The abundance of individual sequences will be in-
dependent of their fitness. Thus the error rate must be below a critical threshold
level for the system to maintain information. If the error-rate is expressed as
a per base probability to make a mistake, then the error-threshold can be writ-
ten as a condition which limits the maximum length of the RNA sequence. For
any given per-base fidelity the sequence can only reach a certain length. Eigen
and Schuster estimated that this critical length should be roughly 100 bases for
self-replicating RNA molecules in the primordial soup.

Since every biological reproduction is error prone, the quasispecies concept
can be readily applied to genetic processes other than RNA self-replication.
Populations of viruses, bacteria, plants or animals are quasispecies. Their ge-
netic reproduction is of course more complicated than a simple copying of
the sequence and will include more sophisticated mutational events (such
as recombination, or sexual reproduction), but the underlying principles re-
main the same. Any natural biological population will be mix of genomes,
a quasispecies.
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The population of human immunodeficiency viruses in an infected individ-
ual represent a quasispecies that can escape from drug treatment and immune
responses. In my opinion, HIV quasispecies evolution in individual patients
holds the key to understanding disease progression [21].

The error-threshold concept can also be expanded to more complicated
organisms. Very roughly, the genome length should not exceed one over
the per-base mutation rate. Viral RNA replication, in the absence of any
error-correcting mechanisms (proof-reading), has a per base mutation rate of
about 10−4. As predicted, the genome length of such viruses is thus about 104.
The human genome is about 3·109 bases long, and the high quality DNA repli-
cation enzymes in human cells ensure an error rate of about 10−9 per base. The
rule of thumb that the genome lenght equals one over the per-base mutation rate
holds for many different organisms.

1.1 More than atoms in our universe

Consider an RNA or DNA sequence of lengthL denoting the number of bases
in the sequence. There are 4L different variants. This means that even for mod-
erate lengths a ‘hyper-astronomically’ large number of different variants can
be formed. For example, for a polynucleotide of lengthL = 300, which is just
large enough to encode for one of the smallest proteins, there are more than
10180 different variants. There are only 1080 protons in our universe.

1.2 Quasispecies live in sequence space

The correct geometry for quasispecies is given by the sequence space. In the
sequence space all possible variants of a given length are arranged such that
neighbours differ by only one base substitution. More generally, the distance
between two sequences equals the number of substitutions between them. For
example, the sequence AATCG differs from ATCCG in two postions. The di-
mension of the space is given by the length of the sequence. In each dimension
there are 4 possibilities, corresponding to the 4 nucleotides, A, T, C and G. The
sequence space that contains all sequences of length 5 has 5 dimensions and
45 = 1024 points (different sequences).

The important features of this sequence space are (1) its high dimension-
ality, (2) the large number of shortest mutational routes between two distant
mutant sequences (for two sequences seperated byd point mutations there are
d! shortest mutational routes) and (3) that many sequences are confined to
a close neighbourhood of each other. The diameter of a sequence space that
contains 1080 points is only 133 “length units”,i.e. point mutations. This means
that relatively few point mutations can lead from one region in the sequence
space to a completely different region providing there exists something like
a guiding gradient to avoid going into ‘wrong directions’. In evolution, this
gradient is provided by natural selection.
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1.3 Quasispecies explore fitness landscapes

Every point in sequence space can also be assigned a fitness value (represent-
ing the reproduction rate of this sequence). This leads to the concept of a fitness
landscape. Fitness landscapes have one more dimension than the corresponding
sequence space, because for every point there is a “height”. Quasispecies wan-
der over the fitness landscapes searching for peaks, which represents region of
high fitness values. Under the guidance of natural selection quasispecies climb
the mountains in the high dimensional fitness landscape [22, 23].

Here again we can easily envision how natural selection does not sim-
ply choose the fittest sequence, but the quasispecies. Imagine two sequences
A andB. AssumeA has a higher replication rate thanB, thus it has a higher
intrinsic fitness value. SupposeA is surrounded by mutants with very low fit-
ness, whileB is sourrounded by mutants with high fitness. (BothA andB are
local optima, butA is a very sharp peak in the fitness landscape, whereasB is
the top of a flat mountain.) In the absence of mutation,A will be selected and
B will disappear. With mutation, however, the situation can change andB could
be the winner. In fact, the mathematical equations will show a critical mutation
rate, below whichA is the winner, but above whichB and its neighbours are
favoured [24, 25].

1.4 The quasispecies equation

Suppose there aren different nucleic acid sequences,x1, ..., xn, with replication
ratesa1, ..., an . These quantities represent the selective values of the individ-
ual mutants. In the absence of mutation the variant with the highest replication
rate will grow fastest and reach fixation. The result of selection in this world
without errors is a homogeneous population consisting of the fastest replicating
variant. But replication is not error-free. Thus it is necessary to define the prob-
abilitiesqij that (erroneous) replication of templatexj results in the production
of the sequencexi. The quantitiesqij form then ×n mutation matrix,Q.

If we consider binary sequences and point mutations, we obtain

qij = pHij (1− p)(L−Hij ) .

Herep is the mutation rate per bit,L is the length of the bitstring, andHij is the
Hamming distance between strainsi and j, that is the number of bits in which
the two strains differ. Error free replication is given byqii = (1− p)L .

The quasispecies equation is given by

ẋ i =
n∑

j=1

aj qij x j −φxi i = 1, ..., n . (1)

The variantsxj replicate at rateaj and generate mutants,xi, with probabil-
ity qji. Hence the sum determines the total rate at whichxi variants are being
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produced by the population. The death term,φxi, is chosen to keep the total
population size constant. This is the case ifφ denotes the average fitness of
the population, given byφ = ∑n

i=1 ai xi. Without loss of generality, we set∑n
i=1 xi = 1.
Eq. (1) is nonlinear, because of the term,φxi. Interestingly, however, this

term can be dropped. For mathematical purposes, we can also study the linear
system

ẋ i =
n∑

j=1

aj Qij x j i = 1, ..., n .

Mathematical physicists prefer to write

ẋ i =
n∑

j=1

Qij x j +ai xi i = 1, ..., n

which is reminiscent of a random Schroedinger equation. Here, mutation acts
like a disrete Laplace operator, while selection acts like a potential. Therefore,
studying deterministic quasispecies dynamics reduces to analyzing the spectral
properties of the linear mutation-selection operator.

The frequency of a given variant within the quasispecies does not de-
pend on its replicative value alone, but also on the likelihood with which it
is produced by erroneous replication of other templates and their frequen-
cies in the quasispecies distribution. This is important to the understanding
of the structural organization of a quasispecies. The consequence of this ef-
fect is that the individual sequencexi with its replicative valueai no longer
serves as the unit (or target) of selection. The quasispecies itself is the target
of selection in a mutation-selection process. This fact has important implica-
tions. Evolution is normally thought of as the interaction between mutation
and selection. Selection is a factor that favours advantageous mutants that
have been generated by pure chance; indeed, it is normally considered a mis-
take to think of mutations as being guided other than by chance. A quasis-
pecies, however, can guide mutations. This does not mean that there is any
correlation between the (intrinsically stochastic) act of mutation and the se-
lective advantage of the mutant. But selection operates on the structure of the
whole quasispecies which is adapted to itsfitness lanscape (this term is orig-
inally from Sewall Wright). Therefore evolution can be guided towards the
peaks of this fitness landscape. This happens because more successful mu-
tants (that may be in closer neighborhood to the peaks of the landscape) will
produce more offspring than less successful mutants (which may be further
away of the peaks). Evolutionary optimization can be viewed as a hill-climbing
process of the quasispecies that occurs along certain pathways in sequence
space [26–28].
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1.5 Error threshold

An important concept in quasispecies theory is the error threshold of replica-
tion. If replication were error free, no mutants would arise and evolution would
stop. Evolution would, however, also be impossible if the error rate of repli-
cation were too high (only some mutations may lead to an improvement in
adaptation, but most will lead to deterioration). The quasispecies concept al-
lows us to quantify the resulting minimal replication accuracy that maintains
adaptation [29–32].

Let us assume a population consists of (1) a fast replicating variantx1 –
the wild type sequence – with replication ratea1 and (2) its mutant distribu-
tion (error tail)x2 with a lower average replication ratea2. Let q denote the per
base accuracy of replication,i.e. the probability that a single base is accurately
replicated. Thus the probability that the whole sequence (of lengthL) is repli-
cated without errors is given byQ = q L . Neglecting the small probability that
erroneous replication of a mutant gives rise to a wild type sequence leads to the
equations

ẋ1 = a1Qx1

ẋ2 = a1(1− Q)x1 +a2x2 .

Here the ratio of wild type over mutants converges to

x1/x2 → a1Q −a2

a1(1− Q)
.

Therefore the wild type can only be maintained in the population ifQ > a2/a1.
This means that the single digit replication accuracy,q, must be larger than
a certain critical value. This error threshold relation is obtained as

q > qcrit = (a2/a1)
1/L .

For replication accuracies lower thanqcrit the wild type sequence will be lost
from the population although it has the highest replication rate. This leads to an
important relationship between the replication accuracy and the sequence length

L < 1/(1−q) .

Here I have used the approximation that the logarithm ofa1/a2 is about 1. This
represents an approximation for the upper genome lengthL that can be main-
tained by a given single digit replication accuracy without loosing adaptation.

2. Universal grammar
The most fascinating aspect of human language is grammar. Grammar is
a computational system that mediates a mapping between linguistic form and
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meaning. Grammar is the machinery that gives rise to the unlimited expressibil-
ity of human language. Ray Jackendoff proposed that grammar has a parallel
architecture consisting of three, largely independent combinatorial systems,
phonetics, syntax and semantics. All three subsystems are generative and are
linked via interfaces [11, 33].

Children develop grammatical competence spontaneously without formal
training. All they need is interaction with people and exposure to normal lan-
guage use. The child hears a certain number of grammatical sentences and then
constructs an internal representation of the rules that generate all grammati-
cal sentences. Chomsky pointed out that the evidence available to the child
does not uniquely determine the underlying grammatical rules [34]. This phe-
nomenon is called the ‘poverty of stimulus’ [35]. The ‘paradox of language
acquisition’ [36] is that children nevertheless reliably achieve correct grammat-
ical competence. How is this possible?

As Chomsky [34] pointed out: ‘To learn a language, then, the child must
have a method for devising an appropriate grammar, given primary linguistic
data. As a precondition for language learning, he must possess, first, a linguis-
tic theory that specifies the form of grammar of a possible human language,
and second, a strategy for selecting a grammar of the appropriate form that
is compatible with the primary linguistic data.’ Chomsky introduced the term
Universal Grammar (UG) to denote the preformed ‘linguistic theory’, the ini-
tial pre-specification of the form of possible human grammars [37].

Hence, for language acquisition the child needs an innate learning mechan-
ism for processing the input sentences and an innate search space of candidate
grammars from which to choose the appropriate grammar. UG can be defined
as the grammar that generates the whole search space. The more recent conven-
tion, however, is that UG encompasses both the search space and the learning
mechanism. In this scenario, UG is essentially synonymous with ‘language ac-
quisition device’. Note that both the search space and the learning mechanism
could change during language acquisition, but this does not negate the neces-
sity of innate compoments.

This ‘biolinguistic approach’ was controversial when introduced by Chom-
sky about 30 years ago, and remains so [10, 38]. Note, however, that the
‘poverty of stimulus’ argument has a precise, mathematical formulation known
as Gold’s theorem [39]. Suppose there is a rule that generates a subset of all
integers. A person is provided with a sample of integers that are generated by
the rule. After some time the person is asked to produce new integers that are
compatible with the rule. Gold’s theorem states that this task cannot be solved.
Any finite number of sample integers is not enough to determine uniquely the
underlying rule. The person can only solve the task if she had a preformed ex-
pectation determining which rules are possible (or likely) and which are not.
The sample integers correspond to the sentences presented to the child, the
rule corresponds to the grammar used by the parents (or other speakers). The
preformed expectation is universal grammar. Hence, in this sense ‘poverty of
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stimulus’ and the necessity of an innate universal grammar are not controver-
sial issues, but logical necessities.

Hence, the controversy concerning a genetically determined UG cannot be
whether there is one (this is a logical necessity), but what form it has. This is
largely an emprirical question and will be resolved eventually.

Let us now formulate a mathematical description of language acquisi-
tion [40–43]. The sentences of all languages can be enumerated. We can say
that a grammar,G, is a rule system that specifies which sentences are allowed
and which sentences are not allowed. Therefore, a grammar can be represented
as a mapping from the set of all integers into{0, 1}. Universal grammar, in turn,
contains a rule system that generates a set (or a search space) of grammars,
{G1, G2, ..., Gn}. These grammars can be constructed by the language learner
as potential candidates for the grammar that needs to be learned. The learner
cannot end up with a grammar that is not part of this search space. In this sense,
UG contains the possibility to learn all human languages (and many more).

More generally, it is also possible to imagine that UG generates infinitely
many candidate grammars,{G1, G2, ...}. In this case, the learning task can be
solved if UG also contains a prior probability distribution or an ordering on
the set of all grammars. The learner needs to know which of the infinitely
many grammars are apriori more likely than others. A special case of a prior
distribution is one where a finite number of grammars is expected with equal
probability and all other grammars are expected with zero probability, which is
equivalent to a finite search space.

A fundamental question of linguistics and cognitive science is what are the
restrictions that are imposed by UG on human language. In other words, how
much is innate and how much is learned in human language. In learning the-
ory [44–46], this question is studied in the context of an ideal speaker-hearer
pair. The speaker uses a certain ‘target grammar’. The hearer has to learn this
grammar. The question is, what is the maximum size of the search space such
that a specific learning mechanism will converge (after a number of input sen-
tences, with a certain probability) to the target grammar.

In terms of language evolution, the crucial question is what makes apopu-
lation of speakers converge to a coherent grammatical system. In other words,
what are the conditions that UG has to fulfill for a population of individuals
to evolve coherent communication? In the following, we will discuss how to
address this question [20].

2.1 Language quasispecies

Imagine a group of individuals that all have the same UG, given by a finite
search space of candidate grammars,G1, ..., Gn, and a learning mechanism for
evaluating input sentences. Let us specify the similarity between grammars by
introducing the numberssij which denote the probability that a speaker who
usesGi will say a sentence that is compatible withG j .
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We assume there is a reward for mutual understanding. The payoff for
someone who usesGi and communicates with someone who usesG j is given
by

F(Gi, G j) = (sij + sji)/2 .

This is simply the average taken over the two situations whenGi talks toG j

and whenG j talks toGi.
Denote byxi the relative abundance of individuals who use grammarGi.

Assume that everybody talks to everybody else with equal probability. There-
fore, the average payoff for all those individuals who use grammarGi is given
by

f i =
n∑

j=1

xj F(Gi, G j) .

We assume that the payoff derived from communication contributes to bio-
logical fitness; individuals leave offspring proportional to their payoff. These
offspring inherit the UG of their parents. They receive language input (sample
sentences) from their parents and develop their own grammar. At first, we will
not specify a particular learning mechanism but introduce the stochastic matrix,
Q, whose elements,qij denote the probability that a child born to an individ-
ual usingGi will develop G j . (In this first model, we assume that each child
receives input from one parent. We are currently working on models that allow
input from several individuals.) The probabilities that a child will developGi if
the parent usesGi is given byqii. The quantities,qii, measure the accuracy of
grammar acquisition. Ifqii = 1 for all i, then grammar acquisition is perfect for
all candidate grammars.

The population dynamics of grammar evolution are then given by the fol-
lowing system of ordinary differential equations, which we call the ‘language
dynamics equations’

ẋ i =
n∑

j=1

f j(x)qji xi −φ(x)xj j = 1, ..., n .

As before, the termφ(x)xi ensures that the total population size remains con-
stant: the sum over the relative abundances,

∑
i xi, is 1 at all times. The variable

φ = ∑n
i=1 f i xi denotes the average fitness orgrammatical coherence of the

population. The grammatical coherence is given by the probability that a ran-
domly chosen sentence of one person is understood by another person. It is
a measure for successful communication in a population. Ifφ = 1 all sentences
are understood and communication is perfect. In general,φ is a number be-
tween 0 and 1.

The language dynamics equation is similar to the quasispecies equation,
but has frequency dependent fitness values: the quantitiesf i depend on the
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relative abundancesx1, ..., xn. In the limit of perfectly accurate language ac-
quisition, qii = 1, we recover thereplicator equation of evolutionary game
theory [47–49]. Thus, the language equation is a replicator equation with muta-
tion (sometimes called mutation selection equation) or a quasispecies equation
with frequency dependent fitness. In contrast to the quasispecies equation, the
language equation cannot be reduced to a linear equation.

2.2 Evolutionary dynamics of grammatical coherence

The language equation admits multiple (stable and unstable) equilibria. For low
accuracy of grammar acquisition (low valuesqii), all grammars,Gi, occur with
roughly equal abundance. There is no predominating grammar in the popula-
tion. Grammatical coherence is low. As the accuracy of grammar acquisition
increases, however, equilibrium solutions arise where a particular grammar is
more abundant than all other grammars. A coherent communication system
emerges. This means that if the accuracy of learning is sufficiently high, the
population will converge to a stable equilibrium with one dominant grammar.
Which one of the stable equilibria is chosen, depends on the initial condition.

The accuracy of language acquisition depends on UG. The less restricted
the search space of candidate grammars is, the harder it is to learn a particu-
lar grammar. Depending on the specific values ofsij some grammars may be
much harder to learn than others. For example, if a speaker usingGi has high
probabilities formulating sentences that are compatible with many other gram-
mars (sij close to 1 for many differentj) thenGi will be hard to learn. In the
limit sij = 1, Gi is considered unlearnable, because no sentence can refute the
hypothesis that the speaker usesG j .

The accuracy of language acquisition also depends on the learning mech-
anism that is specified by UG. An inefficient learning mechanism or one that
evaluates only a small number of input sentences will lead to a low accuracy
and hence prevent the emergence of grammatical coherence.

We can therefore ask the crucial question, which properties UG must have
such that a predominating grammar will evolve in a population of speakers?
In other words, which UG can induce grammatical coherence in a population?
As outlined above, the answer will depend on the learning mechanism and the
search space. We can derive results for two learning mechanisms that represent
reasonable boundaries for the actual, unknown learning mechanism employed
by humans.

The memoryless learning algorithm, a favorite with learning theorists,
makes little demands on the cognitive abilities of the learner (or the learn-
ing theorist). It describes the interaction between a teacher and a learner. The
‘teacher’ can be one or several individuals or the whole population. The learner
starts with a randomly chosen hypothesis (sayGi) and stays with this hypoth-
esis as long as the teacher’s sentences are compatible with this hypothesis.
If a sentence arrives that is not compatible, the learner will at random pick
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another candidate grammar from his search space. The process stops after
a certain number of sentences. The algorithm is called ‘memoryless’, because
the learner does not remember any of the previous sentences nor which hy-
potheses have already been rejected. The algorithm works, primarily because
once it has the correct hypothesis it will not change anymore (this is inciden-
tally the definition of so called ‘consistent learners’).

The other extreme is a batch learner (resembling Jorge Louis Borges’
man with infinite memory). The batch learner memorizes all sentences and
at the end chooses the candidate grammar that is most compatible with the
input.

Consider a very symmetric case for the similarity between candidate gram-
mars: letsij = s for all i �= j and letsii = 1. In this special case, we can show
for the memoryless learner that grammatical coherence is possible if the num-
ber of input sentences,b, exceeds a constant times the number of candidate
grammars,b > C1n. For the batch learner, the number of input sentences has
to exceed a constant times the logarithm of the number of candidate grammars,
b > C2 logn. These inequalities define acoherence threshold, which limits the
size of the search space relative to the amount of input available to the child.
A UG that does not fulfill the coherence threshold does not lead to a stable,
predominating grammar in a population. The learning mechanism used by hu-
mans will perform better than the memoryless learner and worse than the batch
learner; hence it will have a coherence threshold somewhere betweenb > C1n
andb > C2 logn.

Fig. 1 shows the grammatical coherence,φ, of stable solutions of the the
language equation for the case where thesij values are taken from a uniform
distribution on[0, 1] andsii = 1. The memoryless learning algorithm is used.
Again, if children consider a number of input sentences,b, below a certain
threshold then the only stable solution consists of a nearly uniform mixture of
all the grammars. Asb increases, stable equilibria emerge that are dominited by
individual grammars. Komarova and Rivin [50] showed that, for this case, the
coherence threshold is given byb > Cn logn.

2.3 Cultural evolution of grammar

The language dynamics equation describes deterministic dynamics for a large
population size. Smaller population sizes can play a role if we consider
stochastic language dynamics. Computer simulations suggest that the equilib-
rium solutions of the deterministic system correspond to meta-stable states.
Individual grammars will dominate for some time and then be replaced by
other grammars.

Individual candidate grammars,Gi , can also differ in their performance.
Some grammars can be less ambiguous or describe more concepts than others.
In such a context, the language dynamics equation can describe a cultural evo-
lutionary optimization of grammar within the space of grammars generated by
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Fig. 1. Grammatical coherence of a population versus the number of sample sentences,b,
per individual for stable equilibrium solutions of the language equation. There aren = 20
grammars with randomly chosen pairwise distances; thesij values (fori �= j) are taken
from a uniform distribution on[0, 1], andsii = 1. Children learn the grammar of their par-
ents according to a memoryless learning algorithm. The grammatical coherence (or aver-
age fitness) of the population is given byφ = ∑

i xi f i , where fi = (1/2)
∑

j x j(sij + sji).
It is a measure of mutual understanding in the population. For smallb all grammars occur
at roughly similar frequency; the coherence is low. For larger values ofb, stable equilibria
appear with the majority of the population adopting the same grammar. The first critical
transition occurs roughly atb = 3.5n which is Eq. (2) witha = 1/2. Some grammars lead
to stable equilibrium solutions only for large numbers of sample sentences. In the limit
b → ∞, there aren stable equilibria corresponding to all people using one of then gram-
mars.

UG. It also provides a general framework for studying the dynamics of gram-
mar change in the context of historical linguistics [51].

2.4 Biological evolution of universal grammar

So far we have assumed that all individuals have the same UG. Studying the bi-
ological evolution of UG, we need variation in UG and a system that describes
natural selection among variants of UG.

At first, let us consider universal grammars with the same search space and
the same learning procedure, the only difference being the number of input sen-
tences,b. This quantity is proportional to the length of the learning period. We
find that natural selection leads to intermediate values ofb. For smallb, the
accuracy of learning the correct grammar is too low. For largeb, the learning
process takes too long (and thus the rate of producing children that have ac-
quired the correct grammar is too low). This observation can explain why there
is a limited language acquisition period in humans.

Second, consider universal grammars,U1 and U2, that differ in the size
of their search space,n, but have the same learning mechanism and the same



18 M. A. Nowak

value ofb. In general, there is selection pressure to reducen. Only if n is be-
low the coherence threshold, can the universal grammar induce grammatical
communication. In addition, the smallern, the larger is the accuracy of gram-
mar acquisition. There can, however, also be selection for largern: suppose
universal grammarU1 is larger thanU2 (that isn1 > n2). If all individuals use
a grammar,G1, that is both inU1 andU2, thenU2 is selected. Now imagine
that someone invents a new advantageous grammatical concept which leads to
a modified grammarG2 which is in U1, but not inU2. In this case, the larger
universal grammar is favored. Hence there is selection both for reducing the
size of the search space and for remaining open minded to be able to learn new
concepts. For maximum flexibility, we expect search spaces to be as large as
possible but still below the coherence threshold.

An interesting extension of the above model is obtained by assuming that
UG is only very roughly defined by our genes. Randomness during the devel-
opmental process could give rise to variation in neuronal patterns in the brain
and consequently to variation in UG. Hence it might be a reasonable assump-
tion that individuals have slightly different UGs. Each individual could have
a personal ‘universal’ grammar. An interesting question is how similar these
UGs have to be such that a population achieves grammatical coherence. In this
case, there is again selection for maintaining a large search space of candidate
grammars, since the target grammar should be contained in each of the UGs.
All of this requires more work.

3. Epilogue
This paper is dedicated to the 60th birthday of Peter Schuster. When Peter
returned from Goettingen to Vienna, he persuaded Karl Sigmund and Josef
Hofbauer to work on replicators and hypercycles. Hence, Peter founded the
Vienniese School of mathematical biology. I met Peter in 1985 in the desolate
lecture hall 1 of the Chemistry Department in Vienna. I was studying biochem-
istry. He gave a lecture course on theoretical chemistry. I picture him wearing
a green suit and a red-chequered tie. I could be wrong. Meeting Schuster (in
this outfit) changed my life. I immediately knew that I wanted to work with
him. I did a Diploma thesis under his guidance on a stochastic formulation
of quasispecies dynamics. Much of my work over the years has been inspired
by quasispecies theory and replicator equations. Peter stood at the beginning
of both. On the first day of my diploma thesis, I had a modified verse from
Goethe’s Faust in my mind: ‘Das preisen die Schueler aller Orten, sind aber
keine Schuster geworden’.
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