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Language is our legacy. It is the main evolutionary contribution of humans, and perhaps the most interesting trait that has emerged
in the past 500 million years. Understanding how darwinian evolution gives rise to human language requires the integration of
formal language theory, learning theory and evolutionary dynamics. Formal language theory provides a mathematical description
of language and grammar. Learning theory formalizes the task of language acquisition—it can be shown that no procedure can
learn an unrestricted set of languages. Universal grammar specifies the restricted set of languages learnable by the human brain.
Evolutionary dynamics can be formulated to describe the cultural evolution of language and the biological evolution of universal
grammar.

B
iology uses generative systems. Genomes consist of an
alphabet of four nucleotides, which, together with
certain rules for how to produce proteins and organize
cells, generates an unlimited variety of living organisms.
For more than 3 billion years, evolution of life on Earth

was restricted to using this generative system. Only very recently
another generative system emerged, which led to a new mode of
evolution. This other system is human language. It enables us to
transfer unlimited non-genetic information among individuals, and
it gives rise to cultural evolution.

Currently there are many efforts to bring linguistic inquiry into
contact with several areas of biology including evolution1–11, gen-
etics12–14, neurobiology15,16 and animal behaviour17–20. The aim of
this Review is to formulate a synthesis of formal language theory21,22,
learning theory23–28 and evolutionary dynamics in a manner that is
useful for people from various disciplines. We will address the
following questions: What is language? What is grammar? What is
learning? How does a child learn language? What is the difference
between learning language and learning other generative systems?
In what sense is there a logical necessity for genetically determined
components of human language, such as ‘universal grammar’?
Finally, we will discuss how formal language theory and learning
theory can be extended to study language as a biological phenom-
enon, as a product of evolution.

Formal language theory
Language is a mode of communication, a crucial part of human
behaviour and a cultural object defining our social identity. There is
also a fundamental aspect of human language that makes it amen-
able to formal analysis: linguistic structures consist of smaller units
that are grouped together according to certain rules.

The combinatorial sequencing of small units into bigger struc-
tures occurs at several different levels. Phonemes form syllables and
words. Words form phrases and sentences. The rules for such
groupings are not arbitrary. Any native English speaker recognizes
that the sentence ‘He ran from there with his money’ obeys the rules
of English, while ‘He his money with there from ran’ does not. In
Bengali the reverse is true.

Individual languages have specific rules. Certain word orders are
admissible in one language but not in another. In some languages,
word order is relatively free but case marking is pronounced. There
are always specific rules that generate valid or meaningful linguistic
structures. Much of modern linguistic theory proceeds from this

insight. The area of mathematics and computer science called
formal language theory provides a mathematical machinery for
dealing with such phenomena.

What is language?

An alphabet is a set containing a finite number of symbols. Possible
alphabets for natural languages are the set of all phonemes or the set
of all words of a language. For these two choices one obtains formal
languages on different levels, but the mathematical principles are
the same. Without loss of generality, we can consider the binary
alphabet, {0,1}, by enumerating the actual alphabet in binary code.

A sentence is defined as a string of symbols. The set of all
sentences over the binary alphabet is {0,1,00,01,10,11,000,. . .}.
There are infinitely many sentences, as many as integers; the set of
all sentences is ‘countable’.

A language is a set of sentences. Among all possible sentences

Figure 1 The basic objects of formal language theory are alphabets, sentences,

languages and grammars. Grammars consist of rewrite rules: a particular string can be

rewritten as another string. Such rules contain symbols of the alphabet (here 0 and 1),

and so-called ‘non-terminals’ (here S, A, B and F), and a null-element, e. The grammar

in this figure works as follows: each sentence begins with the symbol S. S is rewritten

as 0A. Now there are two choices: A can be rewritten as 1A or 0B. B can be rewritten as

1B or 0F. F always goes to e. This grammar generates sentences of the form 01m01n0,

which means that every sentence begins with 0, followed by a sequence of m 1s,

followed by a 0, followed by a sequence of n 1s, followed by 0.
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some are part of the language and some are not. A finite language
contains a finite number of sentences. An infinite language contains
an infinite number of sentences. There are infinitely many finite
languages, as many as integers. There are infinitely many infinite
languages, as many as real numbers; they are not countable. Hence,
the set of all languages is not countable.

What is grammar?

A grammar is a finite list of rules specifying a language. A grammar
is expressed in terms of ‘rewrite rules’: a certain string can be
rewritten as another string. Strings contain elements of the alphabet
together with ‘non-terminals’, which are place holders. After iter-
ated application of the rewrite rules, the final string will only contain
symbols of the alphabet. Figures 1 and 2 give examples of grammars.

There are countably infinitely many grammars; any finite list of

rewrite rules can be encoded by an integer. As there are uncountably
many languages, only a small subset of them can be described by a
grammar. These languages are called ‘computable’.

Languages, grammars and machines

There is a correspondence between languages, grammars and
machines. ‘Regular’ languages are generated by finite-state gram-
mars, which are equivalent to finite-state automata. Finite-state
automata have a start, a finite number of intermediate states and a
finish. Whenever the machine jumps from one state to the next, it
emits an element of the alphabet. A particular run from start to
finish produces a sentence. There are many different runs from start
to finish, hence there are many different sentences. If a finite-state
machine contains at least one loop, then it can generate infinitely
many sentences. Finite-state automata accept all finite languages

Box 1

Statistical learning theory and other approaches

Classical learning theory as formulated by Gold23 makes a number of

somewhat problematic assumptions: (1) the learner has to identify
the target language exactly; (2) the learner receives only positive

examples; (3) the learner has access to an arbitrarily large number of
examples; and (4) the learner is not limited by any consideration of

computational complexity. Assumptions (1) and (2) are restrictive:
relaxing these assumptions will enable particular learners to succeed

on larger sets of languages. Assumptions (3) and (4) are unrestrictive:
relaxing these assumptions will reduce the set of learnable

languages. In fact, each assumption has been removed in various
approaches to learning, but the essential conclusion remains the

same: no algorithm can learn an unrestricted set of languages.

Perhaps the most significant extension of the classical framework

is statistical learning theory24–26. Here, the learner is required to
converge approximately to the right language with high probability.

Let us consider the following objects that play an important role in the
basic framework of statistical learning:

† Languages and indicator functions. Let L be a set of languages.

Every language L of this set defines an indicator function 1L(s) that

takes the value 1 if a sentence s is in L and 0 otherwise.

† Linguistic examples. Linguistic examples are provided to the
learner according to some distribution P on the set of all sentences.

The learner receives both positive and negative examples.

† Distances between languages. The probability measure P has a

dual role. In addition to providing sentences, it also defines the

distance between two languages, dðL1;L2Þ ¼
P

sj1L1
ðsÞ2

1L2
ðsÞjPðsÞ:

† Learnability. The criterion for learnability is specified as follows.
Assume some language L [ L is the target language. The learner

receives a collection of positive and negative example sentences

according to the distribution P. On the basis of these empirical

data, the learner guesses a language LN [ L after N examples

have been received. The target L is said to be learnable if for all

e . 0 the probability that the distance between LN and L is greater

than e converges to 0 as N ! 1. As a consequence, there exists a

finite number of example sentences, such that the probability is

greater than 1 2 d (where d is a small number) that the learner’s

current estimate is within an e-approximation of the target

language.

A deep result, originally due to Vapnik and Chervonenkis24 and
elaborated since, states that a set of languages is learnable if and

only if it has finite VC dimension. The VC dimension is a combinatorial
measure of the complexity of a set of languages. Thus if the set of

possible languages is completely arbitrary (and therefore has infinite
VC dimension), learning is not possible. It can be shown that the set

of all regular languages (even the set of all finite languages) has
infinite VC dimension and hence cannot be learned by any

procedure in the framework of statistical learning theory. Subsets of
regular languages that are generated by finite-state automata with n

states, however, have finite VC dimension, and one can estimate

bounds on the number of sample sentences that are needed for

learning.

Statistical learning theory in the VC framework removes

assumption (1), (2) and (3) of the Gold framework: it does not ask for
convergence to exactly the right language, the learner receives

positive and negative examples, and the learning process has to end
after a certain number of examples. The theory provides bounds for

how many example sentences are needed to converge
approximately to the right language with high probability; this is the

concept of informational complexity.
Valiant25 also added considerations of computational complexity,

thereby removing assumption (4) of the Gold framework: the learner
is required to approximate the target grammar with high confidence

using an efficient algorithm. Consequently, there are sets of
languages that are learnable in principle (have finite VC dimension),

but no algorithm can do this in polynomial time. (Computer scientists
consider a problem ‘intractable’ if no algorithm can solve the

problem in polynomial time, which means in a number of time
steps that is proportional to the size of the input raised to some

power.)
Some other models of learning deserve mention. For example, in

one form of query-based learning, the learner is allowed to ask
whether a particular sentence is in the target language or not. In this

model, regular languages can be learned in polynomial time72, but

context-free languages cannot73. Other query-based models of
learning, with varying degrees of psychological plausibility, have

been considered, and none permit all languages to be learnable74.
Another model of learning follows the classical Gold framework

but only requires the learner to identify the target language on almost
all texts. Texts are assumed to be generated by a probabilistic

process, where sentences are drawn according to some measure m

on the target language. If the learner is to identify the target

grammar in a distribution free fashion (that is independent of m),

then the set of learnable languages is no larger than those that are

learnable in the classical Gold framework. If constraints are put on

the family of measures m then the set of learnable languages can

be enlarged. Such constraints act like a probabilistic form of

universal grammar.

In summary, all extensions of learning theory underline the
necessity of specific restrictions.

review article

NATURE | VOL 417 | 6 JUNE 2002 | www.nature.com/nature612 © 2002        Nature  Publishing Group



and some infinite languages.
‘Context-free’ languages are generated by context-free grammars,

which can be implemented by push-down automata. These are
computers with a single memory stack: at any one time they have
only access to the top register of their memory.

‘Context-sensitive’ languages are generated by context-sensitive

grammars. For each of these languages there exists a Turing
machine, which can decide for every sentence whether it is part of
the language or not. A Turing machine embodies the theoretical
concept of a digital computer with infinite memory.

Computable languages are described by ‘phrase structure’ gram-
mars that have unrestricted rewrite rules. For each computable
language, there exists a Turing machine that can identify every
sentence that is part of the language. If, however, the Turing
machine receives as input a sentence which does not belong to the
language, then it might compute forever. Hence, the Turing
machine cannot always decide whether a sentence is part of the
language or not.

Figure 3 shows the Chomsky hierarchy: finite-state grammars are
a subset of context-free grammars, which are a subset of context-
sensitive grammars, which are a subset of phrase-structure gram-
mars, which are Turing complete.

The structure of natural languages

With the introduction of the Chomsky hierarchy, there was some
interest in placing natural languages within this scheme. Natural
languages are infinite: it is not possible to imagine a finite list that
contains all English sentences. Furthermore, finite-state grammars
are inadequate for natural languages. Such grammars are unable to
represent long-range dependencies of the form ‘if. . . then’. The
string of words between ‘if ’ and ‘then’ could be arbitrarily long,
and could itself contain more paired if–then constructions. Such
pairings relate to rules that generate strings of the form 0n1n, which
require context-free grammars (Fig. 2). There is a continuing debate
whether context-free grammars are adequate for natural languages,
or whether more complex grammars need to be evoked29,30.

The fundamental structures of natural languages are trees. The
nodes represent phrases that can be composed of other phrases in a
recursive manner. A tree is a ‘derivation’ of a sentence within the
rule system of a particular grammar. The interpretation of a
sentence depends on the underlying tree structure. Ambiguity arises
if more than one tree can be associated with a given sentence. One
can also define grammars that directly specify which trees are
acceptable for a given language. Much of modern syntactic theory

Box 2

Language as mapping between sound and meaning

The mathematical formalism of language can be extended to

include aspects of communicative behaviour and performance. A
language can be seen as a (possibly infinite) matrix, L, that

specifies mappings between phonetic forms and semantic

forms that are ‘sound’ and ‘meaning’ insofar as they are

linguistically determined (see Box 2 figure). This matrix defines

linguistic competence. For evaluating communicative success,

we also need to describe linguistic performance. We assume

that the matrix, L, leads to a pair of matrices, P and Q,

determining speaking and hearing. The element pI
ij denotes the

probability for a speaker of LI to use sound j for encoding

meaning i. The element qI
ij denotes the probability for a hearer to

decode sound j as meaning i. A language may not encode all

meanings and may not make use of all possible sounds.

Next, we introduce a measure, j, on the set of all meanings. Let

us denote by j i the probability that communication is about

meaning i. The measure, j, depends among other things on the

environment, behaviour and phenotype of the individuals. It also

defines which meanings are more relevant than others.

The probability that a speaker of LI generates a sound which is

understood by a hearer using LJ is given by aIJ ¼
P

ijjip
I
ijq

J
ij : The

communicative pay-off between LI and LJ can be defined as

FIJ ¼
1
2 ðaIJþ aJIÞ: The intrinsic communicative pay-off of LI is

FII ¼ aII.

In this framework, communicative pay-off is a number between 0

and 1. A pay-off of less than 1 arises as a consequence of ambiguity
and poverty. Ambiguity, a I, of language LI is the loss of

communicative capacity that arises if individual sounds are

linked to more than one meaning. Poverty, b I, is the fraction of

meanings (measured by j) that are not part of LI. The

communicative capacity of LI can be written as FII ¼ ð1 2 aIÞ�

ð1 2 bIÞ:

For language acquisition we need a measure for the similarity, s IJ,

between languages LI and LJ. A possibility is sIJ ¼P
ijjip

I
ijq

J
ij=
P

ijjip
I
ij denoting the probability that a sound

generated by a speaker of LI is correctly interpreted by a hearer

using LJ. In this context, the similarity between LI and LJ declines

because of ambiguity, but not because of poverty. Ambiguity

implies that a learner holding the correct hypothesis might think

he is wrong and change his hypothesis. This has consequences

for the notion of consistent learning; a consistent learner does not

change his hypothesis if he already holds the correct hypothesis. Figure 2 Three grammars and their corresponding languages. Finite-state grammars

have rewrite rules of the form: a single non-terminal (on the left) is rewritten as a single

terminal possibly followed by a non-terminal (on the right). The finite-state grammar, in

this figure, generates the regular language 0m1n; a valid sentence is any sequence of

0s followed by any sequence of 1s. A context-free grammar admits rewrite rules of the

form: a single non-terminal is rewritten as an arbitrary string of terminals and non-

terminals. The context-free grammar in this figure generates the language 0n1n; a valid

sentence is a sequence of 0s followed by the same number of 1s. There is no finite-

state grammar that could generate this language. A context-sensitive grammar admits

rewrite rules of the form aAb ! agb. Here a, b and g are strings of terminals and

non-terminals. Although a and b may be empty, g must be non-empty. The important

restriction on rewrite rules of context-sensitive grammars is that the complete string on

the right must be at least as long as the complete string on the left. The context-

sensitive grammar, in this figure, generates the language 0n1n2n. There is no context-

free grammar that could generate this language.
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deals with such grammars31–34, which are, of course, also part of the
Chomsky hierarchy, and the results of learning theory, to be
discussed now, apply to them.

Learning theory
Learning is inductive inference. The learner is presented with data
and has to infer the rules that generate these data. The difference
between ‘learning’ and ‘memorization’ is the ability to generalize
beyond one’s own experience to novel circumstances. In the context
of language, the child will generalize to novel sentences never heard
before. Any person can produce and understand sentences that are
not part of his previous linguistic experience. Learning theory
describes the mathematics of learning with the aim of outlining
conditions for successful generalization.

The paradox of language acquisition

Children learn their native language by hearing grammatical sen-
tences from their parents or others. From this ‘environmental input’,
children construct an internal representation of the underlying
grammar. Children are not told the grammatical rules. Neither
children nor adults are ever aware of the grammatical rules that
specify their own language.

Chomsky pointed out that the environmental input available to
the child does not uniquely specify the grammatical rules35. This
phenomenon is known as ‘poverty of stimulus’36. ‘The paradox of
language acquisition’ is that children of the same speech community
reliably grow up to speak the same language37. The proposed
solution is that children learn the correct grammar by choosing
from a restricted set of candidate grammars. The ‘theory’ of this
restricted set is ‘universal grammar’ (UG). Formally, UG is not a
grammar, but a theory of a collection of grammars.

The concept of an innate, genetically determined UG was con-
troversial when introduced some 40 years ago and has remained so.
The mathematical approach of learning theory, however, can
explain in what sense UG is a logical necessity.

Learnability

Imagine a speaker–hearer pair. The speaker uses grammar, G, to
construct sentences of language L. The hearer receives sentences and
should after some time be able to use grammar G to construct other
sentences of L. Mathematically speaking, the hearer is described by
an algorithm (or more generally, a function), A, which takes a list of
sentences as input and generates a language as output.

Let us introduce the notion of a ‘text’ as a list of sentences.
Specifically, text T of language L is an infinite list of sentences of L
with each sentence of L occurring at least once. Text T N contains the
first N sentences of T. We say that language L is learnable by
algorithm A if for each T of L there exists a number M such that
for all N . M we have A(TN) ¼ L. This means that, given enough
sentences as input, the algorithm will provide the correct language
as output.

Furthermore, a set of languages is learnable by an algorithm if
each language of this set is learnable. We are interested in what set of
languages, L ¼ {L 1,L2,..}, can be learned by a given algorithm.

A key result of learning theory, Gold’s theorem23, implies there
exists no algorithm that can learn the set of regular languages. As a
consequence, no algorithm can learn a set of languages that contains
the set of regular languages, such as the set of context-free languages,
context-sensitive languages or computable languages.

Gold’s theorem formally states there exists no algorithm that can
learn a set of ‘super-finite’ languages. Such a set includes all finite
languages and at least one infinite language. Intuitively, if the learner
infers that the target language is an infinite language, whereas the
actual target language is a finite language that is contained in the
infinite language, then the learner will not encounter any contra-
dicting evidence, and will never converge onto the correct language.
This result holds in greatest possible generality: ‘algorithm’ here
includes any function from text to language.

Probably almost correct

A common criticism of Gold’s framework is that the learner has to
identify exactly the right language. For practical purposes, it might
be sufficient that the learner acquires a grammar that is almost
correct. Box 1 explains various extensions of the Gold framework,
and in particular the approach of statistical learning theory. Here,
the crucial requirement is that the learner converges with high
probability to a language that is almost correct. Statistical learning
theory also shows there is no procedure that can learn the set of all
regular languages, thereby confirming the necessity of an innate UG.
Some learning theories provide more information for the learner
and thus allow larger classes of languages to be learnable, but no
learning theory admits an unrestricted search space.

Learning finite languages

Some readers might think that the arguments of learning theory rely
on subtle properties of infinite languages. Let us therefore consider
finite languages. In the context of statistical learning theory, the set
of all finite languages cannot be learned. In the Gold framework, the
set of all finite languages can be learned, but only by memorization:
the learner will identify the correct language only after having heard
all sentences of this language. A learner that considers the set of all
finite languages has no possibility for generalization: the learner can
never extrapolate beyond the sentences he has already encountered.
This is not the case for natural language acquisition: we can always
say new sentences.

Let us consider a finite set of finite languages. Suppose there are 3
sentences, S 1, S 2, S3. Hence there are 8 possible languages. Suppose
learner A considers all 8 languages, while learner B considers only 2
languages, for example L 1 ¼ {S 1, S2} and L2 ¼ {S 3}. If learner A
receives sentence S1, he has no information whether sentences S 2 or
S 3 will be part of the target language or not. He can only identify the
target language after having heard all sentences. If learner B receives
sentence S1 he knows that S 2 will be part of the language, whereas S3

Figure 3 The Chomsky hierarchy and the logical necessity of universal grammar.

Finite-state grammars are a subset of context-free grammars, which are a subset of

context-sensitive grammars, which are a subset of phrase-structure grammars, which

represent all possible grammars. Natural languages are considered to be more

powerful than regular languages. The crucial result of learning theory is that there

exists no procedure that could learn an unrestricted set of languages; in most

approaches, even the class of regular languages is not learnable. The human brain has

a procedure for learning language, but this procedure can only learn a restricted set of

languages. Universal grammar is the theory of this restricted set.
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will not. He can extrapolate beyond his experience. The ability to
search for underlying rules requires a restricted search space.

The necessity of innate expectations

We can now state in what sense there has to be an innate UG. The
human brain is equipped with a learning algorithm, A H, which
enables us to learn certain languages. This algorithm can learn each
of the existing 6,000 human languages and presumably many more,
but it is impossible that AH could learn every computable language.
Hence, there is a restricted set of languages that can be learned by
A H. UG is the theory of this restricted set.

Learning theory suggests that a restricted search space has to exist
before data. By ‘data’ we mean linguistic or other information the
child uses to learn language or modify its language acquisition
procedure. Therefore, in our terminology, ‘before data’ is equivalent
to ‘innate’. In this sense, learning theory shows there must be an
innate UG, which is a consequence of the particular learning
algorithm, AH, used by humans. Discovering properties of AH

requires the empirical study of neurobiological and cognitive
functions of the human brain involved in language acquisition.
Some aspects of UG, however, might be unveiled by studying
common features of existing human languages. This has been a
major goal of linguistic research during the past decades. A
particular approach is the ‘principles and parameters theory’,
which assumes that the child comes equipped with innate principles
and has to set parameters that are specific for individual
languages38,39. Another approach is ‘optimality theory’, where learn-
ing a specific language is ordering innate constraints40.

There is some discourse as to whether the learning mechanism,
A H, is language specific or general purpose41. Ultimately this is a
question about the particular architecture of the brain and which
neurons participate in which computations, but one cannot deny
that there is a learning mechanism, AH, that operates on linguistic
input and enables the child to learn the rules of human language.
This mechanism can learn a restricted set of languages; the theory of
this set is UG. The continuing debate around an innate UG should
not be whether there is one, but what form it takes41–43. One can

dispute individual linguistic universals44,45, but one cannot generally
deny their existence.

Neural networks are an important tool for modelling the neural
mechanisms of language acquisition. The results of learning theory
also apply to neural networks: no neural network can learn an
unrestricted set of languages46.

Sometimes it is claimed that the logical arguments for an innate
UG rest on particular mathematical assumptions of generative
grammars that deal only with syntax and not with semantics.
Cognitive47,48 and functional linguistics49 are not based on formal
language theory, but use psychological objects such as symbols,
categories, schemas and images. This does not remove the necessity
of innate restrictions. The results of learning theory apply to any
learning process, where a ‘rule’ has to be learned from some
examples. Generalization is an inherent feature of any model of
language acquisition, and applies to semantics, syntax and pho-
netics. Any procedure for successful generalization has to choose
from a restricted range of hypotheses.

The results of learning theory also apply to learning mappings
between linguistic form and meaning. If meaning is to be explicitly
considered, then a language is not a set of sentences, but a set of
sentence-meaning pairs (Box 2). The task of language acquisition is
then to learn grammars that generate sentence-meaning pairs. Such
grammars are also part of the Chomsky hierarchy, and there exists
no learning procedure that can succeed on an unrestricted set of
such languages.

What is special about language acquisition?

Usually when we learn the grammar of generative systems, such as
chess or arithmetic, somebody tells us the rules. We do not have to
guess the moves of chess by looking at chess games. In contrast, the
process of language acquisition occurs without being instructed
about rules; neither teachers nor learners are aware of the rules. This
is an important difference: if the learner is told the grammar of a
language, then the set of all computable languages is learnable by an
algorithm that memorizes the rules.

Figure 5 Two aspects of language evolution. a, There is a biological evolution of

universal grammar (UG) via genetic modifications that affect the architecture of the

human brain and the class of languages it can learn. UG can change as a consequence

of (1) random variation (neutral evolution), (2) as a by-product of selection for other

cognitive function or (3) under selection for language acquisition and communication. At

some point in the evolutionary history of humans, a UG arose that allowed languages

with infinite expressibility. b, On a faster timescale, there is cultural evolution of

language constrained by a constant UG. Languages change by (1) random variation, (2)

by contact with other languages (red arrow), (3) by hitch-hiking on other cultural

inventions, or (4) by selection for increased learnability and communication. Although

many language changes in historical linguistics might be neutral, a global picture of

language evolution must include selection.

Figure 4 Linguistic coherence evolves if universal grammar (UG) is sufficiently specific.

The figure shows equilibrium solutions of the language dynamical equation. Linguistic

coherence, f, is the probability that one individual says a sentence that is understood

by another individual. UG specifies n candidate grammars. The similarity between any

two candidate grammars, s ij, is a random number from a uniform distribution on [0, 1].

The language acquisition device is a memoryless learner receiving N ¼ 100 example

sentences. For n . 30, all candidate grammars are represented in the population with

similar frequencies; the linguistic coherence, f, is about 1/2, which means complete

randomness. For n , 30 the equilibrium is dominated by a single grammar. For each

value of n there can be multiple equilibria dominated by different grammars. The

equilibrium that is reached depends on the initial condition. Coherence is required for

adaptation of language and selection of UG for linguistic function.
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Evolutionary language theory
Humans and chimpanzees separated some 5 million years ago.
Chimpanzees have a complex system of conceptual understanding
and rich social interactions, but they do not have communication
comparable to human language. The central question of the origin
of human language is which genetic modifications led to changes in
brain structures that were decisive for human language. Given the
enormous complexity of this trait, we should expect several incre-
mental steps guided by natural selection. In this process, evolution
will have reused cognitive features that evolved long ago and for
other purposes.

Understanding language evolution requires a theoretical frame-
work explaining how darwinian dynamics lead to fundamental
properties of human language such as arbitrary signs, lexicons,
syntax and grammar50–62. Here we outline a minimalist program
combining formal language theory, learning theory and evolution-
ary theory.

The basic approach is similar to evolutionary game theory. There
is a population of individuals. Each individual uses a particular
language. Individuals talk to each other. Successful communication
results in a pay-off that contributes to fitness. Offspring inherit—
subject to mutations—a mechanism to learn language and a UG.
They use this mechanism to learn—subject to mistakes—the
language of their parents or others.

Cultural evolution of language with constant universal grammar

From a biological perspective, language is not the property of an
individual, but the extended phenotype of a population. Let us
consider a population where all individuals have the same UG, and
let us assume that UG does not change from one generation to the
next. Suppose that (in accordance with principles and parameters
theory or optimality theory) UG specifies a finite number of
languages L1,..Ln. Each individual in the population will speak
one of those n languages.

We need a model of language that allows us to calculate the
communicative pay-off, Fij, for an individual using Li talking to an
individual using Lj. Box 2 outlines a fairly general approach, based
on the assumption that a language can be seen as an infinite binary
matrix linking phonetic forms to semantic forms. The languages, Li,
can differ in their intrinsic communicative pay-off, F ii, which
depends on ambiguity and expressive power. Some languages
could be finite, others infinite.

Denote by x i the relative abundance of speakers of L i. The fitness
of Li is given by f i ¼

Pn
j¼1xjFij: Individuals leave offspring pro-

portional to their pay-off. The probability that a child will develop
Lj if the parent uses L i is given by Q ij. The ‘learning matrix’, Q,
depends on the learning algorithm and UG. The language dynami-
cal equation62 is given by:

dxj

dt
¼
Xn

i¼1

f iðxÞQijxi 2 fðxÞxj j¼ 1; ::;n ð1Þ

The term 2f(x)x j ensures that
P

ix i ¼ 1. The variable
fðxÞ ¼

P
if iðxÞxi denotes the average fitness of the population,

and is a measure for linguistic coherence. The dynamics can also
be interpreted in a purely cultural sense: individuals that commu-
nicate successfully are more likely to influence language acquisition
of others. Equation (1) describes selection of languages for increased
communicative function, F ii, and increased learnability, Qii.

For low accuracy of language acquisition, when Q is far from the
identity matrix, there is no predominating language in the popu-
lation, and the linguistic coherence is low. As the accuracy of
language acquisition increases, and Q gets closer to the identity
matrix, equilibrium solutions arise where a particular language is
more abundant than others. The population has achieved linguistic
coherence. The ‘coherence threshold’ specifies the minimum speci-
ficity of UG that is required for linguistic coherence (Fig. 4).

For certain learning mechanisms we can calculate the coherence
threshold. The ‘memoryless learner’ starts with a randomly chosen
language and stays with it as long as the input sentences are
compatible with this language. If a sentence arrives that is not
compatible, then the learner picks at random another language. The
learner does not memorize which languages have already been
rejected. The process stops after N sentences. Another mechanism
is the ‘batch learner’, which memorizes N sentences, and at the end
chooses the language that is most compatible with all N sentences.

If the similarity coefficients between languages, s ij (Box 2), are
constant, s ij ¼ s and s ii ¼ 1, then the memoryless learner has a
coherence threshold N . C 1n, whereas the batch learner has a
coherence threshold N . C 2 log n. If the s ij values are taken from
a uniform random distribution on the interval [0, 1] and if s ii ¼ 1,
then the memoryless learner has a coherence threshold
N . C3n log n, whereas the batch learner has a coherence threshold
N . C 4n (refs 63, 64). C 1 to C 4 are some constants. These
conditions provide boundaries for the actual learning mechanism
used by humans, which is arguably better than the memoryless
learner and worse than the batch learner. The coherence threshold
relates a life-history parameter of humans, N, to the maximum size
of the search space, n, of UG.

Evolution of universal grammar

Evolution of UG requires variation of UG. (UG is in fact neither a
grammar nor universal.) Imagine a population of individuals using
UGs U 1 to U M. Each U I admits a subset of n grammars and
determines a particular learning matrix QI. U I mutates genetically
to UJ with probability WIJ. Deterministic population dynamics are
given by:

dxJj

dt
¼
XM

I¼1

WIJ

Xn

i¼1

f IiQ
J
ijxIi 2 fxJj j¼ 1; ::;n J ¼ 1; ::;M ð2Þ

This equation describes mutation and selection among M differ-
ent universal grammars. The relative abundance of individuals with
UG U J speaking language Lj is given by x Jj. At present little is known
about the behaviour of this system. In the limit of no mutation
among UGs, WII ¼ 1, we find that the selective dynamics often lead
to the elimination of all but one UG, but sometimes coexistence of
different UGs can be observed. Equation (2) describes two processes
on different timescales: the biological evolution of UG and the
cultural evolution of language (Fig. 5).

The ability to induce a coherent language is a major selective
criterion for UG. A UG that induces linguistic coherence allows
language adaptation and can be selected for linguistic function.
There is also a trade-off between learnability and adaptability: a
small search space (small n) is more likely to lead to linguistic
coherence, but might exclude languages with high communicative
pay-off.

Because the necessity of a restricted search space applies to any
learning task, we can use an extended concept of UG for animal
communication. During primate evolution, there was a succession
of UGs that finally led to the UG of currently living humans. At
some point a UG emerged that allowed languages of unlimited
expressibility. Such evolutionary dynamics are described by
equation (2).

Historical linguistics

The language dynamical equation (1) can be used to study language
change in the context of historical linguistics65–68. Languages change
because the transmission from one generation to the next is not
perfect. UG limits the type of variation that can occur. In the context
of the principles-and-parameters theory, changes in syntax arise
because children acquire different parameter settings66. Grammati-
calization69 is the process where lexical items take on grammatical
function. Creolization is the formation of a new language by
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children receiving mixed input70,71. All such language changes can be
studied mathematically. Many language changes are selectively
neutral. Hence, we can use a neutral version of our approach
possibly in conjunction with small population sizes and stochastic
and spatial population dynamics. These are open problems.

Outlook
We have reviewed mathematical descriptions of language on three
different levels: formal language theory, learning theory and evol-
ution. These approaches need to be combined: ideas of language
should be discussed in the context of acquisition, and ideas of
acquisition in the context of evolution.

Some theoretical questions are: what is the interplay between the
biological evolution of UG and the cultural evolution of language?
What is the mechanism for adaptation among the various languages
generated by a given UG? In terms of the principles-and-parameters
theory, can we estimate the maximum number of parameters
compatible with the coherence threshold? Some empirical questions
are: what is the actual language learning algorithm used by humans?
What are the restrictions imposed by UG? Can we identify genes
that are crucial for linguistic or other cognitive functions? What can
we say about the evolution of those genes?

The study of language as a biological phenomenon will bring
together people from many disciplines including linguistics, cogni-
tive science, psychology, genetics, animal behaviour, evolutionary
biology, neurobiology and computer science. Fortunately we have
language to talk to each other. A

doi:10.1038/nature00771.

1. Pinker, S. & Bloom, A. Natural language and natural selection. Behav. Brain Sci. 13, 707–784 (1990).

2. Jackendoff, R. Possible stages in the evolution of the language capacity. Trends Cogn. Sci. 3, 272–279

(1999).

3. Bickerton, D. Language and Species (Univ. Chicago Press, Chicago, 1990).

4. Lightfoot, D. The Development of Language: Acquisition, Changes and Evolution (Blackwell, Oxford,

1999).

5. Brandon, R. & Hornstein, N. From icon to symbol: Some speculations on the evolution of natural

language. Phil. Biol. 1, 169–189 (1986).

6. Hurford, J. R., Studdert-Kennedy, M. A. & Knight, C. (eds) Approaches to the Evolution of Language

(Cambridge Univ. Press, Cambridge, UK, 1998).

7. Newmeyer, F. Functional explanation in linguistics and the origins of language. Lang. Commun. 11,

3–28, 97–108 (1991).

8. Lieberman, P. The Biology and Evolution of Language (Harvard Univ. Press, Cambridge,

Massachusetts, 1984).

9. Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (Freeman Spektrum, Oxford,

1995).

10. Hawkins, J. A. & Gell-Mann, M. The Evolution of Human Languages (Addison-Wesley, Reading,

Massachusetts, 1992).

11. Aitchinson, J. The Seeds of Speech (Cambridge Univ. Press, Cambridge, UK, 1996).

12. Cavalli-Sforza, L. L. Genes, peoples and languages. Proc. Natl Acad. Sci. USA 94, 7719–7724 (1997).

13. Gopnik, M. & Crago, M. Familial aggregation of a developmental language disorder. Cognition 39,

1–50 (1991).

14. Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. & Monaco, A. P. A forhead-domain gene is

mutated in a severe speech and language disorder. Nature 413, 519–523 (2001).

15. Deacon, T. The Symbolic Species (Penguin, London, 1997).

16. Vargha-Khadem, F. et al. Neural basis of an inherited speech and language disorder. Proc. Natl Acad.

Sci. USA 95, 12695–12700 (1998).

17. Smith, W. J. The Behaviour of Communicating (Harvard Univ. Press, Cambridge, UK, 1977).

18. Dunbar, R. Grooming, Gossip, and the Evolution of Language (Cambridge Univ. Press, Cambridge, UK,

1996).

19. Fitch, W. T. The evolution of speech: a comparative review. Trends Cogn. Sci. 4, 258–267 (2000).

20. Hauser, M. D. The Evolution of Communication (Harvard Univ. Press, Cambridge, Massachusetts, 1996).

21. Chomsky, N. A. Syntactic Structures (Mouton, New York, 1957).

22. Harrison, M. A. Introduction to Formal Language Theory (Addison-Wesley, Reading, Massachusetts,

1978).

23. Gold, E. M. Language identification in the limit. Informat. Control 10, 447–474 (1967).

24. Vapnik, V. N. & Chervonenkis, A. Y. On the uniform convergence of relative frequencies of events to

their probabilities. Theor. Prob. Applicat. 17, 264–280 (1971).

25. Valiant, L. G. A theory of learnable. Commun. ACM 27, 436–445 (1984).

26. Vapnik, V. N. Statistical Learning Theory (Wiley, New York, 1998).

27. Osherson, D., Stob, M. & Weinstein, S. Systems That Learn (MIT Press, Cambridge, Massachusetts,

1986).

28. Pinker, S. Formal models of language learning. Cognition 7, 217–283 (1979).

29. Pullum, G. K. & Gazdar, G. Natural languages and context free languages. Linguist. Phil. 4, 471–504

(1982).

30. Shieber, S. M. Evidence against the context-freeness of natural language. Linguist. Phil. 8, 333–343

(1985).

31. Chomsky, N. A. Lectures on Government and Binding: The Pisa Lectures (Foris, Dordrecht, 1984).

32. Sadock, J. M. Autolexical Syntax: A Theory of Parallel Grammatical Representations. Studies in

Contemporary Linguistics (Univ. Chicago Press, Chicago, 1991).

33. Bresnan, J. Lexical-Functional Syntax (Blackwells, London, 2001).

34. Pollard, C. J. & Sag, I. A. Head-Driven Phrase Structure Grammar (Univ. Chicago Press, Chicago,

1994).

35. Chomsky, N. Language and Mind (Harcourt Brace Jovanovich, New York, 1972).

36. Wexler, K. & Culicover, P. Formal Principles of Language Acquisition (MIT Press, Cambridge,

Massachusetts, 1980).

37. Jackendoff, R. Foundations of Language (Oxford Univ. Press, Oxford, 2001).

38. Chomsky, N. in Explanation in Linguistics (eds Hornstein, N. & Lightfoot, D.) 123–146 (Longman,

London, 1981).

39. Baker, M. C. Atoms of Language (Basic Books, New York, 2001).

40. Prince, A. & Smolensky, P. Optimality: From neural networks to universal grammar. Science 275,

1604–1610 (1997).

41. Elman, J. L. Rethinking Innateness (MIT Press, Cambridge, Massachusetts, 1996).

42. Tomasello, M. The Cultural Origins of Human Cognition (Harvard Univ. Press, Cambridge,

Massachusetts, 1999).

43. Sampson, G. Educating Eve: The Language Instinct Debate (Cassell Academic, London, 1999).

44. Greenberg, J. H., Ferguson, C. A. & Moravcsik, E. A. (eds) Universals of Human Language (Stanford

Univ. Press, Stanford, 1978).

45. Comrie, B. Language Universals and Linguistic Typology (Univ. Chicago Press, Chicago, 1981).

46. Geman, S., Bienenstock, E. & Doursat, R. Neural networks and the bias/variance dilemma. Neural

Comput. 4, 1–58 (1992).

47. Langacker, R. Foundations of Cognitive Linguistics Vol. 1 (Stanford Univ. Press, Stanford, 1987).

48. Lakoff, G. Women, Fire and Dangerous Things: What Categories Reveal about the Mind (Univ. Chicago

Press, Chicago, 1987).

49. Bates, E. & MacWhinney, B. Language Acquisition: The State of the Art (Cambridge Univ. Press,

Cambridge, 1982).

50. Aoki, K. & Feldman, M. W. Toward a theory for the evolution of cultural communication:

Coevolution of signal transmission and reception. Proc. Natl Acad. Sci. USA 84, 7164–7168 (1987).

51. Hurford, J. R. Biological evolution of the Saussurean sign as a component of the language acquisition

device. Lingua 77, 187–222 (1989).

52. Cangelosi, A. & Parisi, D. Simulating the Evolution of Language (Springer, London, 2002).

53. Kirby, S. & Hurford, J. Proc. Fourth European Conf. on Artificial Life (eds Husbands, P. & Harvey, I.)

493–502 (MIT Press, Cambridge, Massachusetts, 1997).

54. Steels, L. Proc. Fifth Artificial Life Conf. (eds Langton, C. G. & Shimohara, T.) 113–131 (MIT Press,

Tokyo, 1996).

55. Nowak, M. A. & Krakauer, D. C. The evolution of language. Proc. Natl Acad. Sci. USA 96, 8028–8033

(1999).

56. Nowak, M. A., Plotkin, J. B. & Jansen, V. A. A. Evolution of syntactic communication. Nature 404,

495–498 (2000).

57. Komarova, N. L. & Nowak, M. A. Evolutionary dynamics of the lexical matrix. Bull. Math. Biol. 63,

451–485 (2001).

58. Christiansen, M. H., Dale, R. A. C., Ellefson, M. R. & Conway, C. M. in Simulating the Evolution of

Language (eds Cangelosi, A. & Parisi, D.) 165–187 (Springer, London, 2002).

59. Hashimoto, T. & Ikegami, T. Emergence of net-grammar in communicating agents. Biosystems 38,

1–14 (1996).

60. Hazlehurst, B. & Hutchins, E. The emergence of propositions from the coordination of talk and action

in a shared worlds. Lang. Cogn. Process. 13, 373–424 (1998).

61. Pinker, S. The Language Instinct (Morrow, New York, 1994).

62. Nowak, M. A., Komarova, N. L. & Niyogi, P. Evolution of universal grammar. Science 291, 114–118

(2001).

63. Komarova, N. L. & Rivin, I. Mathematics of learning. Preprint math.PR/0105235 at khttp://

lanl.arXiv.orgl (2001).

64. Rivin, I. Yet another zeta function and learning. Preprint cs.LG/0107033 at khttp://lanl.arXiv.orgl
(2001).

65. Lightfoot, D. How to Set Parameters: Arguments from Language Change (MIT Press, Cambridge,

Massachusetts, 1991).

66. Kroch, A. Reflexes of grammar in patterns of language change. Lang. Variat. Change 1, 199–244

(1989).

67. Wang, W. S. Y. in The Origins and Past of Modern Humans (eds Omoto, K. & Tobias, P. V.) 247–262

(World Scientific, Singapore, 1998).

68. Niyogi, P. & Berwick, R. C. Evolutionary consequences of language learning. Linguist. Phil. 20,

697–719 (1997).

69. Hopper, P. & Traugott, E. Grammaticalization (Cambridge Univ. Press, Cambridge, 1993).

70. de Graff, M. Language Creation and Language Change: Creolization, Diachrony and Development (MIT

Press, Cambridge, MA, 1999).

71. Mufwene, S. The Ecology of Language Evolution (Cambridge Univ. Press, Cambridge, 2001).

72. Angluin, D. Learning regular sets from queries and counterexamples. Informat. Comput. 75, 87–106

(1987).

73. Angluin, D. & Kharitonov, M. When won’t membership queries help? J. Comput. Syst. Sci. 50, 336–355

(1995).

74. Gasarch, W. & Smith, C. Learning via queries. J. Assoc. Comput. Machin. 39, 649–674 (1992).

Acknowledgements
Support from the David and Lucille Packard foundation, the Leon Levy and Shelby White
initiatives fund, the Florence Gould foundation, the Ambrose Monell foundation, the
National Science Foundation and J. E. Epstein is acknowledged.

Correspondence and requests for materials should be addressed to M.A.N.

(e-mail: nowak@ias.edu).

review article

NATURE | VOL 417 | 6 JUNE 2002 | www.nature.com/nature 617© 2002        Nature  Publishing Group


