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During evolution, a nervous system emerged that
enabled animals to observe their world, learn
behavioral patterns and communicate with one
another. One lineage of the animal kingdom
eventually produced a communication system with
infinite expressibility. Human language is infinite,
not because everything can be expressed, but because
there are infinitely many sentences; no finite list can
contain all possible sentences of a given language.

Language allows the transfer of unlimited,
non-genetic information among individuals and thus
induces a new mode of evolution. Language gives rise
to cultural evolution far beyond what is possible for
non-speaking animals. Among all great evolutionary
innovations that affected evolution itself, such as
nucleic acids, cells, chromosomes, multi-cellular
organisms, the nervous system etc, language is the
only one (presently) confined to one species.

Humans and chimps diverged some 5 million years
ago. Because humans have complex language, but
chimps do not, the final components of the biological
basis of human language must have arisen since then.
It is clear, however, that evolution did not build the
human language faculty de novo in the last few
million years, but used material that had evolved in
other animals over a much longer time. Many animal
species have sophisticated cognitive abilities in terms
of understanding the world and interacting with one
another1. Evolution often uses existing structures for
new and sometimes surprising purposes. Monkeys,
for examples, appear to have brain areas similar to
our language centers, but seem to use them for
controlling facial muscles and for analyzing auditory
input2. Evolution may have had an easy task here to
reconnect these centers for human language. Hence

the human language instinct should not be seen as
the result of a sudden moment of inspiration of
evolution’s blind watchmaker, but rather the
consequence of several hundred million years of
‘experimenting’with animal cognition.

Language allowed our ancestors to share ideas
and experiences, and to solve problems in parallel.
The adaptive significance of human language is
obvious. It pays to talk. Cooperation in hunting,
making plans, coordinating activities, task sharing,
social bonding, manipulation and deception all
benefit from an increase in expressive power. Natural
selection (we use it to include sexual selection) can
certainly see the consequences of communication3,4.

The linguist Ray Jackendoff outlines how human
language reveals an architecture that seems to have
been formed by distinct innovations that were added
over time5,6. He also finds ‘fossils’ of earlier, more
primitive communication systems in the grammar of
modern language. Part of Jackendoff ’s program is an
extension of Bickerton’s idea that modern language
evolved from ‘protolanguage’, which still can be found
in our brain7. Protolanguage emerges whenever
full-blown language is disrupted such as in pidgin
languages or in children who were deprived of social
interaction (the most famous case is Genie). These are
some examples of biological and linguistic evidence
which point towards a gradual evolutionary process
that has shaped human language. 

Evolution is based on well-defined, mathematical
principles: mutation and selection. Hence in order to
talk about language evolution, it seems essential to
construct a precise mathematical framework. This is
what we do in this article. We will discuss how a
group of individuals (humans or other animals) can
evolve a communication system where arbitrary
signals become associated with specific referents. We
will show that mistakes in communication lead to an
error limit, which can be overcome by sequencing basic
signal units (such as phonemes) into words. We discuss
a necessary condition under which natural selection
can see the advantage of syntactic communication.
Finally, we present a general framework for the
evolution of grammar acquisition and discuss how
natural selection acts on universal grammar. The
material presented here is part of a larger effort to
establish a connection between evolutionary biology,
linguistics, and cognitive science8–21. 

Arbitrary signs

First we ask how natural selection can design a simple
communication system where certain, arbitrary
signals become associated with specific referents22–26.
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Consider an association matrix, A, whose entries, aij,
specify the strength of the association between
referent i and signal j (see Fig. 1). The association
matrix determines the probability that a speaker will
use signal j when wanting to communicate referent i,
and the probability that a hearer will interpret signal j
as denoting referent i. Hence from the association
matrix we can calculate the probability of correct
information transfer between a speaker and a hearer.
Such an association matrix is at the basis of any
animal communication system. It is also a convenient
description for the lexical matrix of human language.
The lexical matrix specifies the arbitrary relations
between word form and word meaning27.

The arbitrariness of the association between
signals and referents gives rise to the problem of
coherence: if different individuals can assign
different signals to the same referent (or vice versa),
then how does the population achieve a coherent
communication system where everybody uses the
same association between signals and referents
(or word forms and word meanings)?

Let us consider evolutionary dynamics. There is
a group of individuals. In the beginning, each
individual has a different, randomly chosen A matrix.
Thus no signal is associated with a specific referent.
For any given referent, there is only a small probability
that a speaker-hearer pair will have a successful
communication about it. Furthermore, we assume that
individuals reproduce and generate offspring that
inherit – genetically – a mechanism for learning the
association matrix of their parents or others. After
specifying some learning mechanism, we can simulate
this evolutionary process. We will, however, observe
that no coherent communication will evolve. In this
case, there is no selection against individuals who do
not learn any associations at all. The mechanism for
learning the A matrix will eventually deteriorate.

For natural selection to act on language ability,
there must be a reward for successful communication.
We have to link language to biological ‘fitness’. Let us
therefore assume that successful communication
leads to a ‘payoff ’ for both the speaker and the hearer.
In the spirit of evolutionary game theory, we link
payoff to reproductive success28,29. Individuals that
communicate more successfully have increased
survival probabilities and leave more offspring.

Let us first assume that offspring learn their
association matrix from some randomly chosen
individuals or some population average of the A matrix
regardless of payoff. Again no coherent language will
evolve. The reason is that more successful A matrices
do not proliferate faster than less successful ones.

If however we assume that offspring learn the
A matrix of their parents or of other individuals
proportional to their payoff, then a coherent
communication system can emerge. In both cases,
successful A matrices spread. Learning from the
parents works, because more offspring are born to
parents with successful A matrices. Learning
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Fig. 1. (a) The association matrix, A, links signals to referents. The
lexical matrix of human language links word form to word meaning.
The elements of this matrix, aij, are non-negative real numbers and
denote the strength of the association between referent i and signal j.
A speaker is described by a P matrix. The element pij denotes the
probability of using signal j for referent i. A hearer is described by a
Q matrix. The element qij denotes the probability of interpreting
signal j as denoting referent i. The P and Q matrices are derived 
from the A matrix by normalizing rows and columns respectively.
(b) Suppose a speaker uses signal j for referent i. Correct 
communication occurs if the hearer receives signal j and associates 
it with referent i. Let us now consider two individuals I and J with
association matrices AI and AJ. We can define the payoff for I
communicating with J as:

The term denotes the probability that individual I will
successfully communicate referent i to individual J. This probability
is summed over all objects and averaged over the situation where
individual I signals to individual J and vice versa. Note that the payoff
function assumes that communication about each object occurs with
the same frequency. (c) We can also assume that signals can be
mistaken for each other. There is an error matrix, U, between speaker
and hearer. This model is based on Shannon’s information theory. The
P, U, and Q matrices describe, respectively, encoding, a noisy channel
and decoding. In our evolutionary context, we observe that errors
during communication often lead to a scenario where maximum
fitness is achieved for systems with limited repertoire size.
Sequencing of phonemes into words (that is increasing the code
length) can extend this error limit32.
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preferentially from other individuals with higher payoff
gives a direct advantage to successful A matrices.

For either case, we can observe that after a few
generations different individuals have similar
A matrices and certain associations between specific
signals and referents become stronger whereas
other – conflicting – associations disappear. The
evolutionary optimum is a state where each signal is
uniquely associated with one referent and vice versa.
The particular signal-referent pairing is arbitrary.
For n signals and referents there are n! evolutionarily
stable A matrices30. The population will converge to one
arbitrary A matrix out of these n! possibilities. Hence
the model describes the emergence of arbitrary signs.

The next task is to calculate the minimum
cognitive requirements for the language learning
device that leads to the evolution of a coherent
association matrix. This task turns out to be difficult.
We have partial results for specific cases, but as yet
no general model that is analytically tractable.

A simplified model that provides analytical
insights makes the following assumptions31: (1) the
population size is large, the evolutionary dynamics are
deterministic; (2) the A matrix has only binary entries:
if aij = 1, there is an association between referent i and
signal j; if aij = 0, there is none; (3) offspring learn the A
matrix of one parent. If the parent’s A matrix has a 1
entry in a particular place, the offspring’s A matrix has
a 1 entry in the same place with a probability 1 – u. If
the parent’s A matrix has a 0 entry in a particular place,
the offspring’s A matrix will always have a 0 entry in
this place. Therefore, offspring do not form new
associations. For this model, unique signal-referent
pairings are the only stable equilibrium solutions of the
evolutionary dynamics. The maximum number of
signal-referent pairs that can evolve and be maintained
is given by n = 1/(2u). On average an individual knows

signals, and two randomly chosen individuals
have n/esignals in common. (Here, e is Euler’s number.)

We do not have analytic results for the case where
offspring can erroneously form associations that are
not present in their parent’s A matrix. Computer
simulations for finite populations and stochastic
dynamics suggest the following results26,31. If this
type of mistake is too frequent then no coherent
communication can evolve. If the error rate is below a
threshold then coherent associations can emerge. The
observed associations are close to the evolutionary
optimum, but some signals may refer to more than
one referent (homonymy) and some referents may be
associated with more than one signal (synonymy).
Associations are metastable. From time to time there
are transitions among predominating A matrices. In
the context of historical linguistics, this corresponds
to spontaneous changes in lexicon.

Word formation

Association matrices are useful descriptions of both
animal communication systems and the lexical matrix
of human language. In the first case, they describe the

association between animal signals and their meaning,
in the second case they describe the association
between word form and word meaning. There are,
however, fundamental differences between animal
signals and word forms. Animal communication
appears to be based on fairly limited repertoires
(perhaps 10–100 signals), whereas human languages
use large numbers of words (of the order of 10 000 or
more). Furthermore, human language makes
extensive use of combinatorics: words are sequences of
well-defined smaller building blocks, called phonemes.
In this section, we formulate an argument for why it
is necessary that words are made up of phonemes.

Suppose we have a communication system where
certain signals are unambiguously associated with
certain referents. Clearly the communicative potential
and therefore the biological fitness of the system
increases with the number of signals. However, as the
number of signals increases, chances are that some of
them will sound quite similar to others. If we admit
the possibility that signals can be mistaken for each
other, there is a limit to the increase in fitness. A
general mathematical result shows that for any such
signaling system there is a maximum fitness which
cannot be overcome by adding more signals32.

If in addition we assume that different referents
have different fitness contributions, then usually
there exists an intermediate number of signals which
maximizes fitness. Adding further signals reduces
fitness. In this case, natural selection favors limited
repertoires where a small number of signals denote
the most valuable referents25.

This error limit can be extended if combinatorial
sequences of signals are used. It can be shown that
the maximum fitness of a communication system
increases exponentially with the length of the
sequence33. This observation is related to Shannon’s
‘noisy coding theorem’34. If natural selection acts on
the rate of communication, then there is an optimum
word length that maximizes fitness.

Human language makes use of this principle.
Words are sequences of individual phonemes. Each
human language uses only a small fraction of all
possible phonemes, but sequences of phonemes give
rise to large numbers of words. The same argument
holds for sign language: sequencing of basic units
increases the error limit.

A first step towards syntactic communication

Human language uses combinatorics on two levels:
sequences of phonemes form words, sequences of
words form sentences. The linguist Charles Hockett
called this design ‘duality of patterning’. The
sequencing of words into sentences is a necessary
component of syntactic communication. Let us define
compound signals as those that consist of parts that
have their own meaning. In contrast, elementary
signals cannot be decomposed into parts that have
their own meaning. The alarm calls of vervet monkeys
for leopard, snake or eagle are examples of elementary
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signals35. Word stems (listemes) of human languages
are elementary signals, but phrases, sentences or any
syntactic structures of human languages represent
compound signals. The question which we would like
to answer is how natural selection can guide the
emergence of such syntactic structures (see Fig. 2).

Clearly, communication systems with compound
signals have greater potential. The number of
possible messages can greatly exceed the number of
components (words) that make up these messages.
For elementary communication, each message has to
be learned, whereas compounding allows to express
new messages that have not been encountered before.
In human language, words have to be memorized, but
most sentences are new constructions. Given these
advantages it seems surprising that animals make
little (or no?) use of compound signals.

An evolutionary model for the transition from
elementary to compound communication shows that
certain conditions have to be met before natural
selection can see the advantages of compounding36.
First, the total number of relevant messages has to
exceed a critical value. Hence, only if the communication
system has reached a certain size, can there be an
advantage to using compound signals. Smaller systems
are more efficiently encoded by elementary signals.
Second, the compound signals must be able to encode the
relevant messages in such a way that individual
components occur in many different messages. If each
component would only appear in one or a few messages
then there is little chance that this system might
out-compete non-syntactic communication.

Apart from combining elementary signals into
compound messages, syntactic communication
requires rules that specify how the parts of signals
relate to each other to convey a certain meaning. This
brings us to our next topic, the evolution of grammar.

Universal and other grammars

The most fascinating aspect of human language is
grammar. Grammar is a computational system that

mediates a mapping between linguistic form and
meaning. Grammar is the machinery that gives rise
to the unlimited expressibility of human language.

Children develop grammatical competence
spontaneously without formal training. All they
need is interaction with people and exposure to
normal language use. The child hears a certain
number of grammatical sentences and then
constructs an internal representation of the rules that
generate grammatical sentences. Chomsky pointed
out that the evidence available to the child does not
uniquely determine the underlying grammatical
rules37. This phenomenon is called the ‘poverty of
stimulus’38. The ‘paradox of language acquisition’39

is that children nevertheless reliably achieve correct
grammatical competence. How is this possible?

As Chomsky pointed out: ‘To learn a language,
then, the child must have a method for devising an
appropriate grammar, given primary linguistic data.
As a precondition for language learning, he must
possess, first, a linguistic theory that specifies the form
of grammar of a possible human language, and second,
a strategy for selecting a grammar of the appropriate
form that is compatible with the primary linguistic
data.’ (Ref. 37).Chomsky introduced the term
Universal Grammar (UG) to denote the preformed
‘linguistic theory’, the initial pre-specification of the
form of possible human grammars40.

Hence, for language acquisition the child needs a
mechanism for processing the input sentences and
a ‘search space’ of candidate grammars from which to
choose the appropriate grammar. Chomsky’s original
concept is that UG is a rule system that generates the
search space. More recent views use UG to encompass
both the search space and the mechanism for
evaluating input sentences. Therefore, UG has
become almost synonymous with ‘mechanism of
language acquisition’.

The notion of an innate, genetically encoded, UG is
controversial41–43. Much of the discourse, however,
focuses on which specific linguistic features are
innate (for example, phrase structure rules of X-bar
theory, or lexical categories such as nouns and verbs)
and to what extent UG is a specific syntactic module
or simply uses general purpose cognitive abilities.
We do not participate in this controversy. Instead we
choose a sufficiently general formulation of the
process of language acquisition. Ultimately
everybody agrees that human beings require some
innate components for language acquisition. These
innate components are what we call UG.

First of all, let us state that ‘poverty of stimulus’
has an elegant mathematical formulation known as
Gold’s theorem44. Suppose there is a rule that
generates a subset of all integers. A person is provided
with a sample of integers that are generated by the
rule. After some time the person is asked to produce
other integers that are compatible with the rule.
Gold’s theorem states that this task cannot be solved.
Any finite number of sample integers is not enough to
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Fig. 2. A very simple
model for exploring the
emergence of syntactic
communication.
(a) Non-syntactic
communication uses
elementary signals
refering, for example, to
the events ‘lion sleeping’,
‘monkey running’.
Syntactic communication
uses compound signals
refering, for example, to
the objects ‘lion’, ‘monkey’
and the actions ‘running’
and ‘sleeping’. (b) An
evolutionary model36

shows that syntactic
communication is only
favoured by natural
selection, firstly, if the
number of relevant
messages exceeds a
certain threshold and,
secondly, if elementary
signals can be used in
sufficiently many different
messages. 



determine uniquely the underlying rule. The person
can only solve the task if she had a preformed
expectation determining which rules are possible (or
likely) and which are not. The sample integers
correspond to the sentences presented to the child,
the rule corresponds to the grammar used by the
parents (or other speakers). The preformed
expectation is universal grammar. Hence, in this

sense ‘poverty of stimulus’and the necessity of an
innate universal grammar are not controversial
issues, but mathematical facts.

Let us now formulate a mathematical description
of language acquisition45–50. The sentences of all
languages can be enumerated. We can say that a
grammar, G, is a rule system that specifies which
sentences are allowed and which sentences are not
allowed (see Fig. 3). Universal grammar, in turn,
contains a rule system that generates a set (or a
search space) of grammars, {G1, G2,…, Gn}. These
grammars can be constructed by the language learner
as potential candidates for the grammar that needs to
be learned. The learner cannot end up with a
grammar that is not part of this search space. In this
sense, UG contains the possibility to learn all human
languages (and many more). Figure 4 illustrates this
process of language acquisition. The learner has a
mechanism to evaluate input sentences and to choose
one of the candidate grammars that are contained in
his search space.

More generally, it is also possible to imagine that
UG generates infinitely many candidate grammars,
{G1, G2,…}. In this case, the learning task can be solved
if UG also contains a prior probability distribution on
the set of all grammars. This prior distribution biases
the learner towards grammars that are expected to be
more likely than others. A special case of a prior
distribution is one where a finite number of grammars
is expected with equal probability and all other
grammars are expected with zero probability, which is
equivalent to a finite search space.

A fundamental question of linguistics and cognitive
science is what are the restrictions that are imposed
by UG on human language. In other words, how much
is innate and how much is learned in human language.
In learning theory51,52, this question is studied in the
context of an ideal speaker–hearer pair. The speaker
uses a certain ‘target grammar’. The hearer has to
learn this grammar. The question is, what is the
maximum size of the search space such that a specific
learning mechanism will converge (after a number of
input sentences, with a certain probability) to the
target grammar.

In terms of language evolution, the crucial
question is what makes a population of speakers
converge to a coherent grammatical system. In other
words, what are the conditions that UG has to fulfill
for a population of individuals to evolve coherent
communication? In the following, we will discuss how
to address this question53,54.

Population dynamics of grammar acquisition

Imagine a group of individuals that all have the same
UG, given by a finite search space of candidate
grammars, G1,...,Gn, and a learning mechanism for
evaluating input sentences. Let us specify the similarity
between grammars by introducing the numbers sij
which denote the probability that a speaker who uses Gi
will say a sentence that is compatible with Gj.
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Fig. 3. (a) The grammar of human language is a rule system that encompasses phonological,
syntactic and conceptual (semantic) rules. The phonological rules are linked to hearing and speaking,
whereas the conceptual rules are linked to perception and action. The linguist Ray Jackendoff
describes phonology, syntax and semantics as three independent combinatorial systems that are
linked via interfaces. (b) Mathematically, a grammar can be seen by a rule system that divides a
countable infinite number of sentences into two subsets, grammatical and ungrammatical. (c) More
generally, a grammar should be seen as a rule system that generates a mapping between linguistic
form and meaning. Note the formal similarity between such a ‘grammar matrix’ and the lexical matrix,
which links word forms to word meanings. The important differences are size and compressability:
the lexical matrix consists of a finite number of memorized items, whereas the grammar matrix has
infinitely many entries that can be compressed into rules. Clearly the grammar matrix can also be
interpreted as including the lexical matrix. Such a representation holds the starting point for a
possible unified theory that describes both the acquisition of lexical items and grammatical rules. 



We assume there is a reward for mutual
understanding. The payoff for someone who uses Gi and
communicates with someone who uses Gj is given by:

This is simply the average taken over the two
situations when Gi talks to Gj and when Gj talks to Gi.

Denote by xi the relative abundance of individuals
who use grammar Gi. Assume that everybody talks to
everybody else with equal probability. Therefore, the
average payoff for all those individuals who use
grammar Gi is given by:

We assume that the payoff derived from
communication contributes to biological fitness;
individuals leave offspring proportional to their payoff.
These offspring inherit the UG of their parents. They
receive language input (sample sentences) from their
parents and develop their own grammar. At first, we
will not specify a particular learning mechanism but
introduce the stochastic matrix, Q, whose elements, qij
denote the probability that a child born to an individual
using Gi will develop Gj. (In this first model, we
assume that each child receives input from one
parent. We are currently working on models that allow
input from several individuals.) The probabilities that
a child will develop Gi if the parent uses Gi is given by
qii. The quantities qii measure the accuracy of
grammar acquisition. If qii = 1 for all i, then grammar
acquisition is perfect for all candidate grammars.

The population dynamics of grammar evolution
are given by the following system of ordinary
differential equations, which we call the ‘language
dynamics equations’:

The term –φxj ensures that the total population
size remains constant: the sum over the relative
abundances, , is 1 at all times. The variable 

denotes the average fitness or ‘grammatical
coherence’of the population. The grammatical

coherence is given by the probability that a randomly
chosen sentence of one person is understood by
another person. It is a measure for successful
communication in a population. If φ= 1 all sentences
are understood and communication is perfect. In
general, φis a number between 0 and 1.

The language dynamics equation is reminiscent of
the quasispecies equation of molecular evolution55,
but has frequency dependent fitness values: the
quantities fi depend on the relative abundances,
x1,…, xn. In the limit of perfectly accurate language
acquisition, qii = 1, we recover the replicator
equation of evolutionary game theory29. Thus, our
model provides a connection between two of the most
fundamental equations of evolutionary biology.

Evolution of grammatical coherence

In general, Eqn 1 admits multiple (stable and
unstable) equilibria. For low accuracy of grammar
acquisition (low values of qii), all grammars, Gi, occur
with roughly equal abundance. There is no
predominating grammar in the population.
Grammatical coherence is low. As the accuracy of
grammar acquisition increases, however, equilibrium
solutions arise where a particular grammar is more
abundant than all other grammars. A coherent
communication system emerges. This means that if
the accuracy of learning is sufficiently high, the
population will converge to a stable equilibrium with
one dominant grammar. Which one of the stable
equilibria is chosen, depends on the initial condition. 

The accuracy of language acquisition depends on
UG. The less restricted the search space of candidate
grammars is, the harder it is to learn a particular
grammar. Depending on the specific values of sij some
grammars may be much harder to learn than others. For
example, if a speaker using Gi has a high probability
of formulating sentences that are compatible with
many other grammars (sij close to 1 for many different j)
then Gi will be hard to learn. In the limit sij = 1, Gi is
considered unlearnable, because no sentence can
refute the hypothesis that the speaker uses Gj.

The accuracy of language acquisition also depends
on the learning mechanism that is specified by UG.
An inefficient learning mechanism or one that
evaluates only a small number of input sentences
will lead to a low accuracy and hence prevent the
emergence of grammatical coherence.

We can therefore ask the crucial question: which
properties must UG have such that a predominating
grammar will evolve in a population of speakers? In
other words, which UG can induce grammatical
coherence in a population? As outlined above, the
answer will depend on the learning mechanism and
the search space. We can derive results for two
learning mechanisms that represent reasonable
boundaries for the actual, unknown learning
mechanism used by humans.

The memoryless learning algorithm, a favorite
with learning theorists, makes little demands on the
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Fig. 4. Universal
grammar specifies the
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grammars and the
learning procedure for
evaluating input
sentences. The basic idea
is that the child has an
innate expectation of
grammar (for example a
finite number of
candidate grammars) and
then chooses a particular
candidate grammar that
is compatible with the
input.



cognitive abilities of the learner. It describes the
interaction between a teacher and a learner. (The
‘teacher’can be one or several individuals or the whole
population.) The learner starts with a randomly chosen
hypothesis (say Gi) and stays with this hypothesis as
long as the teacher’s sentences are compatible with this
hypothesis. If a sentence arrives that is not compatible,
the learner will at random pick another candidate
grammar from his search space. The process stops after
a certain number of sentences. The algorithm is called
‘memoryless’, because the learner does not remember
any of the previous sentences nor which hypotheses
have already been rejected. The algorithm works,
primarily because once it has the correct hypothesis it
will not change anymore (this is incidentally the
definition of so called ‘consistent learners’).

The other extreme is a batch learner (resembling
Jorge Louis Borges’man with infinite memory). The
batch learner memorizes all sentences and at the end
chooses the candidate grammar that is most
compatible with the input.

For the memoryless learner, we can show that,
under some assumptions on the values sij,
grammatical coherence is possible if the number of
input sentences, b, exceeds a constant times the
number of candidate grammars, b > C1 n. For the
batch learner, the number of input sentences has to
exceed a constant times the logarithm of the number
of candidate grammars, b > C2 log n. These
inequalities define a ‘coherence threshold’, which
limits the size of the search space relative to the
amount of input available to the child. A UG that does
not fulfill the coherence threshold does not lead to a
stable, predominating grammar in a population. The
learning mechanism used by humans will perform
better than the memoryless learner and worse than

the batch learner; hence it will have a coherence
threshold somewhere between b > C1n and b > C2log n.

Cultural evolution of grammar

The language dynamics equation describes
deterministic dynamics for a large population size.
Smaller population sizes can play a role if we consider
stochastic language dynamics. Computer simulations
suggest that the equilibrium solutions of the
deterministic system correspond to metastable states.
Individual grammars will dominate for some time and
then be replaced by other grammars. Such transitions
are more likely to occur between similar grammars.

In a small population, the requirements imposed
on UG are also slightly stronger. Grammatical
coherence in a population will require a larger
number of input sentences or smaller search spaces.
A detailed mathematical study of the stochastic
dynamics of our system is still outstanding.

Individual candidate grammars, Gi, can also differ
in their performance. Some grammars can be less
ambiguous or describe more concepts than others. In
such a context, the language dynamics equation can
describe a cultural evolutionary optimization of
grammar within the space of grammars generated by
UG. It also provides a general framework for studying
the dynamics of grammar change in the context of
historical linguistics56,57.

Biological evolution of universal grammar

So far we have assumed that all individuals have the
same UG. Studying the biological evolution of UG, we
need variation in UG and a system that describes
natural selection among variants of UG.

At first, let us consider universal grammars with
the same search space and the same learning
procedure, the only difference being the number of
input sentences, b (Ref. 58). This quantity is
proportional to the length of the learning period. We
find that natural selection leads to intermediate
values of b. For small b, the accuracy of learning the
correct grammar is too low. For large b, the learning
process takes too long (and thus the rate of producing
children that have acquired the correct grammar is
too low). This observation can explain why there is a
limited language acquisition period in humans.

Second, consider universal grammars, U1 and U2,
that differ in the size of their search space, n, but have
the same learning mechanism and the same value of b.
In general, there is selection pressure to reduce n.
Only if n is below the coherence threshold, can the
universal grammar induce grammatical
communication. In addition, the smaller n, the larger
is the accuracy of grammar acquisition. There can,
however, also be selection for larger n: suppose
universal grammar U1 is larger than U2 (that is
n1 >n2). If all individuals use a grammar, G1, that is
both in U1 and U2, then U2 is selected. Now imagine
that someone invents a new advantageous
grammatical concept which leads to a modified
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• What are the consequences of small population sizes and stochasticity
on the dynamics of grammar acquisition? How does the coherence
threshold depend on population size?

• Can we formulate a tractable model, where each individual learns
grammar or lexicon from several other individuals (not just from one
other individual)? What difference does it make?

• In a spatial model, do the equations lead to different grammars in
different regions? Are such patterns stable?

• Can we obtain exact results on the competition between variants of UG
that differ in their search space?

• Can we formulate a unified model of language acquisition that includes
both grammar and lexicon learning?

• What is the consequence of introducing specific assumptions about the
rules that specify the candidate grammars?

• What are the language dynamics for infinitely large search spaces with
prior probability distribution?

• An interesting difference between humans and animals is that human
communication can be stimulus free: messages are often not prompted
by environmental stimuli. How can we explain this behavioral
difference? What is its adaptive significance?

Questions for future research
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grammar G2 which is in U1, but not in U2. In this case,
the larger universal grammar is favored. Hence there
is selection both for reducing the size of the search
space and for remaining open minded to be able to
learn new concepts. For maximum flexibility, we
expect search spaces to be as large as possible but
still below the coherence threshold.

An interesting extension of the above model is
obtained by assuming that UG is only very roughly
defined by our genes. Randomness during the
developmental process could give rise to variation in
neuronal patterns in the brain and consequently to
variation in UG. Hence it might be a reasonable
assumption that individuals have slightly different
UGs. Each individual could have a personal
‘universal’ grammar. An interesting question is how
similar these UGs have to be such that a population
achieves grammatical coherence. In this case, there is
again selection for maintaining a large search space of
candidate grammars, as the target grammar should
be contained in each of the UGs.

Conclusions

In summary, we have outlined how populations can
evolve coherent communication, both in terms of
lexical items and grammatical rules. We have
described how arbitrary signals become associated
with specific referents and have shown how natural
selection can lead to the ‘duality of patterning’ of
human language: words are sequences of phonemes,
sentences are sequences of words. Finally, we have
formulated a mathematical theory for the
population dynamics of grammar acquisition. The
key result here is a ‘coherence threshold’ that
relates the maximum complexity of the search space
to the amount of linguistic input available to the
child and the performance of the learning
procedure. The coherence threshold represents an
evolutionary stability condition for the language
acquisition device: only a universal grammar that
operates above the coherence threshold can 
induce and maintain coherent communication 
in a population.

Opinion
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