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Abstract

We present new results of a novel computational approach
to the interaction of two important cognitive-linguistic phe-
nomena: (1) language learning, long regarded as central to
modern synchronic linguistics; and (2) language change over
time, diachronic linguistics. We exploit the insight that while
language learning takes place at the level of the individual,
language change is more properly regarded as an ensemble
property that takes place at the level of populations of lan-
guage learners — while the former has been the subject of
much explicit computer modeling, the latter been less exten-
sively treated. We show by analytical and computer simulation
methods that language learning can be regarded as the driving
force behind adynamical systemsaccount of language change.
We apply this model to the specific (and cognitively relevant)
case of the historical change from Classical Portuguese (CP)
to European Portuguese (EP), demonstrating how a particular
language learning model (for instance, a maximum-likelihood
model akin to many statistically-based language approaches),
coupled with data on the differences between CP and EP, leads
to specific predictionsfor possiblelanguage-changeenvel opes,
as well as delimiting the class of possible language-learning
mechanisms and linguistic theories compatible with a given
classof changes. The main investigative message of this paper
is to show how this methodology can be applied to a specific
case, that of Portuguese. The main moral underscoresthe in-
dividual/population difference, and demonstrates the potential
subtlely of language change: we show that simply because an
individual child will, with high probability, choose a particular
grammar (European Portuguese) does not mean that all other
grammars (e.g., Classical Portuguese) will come to be elimi-
nated; rather, contrary to surface intuition, that is property of
the dynamical system and the population ensemble itself.

Language Change: the Population Approach

This paper presents a computational approach to the interac-
tion of two important cognitive phenomena: language learn-
ing and language change. The first, language learning, occurs
at the level of theindividua — children acquire the language
(grammar) of their caretakers, acognitiveability that has been
broadly investigated via arange of computationa and experi-
mental methodologies. We note that language change occurs
at thelevel of apopulation: itisindividual language learners
whose collective, ensemble properties constitute a distribu-
tion of linguistic knowledge. Thisis, of course, the common
biological view used to bridge between surficia properties
of individual organisms (their phenotypes) and the distribu-
tion of those properties over time (phenotypic evolutionary
change), as underlain by internal, individua constitutional

change (genotypes and genotypic distributionsover time). In
our linguistic analogy, which is nearly exact, initia individ-
ual linguistic (or “grammatical”) knowledge corresponds to
genotypes, and final attained states of linguisticknowledgeto
phenotypes; the distribution over final states characterizes the
linguistic properties of the population as a whole. Program-
matically, this anaogy has often been drawn in diachronic
linguisticresearch, but inthe main the corresponding compu-
tational analysis, which might then be drawn amost directly
from results in mathematical and computationa population
biology, has been lacking.!

Therearethreelogical distributional possibilities: distribu-
tions of languages over monolingual speskers; distributions
of languages within non-monolingual speakers, and combi-
nations of these two. For example, consider a population of
monolingual speakers; each speaks only one language. What
of the population? If al speakers speak the same language,
then one might say that the community speaks that language.
However, there can still be mixtures of monolingual speakers.
The other possibility isthat a single speaker could internalize
more than one language (grammar), that is, the possibility of
non-monolingual (bi-, tri-lingual, etc. speakers). In the re-
mainder of this paper, we focuson just thefirst two cases, that
is, distributionsof languages over monolingual speakers; asit
turns out, the mathematics for the remaining possihility (bi-
lingualism) can be captured by our assumption, though space
prohibitsa complete demonstration of this property here. We
proceed to outline the basic model, and then a particular cog-
nitive case of languagelearning and language change, namely,
Portuguese.

The Logical Basis of Language Change

In our model thelogical basis of change islanguage learning:
the possibility of mislearning a particular target grammar of
one's caretakers. Note that if children always converged on

'Heretherearetwo chief exceptions: the general work on cultural
transmission and evolution by Cavalli-Sforza and Feldman (1981)
and the more narrowly drawn work of Kroch (1990). These previ-
ous works have complementary strengths and weaknesses: Cavalli-
Sforza and Feldman (1981), while providing a richer mathematical
model explicitly connected to population biology, do not actually
pursue specific cognitive predictions or linguistic implications. In
contrast, Kroch (1990) focuses on specific language changes, like
the well-known English Verb-second change, but does not consider
a dynamical system model, and in fact posits only the possibility
of different language distributions within a single speaker, rather
than over a population of speakers, thus avoiding a true population
approach to the problem.



thelanguage of their parents, then their language would bethe
same asthat of their parents, from each generation to the next.
Consequently, for languages to change from one generation
to the next it must be the case that children attain alanguage
different from that of their parents. We next show how to
mode! this computationally.

The Computational Framework

The procedure for mapping language learning to language
change has been developed in a series of previous works
(Niyogi and Berwick, 1996) and is reviewed here for con-
venience.

The three main components of alanguage learning frame-
work are:

1. G: aclass of grammars (languages) from which the child
chooses one on the basis of example sentences.

2. A: alearning algorithm used by the language learner to
chooseagrammar ¢ € G. (Inwhat followswe will system-
aticaly interchange the use of “grammar” and “language”
when there is no possibility of confusion or difference in
the resulting moddl results.)

3. 'P: aprobability distributionwith which sentences are pre-
sented to the learner.

Once each of items (1), (2), and (3) are well-specified we
have a complete description of language learning for asingle
generation. This has been dedlt with in a variety of situa
tionsunder a number of different assumptions about the class
of languages, learning algorithms, and the like, from Gold
(1967) to more recent work. As one can see, our frame-
work isgenera enough to encompass even more recent learn-
ing methods such as Minimum Description Length criteriaor
other statistical methods; in fact, in our example below weuse
a Maximum Likelihood search method, but any well-defined
procedure would do. A complete analysis of the behavior of
theindividual learner will alow usto analyze the behavior of
the population as we see in the next section.

Individuals ver sus Populations of Learners

Thelanguagelearning problemfocuses ontheindividual child
and attempts to characterize how it updates its hypothesis
from exampl e sentence to exampl e sentence over itslifetime.
Computational models of this phenomenon typically require
the learner’s hypothesis get closer and closer to the target
grammar as more and more data becomes available — thisis
as true of the classic Gold “identification in the limit” model
asitisof morerecently statistically-based methods that work
on corpuses. The Gold success criterion requires the learner
to converge to the target as the data goes to infinity; a more
psychologicaly plausible criterion requires the learner to be
at thetarget with high probability after apsychologically real -
istic number of examples have been received. Let us assume
that we are ableto compl etely characterize the behavior of the
individual leaner after receiving afinite number of examples
(positive or negative), i.e., we are able to solve the following
problem:

Suppose n examples are drawn according to P on 2* and
presented tothechild. Then, for every grammar ¢ inG, whatis
the probability that the child will have attained that grammar?
Let:

pn(g) = Probability[Learner hypothesizes ¢ after n examples]
(1)

Eqg. 1 characterizes the probability with which an individual
child internalizes each of the possible grammars (languages)
after n examples. Naturaly, if the data were al drawn from
some target language corresponding to grammar A (say) then
realistic language learning requires that the corresponding
probability (p, (k) tobehigh,i.e, thelearner attainsthetarget
grammar with high probability.

Let us now consider the population as a whole. The pop-
ulation is composed of (i) a collection of individual adults
that are the source of example sentences to the generation
of children; and (ii) a collection of individual children who
attempt to acquire the grammar of the parental generation on
the basis of exampl e sentences. |f we make the populationthe
object of our study, then we would characterize thelinguistic
composition of the population (what percentage spesks what
language) and how it evolves from generation to generation.
Sincethe populationisan aggregate of individuals, if wetake
ensemble averages, we would arrive a the behavior of the
population.

For the purposes of this paper we make the followingidesl -
izationsfor popul ation modeling; however, all of these can be
systematically dropped and their consequences explored: (1)
non-overlapping generations, i.e., adults and children and the
linguisticcomposition of a particular generation is comprised
of itsadult speakers, rather than amix of children and adults;
(2) no neighborhood effects, i.e., themix of adultsdetermines
the source of sentences and thisdistributional sourceisiden-
tical for al children (clearly not the case for geographical
boundary conditions, but as mentioned, easily modeled by a
extension using conventiona population biology methods);
(3) adults do not change their grammar/language over their
lifetime, i.e,. a monolingual maturation hypothesis? (4) chil-
dren have afinitetimeto acquire the grammar, i.e., alearning
maturation hypothesis.

Given the general model and these assumptions, one can
now characterize the evolution of a population of speakers
from generation to generation as a dynamical system. Let
the state of the population in generation i be defined by a
probability distribution s, (¢) on the set of grammars G. Thus
sp(%)[g] denotes the proportion of the populationthat spesk a
language corresponding to grammar g € G. Children are ex-
posed to datathat are amix of thelanguagesof theadult popu-
lation— in thisway one can model very simple geographical
effects (not detailed areal distributions, however). Suppose
we are able to characterize the behavior of the individual av-
eragechild, asineq. 1. Assuming that maturation occurs after
n examples, when the current generation of children mature
into adulthood, the composition of their population would be
givenby p,,. Thusthe update rulefor the entire system, deter-
mining the language mix of the next generation, is given by
the equation:

sp(i+1)=py

2In contradistinction to a bi-lingual assumption; however, as
noted, the mathematics for mixtures of languages within an indi-
vidual is approximately the same as that of mixtures of languages
between individuals, at least for our initial purposes here.



where p,, clearly dependsupon (1) thecomposition of the pre-
viousgeneration s,(7); (2) thelearning algorithmthat children
use to learning languages (grammars); and (3) the probabil -
ity distributionswith which speakers of a particular language
produce example sentences. In the remainder of this paper
we show how to develop the form of the update rule for a
concrete learning/language change situation, namely that of
Portuguese, and how to use the resulting dynamical systemto
test whether the assumptions of the model are cognitive plau-
sible, e.g., whether the observed time course of the dynamical
system actually follows the observed linguistic change from
classical to modern European Portuguese, whilemanipul ating
assumptions about the learning algorithm, and the like.

Portuguese: A Case Study

The main investigative message of this paper is to show
how this methodology can be applied to a specific case,
that of Portuguese. The main mora underscores the indi-
vidual/population difference, and demonstrates the potential
subtlely of language change: we show that simply because an
individual childwill, with high probability, chooseaparticular
grammar (European Portuguese) does not mean that all other
grammars (e.g., Classical Portuguese) will come to be elimi-
nated; rather, contrary to surface intuition, that is property of
the dynamica system and the population ensemble itself.

The Facts of Portuguese L anguage Change

In this paper, wefocus on a particular change in phonological
and syntactic Portuguese recently discussed by Galves and
Galves (1995). Roughly, over a period of 200 years, starting
from 1800, “classical” Portuguese (CP) underwent a change
in clitic placement. From the 16th century or before until
the beginning of the 19th century, both proclitics and encli-
ticswere possiblein root decl arative sentences (nonquantified
subjects), as given by G&G's examples (1) and (2), and in
quantified subjects (3), which we will refer to henceforth via
their reference numbers:

(1) Pauloaama.
Paulo her loves
‘Paulo loves her'’
(proclitic)

(2) Paulo amaa
Paulo loves-her
‘Paulo loves her’ (enclitic)

(3) Quem aama?
Who her loves?
* Who loves her?
(proclitic)

G&G summarize the relevant historical facts as follows:
“During the 19" century a change affecting the syntax
of clitic-placement occurred in the language spoken in
Portugal. . . Asaresult, sentences like (1) became agrammat-
ical and (2) remained as the only option for root affirmative
sentences with non-quantified subjects. This change, how-
ever, did not concern sentences like (3) with quantified or
Wh-subjectsin which proclisiswas, and continues to be, the
only option.”

G& G offer an explanation of this change, proposing alink
between phonology and syntax. Roughly speaking, Galves

has argued that phonological changes in Portuguese atered
the stress contours, and consequently the probabilities with
which sentence types occurred; this difference is stress is
what learning hinges on, and so the historical change. While
thisexplanation isarguable, wewill accept it toillustrate how
different learning algorithms might have different evolution-
ary consequences for historical prediction, ignoring for the
moment the linguistic implications of the various algorithms
and concentrating only on their computational properties. To
each sentence we will assign () a morphological word se-
guence; (b) astress contour; and (¢) asyntactic structure. For
example, again following G& G's analysis, sentence type (2)
will remain only in CP, while the two sentences (2)—3) above
will have different stress patterns for CP and EP. We omit
a detailed description of the stress assignment and syntactic
properties, as they are not necessary for our analysis. All we
need to know is that G&G assume that the stress contours
corresponding to sentence types (1), (2), and (3), which we
denote smply as ¢y, ¢z, c3, follow a Markov chain descrip-
tion and, more importantly, govern the probability with which
sentences are produced.® Thus, if two sentences have the
same stress contour, then they will be produced with the same
probability (given by the probability of the stress sequence
according to Markov production rules). In short, for the pur-
pose of this paper, it is sufficient to assume that there are two
simply two grammars (in accordance with Galves assump-
tions): G¢p, denoting the grammar of Classical Portuguese
(earlier) and G gp, denoting the grammar of European Por-
tuguese. Furthermore, the only data that isrelevant (ignoring
other aspects of the grammar) isas follows:

Classical Portuguese

(CP-1) ¢; : produced with probability p; (CP-2) ¢, produced
with probability 1 — 2p; and (CP-3) ¢3 produced with proba
bility p.

European Portuguese

(EP-1) ¢1: not produced; (2) (EP-2) ¢, produced with proba
bility 1 — ¢; and (EP-3) ¢3 produced with probahility g.

Any (historically changing) population will how by as-
sumption contain amix of speakersof Classical and European
Portuguese. The Classical Portuguese speakers produce the
sentence types shown above with the probabilities (parame-
terized by p). The European Portuguese speakers producethe
sentence types shown above with the probabilities (parame-
terized by q).

Thus we have defined (1) the class of grammars (1)
G = {Ggrp,Gcp}; (2) Probabilities with which speakers
of Ggp and G ¢ p produce sentences (parameterized by p and
q. We therefore can derive the evolutionary consequences
on the population for a variety of learning algorithms. We
first consider a probabilistic, maximum likelihood method:
to choose between CP and EP given some input sentences
(conditioned on stress patterns), pick thelanguage (grammar)
that maximizes the probability of generating theavailable data
(surface forms). This is probably the simplest probabilistic
learning algorithm and leads to:

3We are of course aware that this assumption of G&G may also
be questioned; one might substitute for it any other more plausible
relation between stress and sentencetypes— if any; this assumption
is simply designed as a bridge to get the child from a presumably
observable surface fact to a sentencetype.



GalvesBatch Algorithm

The learning algorithm for grammatical acquisition proceeds
asfollows:

1. Draw N examples (sentences).

2. Computelikelihoods,i.e., P(S,|Gcp) and P(S,|GEp).

3. Usethe Maximum Likelihood principleto choose between
the grammars.

Analysisof Individual Learning Algorithm  Asdiscussed
earlier, to calculate the historica dynamics we must be able
to analyze the behavior of the learning agorithm, i.e., char-
acterize eq. 1. For the analysis of the agorithm, we assume
that sentences are drawn ini.i.d. fashion according to adis-
tribution dictated by their stress contours as indicated in the
earlier section.

First, consider theform of thelikelihoods. Let the example
sentenceshe S,, = {s1, s2, ..., s, }. Duetothei.i.d. assump-
tion P(S,|Gcp)isgivenby [T:_, P(s;|Gcp). Suppose that
the set of n examples consists of a draws of c1, b draws of c3
andn — a — b draws of ¢,. Then thefollowingisimmediately
clear:

P(Sp|Gep) = p*(1—2p)n=abp
and

P(Sa|Grp) = (0" (1= )77V

Consequently, theindividual child, followingthelikelihood
principle will choose the grammar EP (G gp) only if (1) no
instances of ¢ occur initssample; and (2) ¢, and ¢3 occur in
numbers o that ¢(1—¢)* =% > (1—2p)»~b)p. Thereare
three cases to consider:
Casel. p< q < 2p.
Decision Rule: For this casg, it is possible to show that the
child (following themaximumlikelihoodrul €) alwayschooses
GEgp if no instances of ¢; occur. This is ssimply because
l1—-g¢g>1-2pandq > p.
Equation 1 and Population Update: Suppose that the propor-
tion of speskers of G¢p intheith generationis ;. Then the
probability of drawing c¢; is given by «;p. Consequently, the
probability of drawing a set of n examples without a single
draw of ¢1 is (1 — a1p)™. Thisis of course the probability
withwhich theindividual child choosesthe grammar of Euro-
pean Portuguese, G i p. Thustheupdaterulehasthefollowing
form:

a1 =1—(1— a;p)?

Case2. g < p < 2p.

Decision Rule: Inthiscase, themaximum likelihood decision
rule reduces to the following. Choose G gp if and only if (1)
a = 0, i.e, noinstances of ¢1 occur; and (2) b < ny where

log( £ )
= oa( =L 4 iog D) L) Hoa T) For all other data sets, choose G p.

Equation 1 and Population Update: Asusual, let there be «;
proportion of the previous generation spesking G¢p. It can
be shown that events (1) and (2) above occur with probability

Zlo Z: ) PkQ(n — ]{7) where P = a;p+ (1_ ai)q and

Q = a;(1-2p)+ (1 — a;)(1 — q). Thusthe update rule has
the following form:

ny
O[Z'+l:1—z< Z )PkQ(n—k)
k=0

Case3. p< 2p < q.
Decision Rule: The maximum likelihood decision rule re-
ducesto: choose Ggp ifandonlyif (1) ¢ = 0; and b > nvy
1-2p

wherey = W;ﬁ% Otherwise, choose G¢p.
Equation 1 and Population Update:

Asusual, let «; bethe proportionof the previousgeneration
speaking G p. It can be shown that the update rule has the
following form:

0

O[H_l:l— E (Z)PkQ(n—k)

k=n~y
where P and () are asin case 2.

System Evolution We have shown above how the behavior
of the population can be characterized as a dynamica system
and have derived the update rules for such a system for a
maximum likelihood learning algorithm The dynamical sys-
tem captures the evolutionary consequences of this particular
learning agorithm. In this section we describe its evolution-
ary properties, and see how they mesh with observed cognitive
(historicdl) trends.

Case 1.

1. « = Oisafixed point,i.e, if theinitia population consists
entirely of European Portuguese speakers, it will aways
remain that way. Furthermore, if np < 1, then thisis a
stable fixed point. It is aso the only fixed point between
0 and 1. Thus in this case a population speaking entirely
Classica Portuguese would gradually be converted to one
speaking entirely European Portuguese.

2. If np > 1, then « = 0 remains a fixed point but now be-
comes unstable. For this case, an additiona fixed point
(stable) is now created between 0 and 1. All initia popu-
lation compositionswill tend to thisparticular mix of G¢p
and G'gp speskers. Figure 1 shows the fixed (equilibrium)
point as afunction of n and p.

Case 2.

1. Unlike case 1, the dynamica evolution depends now de-
pends upon both p and ¢ in addition to n.

2. Itiseasily seenthat o« = Oisnolonger afixed (equilibrium)
point (unless p = ¢). Consequently, popul ations, irrespec-
tive of their initial composition, will always contain some
speakers of Classical Portuguese.

3. Itispossibleto show that thereis exactly onefixed (stable)
point and &l initial populations will tend to this vaue.
Shown infig. 2 is plot of the fixed point as afunction of ¢
and p for afixed value of n. Notice the multipleridgesin
the profile suggesting sensitivity to the value of ¢ around
some critical points. Shown in fig. 3 isaplot of the fixed
point as a function of p for various choices of n keeping ¢
fixed at 0.1.

Case 3.

1. Like case 2, the dynamica evolution depends upon both p
and ¢ in additionto n.
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Figure 1: The fixed point of the dynamical system (onthe 7
axis) asafunctionof » (onthe X axis) and Z% (ontheY axis).
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Figure 2: The fixed point of the dynamical system (onthe 7
axis) asafunction of ¢ (onthe X axis) and p (ontheY axis).
The value of n was held fixed at 5.
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Figure 3: The fixed point of the dynamical system asafunc-
tion of p (on the X axis) for various values of n. Here ¢ was
held fixed at 0.1 and p was alowed to vary from 0.1to 0.5.

2. Again,itiseasily seenthat « = Oisnolonger afixed point.
Therefore, the speakers of Classical Portuguese can never
be eliminated atogether for p and ¢ in thisrange.

We can again plot the fixed points of the resulting dynami-
ca system as afunction of the ¢ and p where n is held fixed
a 5 or for various values of n, keeping p fixed. We omit
the figures for reasons of space. The results are: again the
ridges in the landscape suggest a great sensitivity of the fi-
nal equilibrium point to dight changes in the values of p and
q. Classica Portuguese speakers are never completely elim-
inated, although their frequency can get quite low in certain
regions.

What are the important conclusions from thisanalysis? In
short, children using the maximum likelihoodrulewill choose
Ggp over G¢op. However, adynamical systemsanaysismust
becarried out to seeif that will sufficeto “wipe out” Classical
Portuguese. Only in case 1 will Classical Portuguese be lost
completely (provided p < 1/n). Inall other cases, there will
always remain some speakers of Classical Portuguese within
the community. In fact, the evolutionary properties can be
quite subtle.* Consider the following three example cases.

Examplel Let p = 0.05,¢ = 0.02 and n = 4. In this
casg, if the parental generation were all speaking Classical
Portuguese (e« = 1) then a simple computation shows that the
probability with which the child would pick G gp (European
Portuguese) is 0.66, i.e, it is greater than one-half. Thus,
in spite of the fact that the majority of children choose the
grammar of European Portuguese, the speakers of Classical
Portuguese will never die out completely. In fact, the fixed
point is 0.11. Roughly 11 percent of the population will
continueto speak Classical Portuguese.

4The same dynamical properties would hold of a “bi-lingual”
model wherethe distribution of languageswas over singleindividuals
— like that advocated by Kroch (1990). Here too the dynamical
properties and resulting cognitive changes are simply too subtle to
pick out by intuition alone; that is the key result of this paper.



Example2 Let p = 0.05,¢ = 0.06 and n = 8. If thiswere
the case, and the parental generation all spoke Classical Por-
tuguese, it turns out that the probability with which the indi-
vidual child would pick G p would again be 0.66. However,
now the speakers of classical Portuguesewould all belost and
the populationwould movetoitsstable, fixed point containing
only speakers of European Portuguese.

Example3 If p = 0.05,¢9 = 0.06 and n = 21 however, itis
easily seen that Classical Portuguese speakers can never be
completely lost.

Batch Subset Algorithm

Most importantly, we see that the above learning agorithm
makes specific predictions about the change of the linguistic
composition of the population as a whole. For purposes of
exploration, let us turn our attention to a simple modifica
tion of the previous learning algorithm that we call the Batch
Subset Algorithm because al the datais processed “at once.”
Our am is to demonstrate how readily one may carry out
changes in the learning algorithm and investigate their model
consequences.

1. Draw n examples.

2. If ¢ occurs even once, choose G¢cp, otherwise choose
Ggp.

Since European Portuguese is a subset of Classica Por-
tuguese for the data at hand, such alearner would choose the
grammar of European Portuguese G g p asitsdefault grammar
unless it received contradictory data (in this case c¢1: which
informs it that the target isnot Ggp but Gop. Of course,
such a learning algorithm is guaranteed to converge to the
correct target as the data goes to infinity. A natural question
to ask is whether it makes a different prediction about how
the population would evolve. Asit turnsout, it is possibleto
prove:

Theorem 1 Let «; denote the proportion of the community
speaking Classical Portuguese (G'¢p) in the ith generation.
Then this evolves as

a1 =1—(1— a;p)"?
where n isthe number of examples drawn and p isas usual.

Onecan aready seethat the evolutionary propertiesfor this
learning agorithm are different from the previous one. The
dynamicsisawaysgiven by the same updaterul eirrespective
of the values of p and ¢. In fact, the evolution, which is
totally independent of ¢, is identical to the Case 1 of the
previous learning agorithm dynamics. Naturdly, it has the
same equilibrium behavior as Figure 1.

Sinceabatch algorithmispresumably psychological unred
(dueto memory limitations), one could substitute, as we have
done, a memoryless algorithms, such as local gradient ascent
(Gibson and Wexler's “Triggering Learning Algorithm” or
TLA, 1994). Due to reasons of space, we leave a detailed
presentation of theresultsof thismodificationto oneside, and
simply notethat oneobtainsyet adifferent historical dynamic.
Itis possibleto provethat in this case, the population evolves
according to the update rule:

1
a1 =1- 5(1 — agp)”

where«; and «; 41 arethe proportionof the popul ation speak-
ing Classical Portuguesein generation i and i+ 1 respectively.
Asusud, n isthe number of examples drawn. Here, note that
CP speakers can never be eliminated tolessthan % of the pop-
ulation. Consequently, oneis ableto seeimmediately that the
TLA doesnot havetheright evolutionary propertiestoexplain
the change from Classical to European Portuguese. Second,
it is possible to show that there is exactly one (stable) fixed
point (between 1/2 and 1) to which such a system evolves,
for various values of n and p.

Conclusions: Lettersfrom the Portuguese

Asthe case of Portuguese language change shows, individual
language change heed not be the same as ensemble language
change. Differencesin language learning strategies can lead
to differences in language change over time. The dynamical
systems mathematics is essential because intuitions can lead
oneastray. To probemore deeply requiresanew, more sophis-
ticated approach like the one adopted by evolutionary popu-
lation biologists. Mathematical modeling may be required to
tease out subtledifferences between language-learning driven
language change — so much so that, to our minds, diachronic
language anal ysis now demands the same armamentarium ap-
pliedto*“ cognitive’ genotypesand phenotypesthat population
biol ogistshave brought to bear on the study of genotypic and
phenotypic change over time.
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