
Populations of Learners: the Case of Portuguese

Partha Niyogi (NIYOGI@RESEARCH.BELL-LABS.COM)
Robert C. Berwick (BERWICK@AI.MIT.EDU)

MIT and Bell Laboratories
MIT Center for Biological and Computational Learning

Room 765
545 Technology Sq.

Cambridge, MA 02139

Abstract

We present new results of a novel computational approach
to the interaction of two important cognitive-linguistic phe-
nomena: (1) language learning, long regarded as central to
modern synchronic linguistics; and (2) language change over
time, diachronic linguistics. We exploit the insight that while
language learning takes place at the level of the individual,
language change is more properly regarded as an ensemble
property that takes place at the level of populations of lan-
guage learners — while the former has been the subject of
much explicit computer modeling, the latter been less exten-
sively treated. We show by analytical and computer simulation
methods that language learning can be regarded as the driving
force behind a dynamical systems account of language change.
We apply this model to the specific (and cognitively relevant)
case of the historical change from Classical Portuguese (CP)
to European Portuguese (EP), demonstrating how a particular
language learning model (for instance, a maximum-likelihood
model akin to many statistically-based language approaches),
coupled with data on the differences between CP and EP, leads
to specific predictions for possible language-changeenvelopes,
as well as delimiting the class of possible language-learning
mechanisms and linguistic theories compatible with a given
class of changes. The main investigative message of this paper
is to show how this methodology can be applied to a specific
case, that of Portuguese. The main moral underscores the in-
dividual/population difference, and demonstrates the potential
subtlely of language change: we show that simply because an
individual child will, with high probability, choose a particular
grammar (European Portuguese) does not mean that all other
grammars (e.g., Classical Portuguese) will come to be elimi-
nated; rather, contrary to surface intuition, that is property of
the dynamical system and the population ensemble itself.

Language Change: the Population Approach
This paper presents a computational approach to the interac-
tion of two important cognitive phenomena: language learn-
ing and language change. The first, language learning, occurs
at the level of the individual — children acquire the language
(grammar) of their caretakers, a cognitive ability that has been
broadly investigated via a range of computational and experi-
mental methodologies. We note that language change occurs
at the level of a population: it is individual language learners
whose collective, ensemble properties constitute a distribu-
tion of linguistic knowledge. This is, of course, the common
biological view used to bridge between surficial properties
of individual organisms (their phenotypes) and the distribu-
tion of those properties over time (phenotypic evolutionary
change), as underlain by internal, individual constitutional

change (genotypes and genotypic distributions over time). In
our linguistic analogy, which is nearly exact, initial individ-
ual linguistic (or “grammatical”) knowledge corresponds to
genotypes, and final attained states of linguistic knowledge to
phenotypes; the distribution over final states characterizes the
linguistic properties of the population as a whole. Program-
matically, this analogy has often been drawn in diachronic
linguistic research, but in the main the corresponding compu-
tational analysis, which might then be drawn almost directly
from results in mathematical and computational population
biology, has been lacking.1

There are three logical distributionalpossibilities: distribu-
tions of languages over monolingual speakers; distributions
of languages within non-monolingual speakers; and combi-
nations of these two. For example, consider a population of
monolingual speakers; each speaks only one language. What
of the population? If all speakers speak the same language,
then one might say that the community speaks that language.
However, there can still be mixtures of monolingual speakers.
The other possibility is that a single speaker could internalize
more than one language (grammar), that is, the possibility of
non-monolingual (bi-, tri-lingual, etc. speakers). In the re-
mainder of this paper, we focus on just the first two cases, that
is, distributions of languages over monolingual speakers; as it
turns out, the mathematics for the remaining possibility (bi-
lingualism) can be captured by our assumption, though space
prohibits a complete demonstration of this property here. We
proceed to outline the basic model, and then a particular cog-
nitive case of language learning and language change, namely,
Portuguese.

The Logical Basis of Language Change
In our model the logical basis of change is language learning:
the possibility of mislearning a particular target grammar of
one’s caretakers. Note that if children always converged on

1Here there are two chief exceptions: the general work on cultural
transmission and evolution by Cavalli-Sforza and Feldman (1981)
and the more narrowly drawn work of Kroch (1990). These previ-
ous works have complementary strengths and weaknesses: Cavalli-
Sforza and Feldman (1981), while providing a richer mathematical
model explicitly connected to population biology, do not actually
pursue specific cognitive predictions or linguistic implications. In
contrast, Kroch (1990) focuses on specific language changes, like
the well-known English Verb-second change, but does not consider
a dynamical system model, and in fact posits only the possibility
of different language distributions within a single speaker, rather
than over a population of speakers, thus avoiding a true population
approach to the problem.



the language of their parents, then their language would be the
same as that of their parents, from each generation to the next.
Consequently, for languages to change from one generation
to the next it must be the case that children attain a language
different from that of their parents. We next show how to
model this computationally.

The Computational Framework
The procedure for mapping language learning to language
change has been developed in a series of previous works
(Niyogi and Berwick, 1996) and is reviewed here for con-
venience.

The three main components of a language learning frame-
work are:

1.
�

: a class of grammars (languages) from which the child
chooses one on the basis of example sentences.

2. � : a learning algorithm used by the language learner to
choose a grammar ��� ���

(In what follows we will system-
atically interchange the use of “grammar” and “language”
when there is no possibility of confusion or difference in
the resulting model results.)

3. � : a probability distribution with which sentences are pre-
sented to the learner.

Once each of items (1), (2), and (3) are well-specified we
have a complete description of language learning for a single
generation. This has been dealt with in a variety of situa-
tions under a number of different assumptions about the class
of languages, learning algorithms, and the like, from Gold
(1967) to more recent work. As one can see, our frame-
work is general enough to encompass even more recent learn-
ing methods such as Minimum Description Length criteria or
other statistical methods; in fact, in our example below we use
a Maximum Likelihood search method, but any well-defined
procedure would do. A complete analysis of the behavior of
the individual learner will allow us to analyze the behavior of
the population as we see in the next section.

Individuals versus Populations of Learners
The language learning problem focuses on the individualchild
and attempts to characterize how it updates its hypothesis
from example sentence to example sentence over its lifetime.
Computational models of this phenomenon typically require
the learner’s hypothesis get closer and closer to the target
grammar as more and more data becomes available — this is
as true of the classic Gold “identification in the limit” model
as it is of more recently statistically-based methods that work
on corpuses. The Gold success criterion requires the learner
to converge to the target as the data goes to infinity; a more
psychologically plausible criterion requires the learner to be
at the target with high probabilityafter a psychologically real-
istic number of examples have been received. Let us assume
that we are able to completely characterize the behavior of the
individual leaner after receiving a finite number of examples
(positive or negative), i.e., we are able to solve the following
problem:

Suppose � examples are drawn according to 	 on Σ 
 and
presented to the child. Then, for every grammar � in

���
what is

the probability that the child will have attained that grammar?
Let:


���� ����� Probability � Learner hypothesizes � after � examples �� 1 �
Eq. 1 characterizes the probabilitywith which an individual

child internalizes each of the possible grammars (languages)
after � examples. Naturally, if the data were all drawn from
some target language corresponding to grammar � (say) then
realistic language learning requires that the corresponding
probability (
 � � ��� to be high, i.e., the learner attains the target
grammar with high probability.

Let us now consider the population as a whole. The pop-
ulation is composed of (i) a collection of individual adults
that are the source of example sentences to the generation
of children; and (ii) a collection of individual children who
attempt to acquire the grammar of the parental generation on
the basis of example sentences. If we make the population the
object of our study, then we would characterize the linguistic
composition of the population (what percentage speaks what
language) and how it evolves from generation to generation.
Since the population is an aggregate of individuals, if we take
ensemble averages, we would arrive at the behavior of the
population.

For the purposes of this paper we make the following ideal-
izations for population modeling; however, all of these can be
systematically dropped and their consequences explored: (1)
non-overlapping generations, i.e., adults and children and the
linguistic composition of a particular generation is comprised
of its adult speakers, rather than a mix of children and adults;
(2) no neighborhood effects, i.e., the mix of adults determines
the source of sentences and this distributional source is iden-
tical for all children (clearly not the case for geographical
boundary conditions, but as mentioned, easily modeled by a
extension using conventional population biology methods);
(3) adults do not change their grammar/language over their
lifetime, i.e,. a monolingual maturation hypothesis2 (4) chil-
dren have a finite time to acquire the grammar, i.e., a learning
maturation hypothesis.

Given the general model and these assumptions, one can
now characterize the evolution of a population of speakers
from generation to generation as a dynamical system. Let
the state of the population in generation � be defined by a
probability distribution ��� � ��� on the set of grammars

���
Thus� � � ��� � �!� denotes the proportion of the population that speak a

language corresponding to grammar �"� ���
Children are ex-

posed to data that are a mix of the languages of the adult popu-
lation — in this way one can model very simple geographical
effects (not detailed areal distributions, however). Suppose
we are able to characterize the behavior of the individual av-
erage child, as in eq. 1. Assuming that maturation occurs after� examples, when the current generation of children mature
into adulthood, the composition of their population would be
given by 
�� � Thus the update rule for the entire system, deter-
mining the language mix of the next generation, is given by
the equation:

� � � ��# 1 �$� 
��
2In contradistinction to a bi-lingual assumption; however, as

noted, the mathematics for mixtures of languages within an indi-
vidual is approximately the same as that of mixtures of languages
between individuals, at least for our initial purposes here.



where 
�� clearly depends upon (1) the composition of the pre-
vious generation � � � ��� ; (2) the learning algorithm that children
use to learning languages (grammars); and (3) the probabil-
ity distributions with which speakers of a particular language
produce example sentences. In the remainder of this paper
we show how to develop the form of the update rule for a
concrete learning/language change situation, namely that of
Portuguese, and how to use the resulting dynamical system to
test whether the assumptions of the model are cognitive plau-
sible, e.g., whether the observed time course of the dynamical
system actually follows the observed linguistic change from
classical to modern European Portuguese, while manipulating
assumptions about the learning algorithm, and the like.

Portuguese: A Case Study
The main investigative message of this paper is to show
how this methodology can be applied to a specific case,
that of Portuguese. The main moral underscores the indi-
vidual/population difference, and demonstrates the potential
subtlely of language change: we show that simply because an
individualchild will, with highprobability, choose a particular
grammar (European Portuguese) does not mean that all other
grammars (e.g., Classical Portuguese) will come to be elimi-
nated; rather, contrary to surface intuition, that is property of
the dynamical system and the population ensemble itself.

The Facts of Portuguese Language Change
In this paper, we focus on a particular change in phonological
and syntactic Portuguese recently discussed by Galves and
Galves (1995). Roughly, over a period of 200 years, starting
from 1800, “classical” Portuguese (CP) underwent a change
in clitic placement. From the 16th century or before until
the beginning of the 19th century, both proclitics and encli-
tics were possible in root declarative sentences (nonquantified
subjects), as given by G&G’s examples (1) and (2), and in
quantified subjects (3), which we will refer to henceforth via
their reference numbers:

(1) Paulo a ama.
Paulo her loves
‘Paulo loves her’
(proclitic)

(2) Paulo ama-a
Paulo loves-her
‘Paulo loves her’ (enclitic)

(3) Quem a ama?
Who her loves?
‘ Who loves her?’
(proclitic)

G&G summarize the relevant historical facts as follows:
“During the 19 � � century a change affecting the syntax
of clitic-placement occurred in the language spoken in
Portugal

� � �
As a result, sentences like (1) became agrammat-

ical and (2) remained as the only option for root affirmative
sentences with non-quantified subjects. This change, how-
ever, did not concern sentences like (3) with quantified or
Wh-subjects in which proclisis was, and continues to be, the
only option.”

G&G offer an explanation of this change, proposing a link
between phonology and syntax. Roughly speaking, Galves

has argued that phonological changes in Portuguese altered
the stress contours, and consequently the probabilities with
which sentence types occurred; this difference is stress is
what learning hinges on, and so the historical change. While
this explanation is arguable, we will accept it to illustrate how
different learning algorithms might have different evolution-
ary consequences for historical prediction, ignoring for the
moment the linguistic implications of the various algorithms
and concentrating only on their computational properties. To
each sentence we will assign (a) a morphological word se-
quence; (b) a stress contour; and (c) a syntactic structure. For
example, again following G&G’s analysis, sentence type (2)
will remain only in CP, while the two sentences (2)–(3) above
will have different stress patterns for CP and EP. We omit
a detailed description of the stress assignment and syntactic
properties, as they are not necessary for our analysis. All we
need to know is that G&G assume that the stress contours
corresponding to sentence types (1), (2), and (3), which we
denote simply as � 1 � � 2 � � 3, follow a Markov chain descrip-
tion and, more importantly, govern the probabilitywith which
sentences are produced.3 Thus, if two sentences have the
same stress contour, then they will be produced with the same
probability (given by the probability of the stress sequence
according to Markov production rules). In short, for the pur-
pose of this paper, it is sufficient to assume that there are two
simply two grammars (in accordance with Galves’ assump-
tions):

�����
, denoting the grammar of Classical Portuguese

(earlier) and
�	�
�

, denoting the grammar of European Por-
tuguese. Furthermore, the only data that is relevant (ignoring
other aspects of the grammar) is as follows:
Classical Portuguese
(CP-1) � 1 : produced with probability 
 ; (CP-2) � 2 produced
with probability 1 � 2
 ; and (CP-3) � 3 produced with proba-
bility 
 .
European Portuguese
(EP-1) � 1: not produced; (2) (EP-2) � 2 produced with proba-
bility 1 �
� ; and (EP-3) � 3 produced with probability � .

Any (historically changing) population will now by as-
sumption contain a mix of speakers of Classical and European
Portuguese. The Classical Portuguese speakers produce the
sentence types shown above with the probabilities (parame-
terized by 
 ). The European Portuguese speakers produce the
sentence types shown above with the probabilities (parame-
terized by � ).

Thus we have defined (1) the class of grammars (1)� ��� � �
� ��� ����� ; (2) Probabilities with which speakers
of
� �
�

and
� ���

produce sentences (parameterized by 
 and
� . We therefore can derive the evolutionary consequences
on the population for a variety of learning algorithms. We
first consider a probabilistic, maximum likelihood method:
to choose between CP and EP given some input sentences
(conditioned on stress patterns), pick the language (grammar)
that maximizes the probabilityof generating the available data
(surface forms). This is probably the simplest probabilistic
learning algorithm and leads to:

3We are of course aware that this assumption of G&G may also
be questioned; one might substitute for it any other more plausible
relation between stress and sentence types — if any; this assumption
is simply designed as a bridge to get the child from a presumably
observable surface fact to a sentence type.



Galves Batch Algorithm
The learning algorithm for grammatical acquisition proceeds
as follows:

1. Draw � examples (sentences).
2. Compute likelihoods, i.e., 	 ��� ��� � ��� � and 	 ��� ��� � � � � .
3. Use the Maximum Likelihood principle to choose between

the grammars.

Analysis of Individual Learning Algorithm As discussed
earlier, to calculate the historical dynamics we must be able
to analyze the behavior of the learning algorithm, i.e., char-
acterize eq. 1. For the analysis of the algorithm, we assume
that sentences are drawn in i.i.d. fashion according to a dis-
tribution dictated by their stress contours as indicated in the
earlier section.

First, consider the form of the likelihoods. Let the example
sentences be ��� � � � 1

� � 2
� � � � � � � � � Due to the i.i.d. assump-

tion 	 ����� � � ��� � is given by � ��
	
1 	 � �

� � � ��� � � Suppose that
the set of � examples consists of � draws of � 1

�
�
draws of � 3

and ����� � � draws of � 2 � Then the following is immediately
clear:

	 ��� ��� � ��� ��� 
�� � 1 � 2
 ��� ��� � ����� 
 �
and

	 ����� � � �
� ��� � 0 � � � 1 � �!� � ��� � ����� � �
Consequently, the individualchild, following the likelihood

principle will choose the grammar EP (
��� �

) only if (1) no
instances of � 1 occur in its sample; and (2) � 2 and � 3 occur in
numbers so that � � � 1 � �!� � ��������� � 1 � 2
 � � ������� 
 � � There are
three cases to consider:
Case 1. 
�� � � 2
 �
Decision Rule: For this case, it is possible to show that the
child (following the maximum likelihoodrule) always chooses� � �

if no instances of � 1 occur. This is simply because
1 �
� � 1 � 2
 and � � 
 �
Equation 1 and Population Update: Suppose that the propor-
tion of speakers of

� ���
in the � th generation is � � � Then the

probability of drawing � 1 is given by � � 
 � Consequently, the
probability of drawing a set of � examples without a single
draw of � 1 is � 1 � � 1


 � � � This is of course the probability
with which the individual child chooses the grammar of Euro-
pean Portuguese,

� � � �
Thus the update rule has the following

form: � �
! 1 � 1 � � 1 �"� � 
 � �
Case 2. � � 
#� 2
 �
Decision Rule: In this case, the maximum likelihooddecision
rule reduces to the following. Choose

� �
�
if and only if (1)�"� 0

�
i.e., no instances of � 1 occur; and (2)

� � ��$ where$ � log � 1 %'&
1 % 2 ( �

log � 1 %'&
1 % 2 ( � ! log � (& � � For all other data sets, choose

� �����
Equation 1 and Population Update: As usual, let there be � �
proportion of the previous generation speaking

� ��� �
It can

be shown that events (1) and (2) above occur with probability) �
*+ 	
0

, � -/. 	 +10 � � � - � where 	 �2� � 
 # � 1 �3� � � � and0 �2� � � 1 � 2
 ��# � 1 �4� � � � 1 � �!� � Thus the update rule has
the following form:

� �5! 1 � 1 �
�
*6 + 	

0

, � -/. 	 + 0 � � � - �
Case 3. 
7� 2
�� � �
Decision Rule: The maximum likelihood decision rule re-
duces to: choose

� � �
if and only if (1) � � 0; and

� � ��$
where $"� log � 1 % 2 (

1 %'& �
log � &( � ! log � 1 % 2 (

1 %'& � . Otherwise, choose
� ���

.

Equation 1 and Population Update:
As usual, let � � be the proportionof the previous generation

speaking
� ��� �

It can be shown that the update rule has the
following form:

� �
! 1 � 1 �
06+ 	 �8*
, � -/. 	 + 0 � � � - �

where 	 and
0

are as in case 2.

System Evolution We have shown above how the behavior
of the population can be characterized as a dynamical system
and have derived the update rules for such a system for a
maximum likelihood learning algorithm The dynamical sys-
tem captures the evolutionary consequences of this particular
learning algorithm. In this section we describe its evolution-
ary properties, and see how they mesh with observed cognitive
(historical) trends.
Case 1.

1. � � 0 is a fixed point, i.e., if the initial population consists
entirely of European Portuguese speakers, it will always
remain that way. Furthermore, if � 
9� 1

�
then this is a

stable fixed point. It is also the only fixed point between
0 and 1. Thus in this case a population speaking entirely
Classical Portuguese would gradually be converted to one
speaking entirely European Portuguese.

2. If � 
 � 1
�
then � � 0 remains a fixed point but now be-

comes unstable. For this case, an additional fixed point
(stable) is now created between 0 and 1. All initial popu-
lation compositions will tend to this particular mix of

� ���
and

�	�
�
speakers. Figure 1 shows the fixed (equilibrium)

point as a function of � and 
 �
Case 2.

1. Unlike case 1, the dynamical evolution depends now de-
pends upon both 
 and � in addition to � �

2. It is easily seen that � � 0 is no longer a fixed (equilibrium)
point (unless 
 � � ). Consequently, populations, irrespec-
tive of their initial composition, will always contain some
speakers of Classical Portuguese.

3. It is possible to show that there is exactly one fixed (stable)
point and all initial populations will tend to this value.
Shown in fig. 2 is plot of the fixed point as a function of �
and 
 for a fixed value of � � Notice the multiple ridges in
the profile suggesting sensitivity to the value of � around
some critical points. Shown in fig. 3 is a plot of the fixed
point as a function of 
 for various choices of � keeping �
fixed at 0

�
1.

Case 3.

1. Like case 2, the dynamical evolution depends upon both 

and � in addition to � .
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Figure 1: The fixed point of the dynamical system (on the �
axis) as a function of � (on the � axis) and 1� (on the � axis).

0.1
0.2

0.3
0.4

Y
0.1

0.2
0.3

0.4
X

 0
0.

2
0.

4
0.

6
0.

8
1

Z

Figure 2: The fixed point of the dynamical system (on the �
axis) as a function of � (on the � axis) and 
 (on the � axis).
The value of � was held fixed at 5.
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Figure 3: The fixed point of the dynamical system as a func-
tion of 
 (on the � axis) for various values of � . Here � was
held fixed at 0

�
1 and 
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�
1 to 0
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�

2. Again, it is easily seen that � � 0 is no longer a fixed point.
Therefore, the speakers of Classical Portuguese can never
be eliminated altogether for 
 and � in this range.

We can again plot the fixed points of the resulting dynami-
cal system as a function of the � and 
 where � is held fixed
at 5 or for various values of � , keeping 
 fixed. We omit
the figures for reasons of space. The results are: again the
ridges in the landscape suggest a great sensitivity of the fi-
nal equilibrium point to slight changes in the values of 
 and
� . Classical Portuguese speakers are never completely elim-
inated, although their frequency can get quite low in certain
regions.

What are the important conclusions from this analysis? In
short, children using the maximum likelihoodrule will choose� � �

over
� ���

. However, a dynamical systems analysis must
be carried out to see if that will suffice to “wipe out” Classical
Portuguese. Only in case 1 will Classical Portuguese be lost
completely (provided 
7� 1 � � ). In all other cases, there will
always remain some speakers of Classical Portuguese within
the community. In fact, the evolutionary properties can be
quite subtle.4 Consider the following three example cases.

Example 1 Let 
 � 0
�
05

� � � 0
�
02 and � � 4. In this

case, if the parental generation were all speaking Classical
Portuguese ( � � 1) then a simple computation shows that the
probability with which the child would pick

� �
�
(European

Portuguese) is 0
�
66

�
i.e., it is greater than one-half. Thus,

in spite of the fact that the majority of children choose the
grammar of European Portuguese, the speakers of Classical
Portuguese will never die out completely. In fact, the fixed
point is 0.11. Roughly 11 percent of the population will
continue to speak Classical Portuguese.

4The same dynamical properties would hold of a “bi-lingual”
model where the distribution of languages was over single individuals
— like that advocated by Kroch (1990). Here too the dynamical
properties and resulting cognitive changes are simply too subtle to
pick out by intuition alone; that is the key result of this paper.



Example 2 Let 
 � 0
�
05

� � � 0
�
06 and � � 8

�
If this were

the case, and the parental generation all spoke Classical Por-
tuguese, it turns out that the probability with which the indi-
vidual child would pick

� � �
would again be 0

�
66

�
However,

now the speakers of classical Portuguese would all be lost and
the populationwould move to its stable, fixed point containing
only speakers of European Portuguese.

Example 3 If 
 � 0
�
05

� � � 0
�
06 and � � 21 however, it is

easily seen that Classical Portuguese speakers can never be
completely lost.

Batch Subset Algorithm
Most importantly, we see that the above learning algorithm
makes specific predictions about the change of the linguistic
composition of the population as a whole. For purposes of
exploration, let us turn our attention to a simple modifica-
tion of the previous learning algorithm that we call the Batch
Subset Algorithm because all the data is processed “at once.”
Our aim is to demonstrate how readily one may carry out
changes in the learning algorithm and investigate their model
consequences.

1. Draw � examples.
2. If � 1 occurs even once, choose

�����
, otherwise choose� �
� �

Since European Portuguese is a subset of Classical Por-
tuguese for the data at hand, such a learner would choose the
grammar of European Portuguese

� � �
as its default grammar

unless it received contradictory data (in this case � 1: which
informs it that the target is not

� � �
but

� ���
. Of course,

such a learning algorithm is guaranteed to converge to the
correct target as the data goes to infinity. A natural question
to ask is whether it makes a different prediction about how
the population would evolve. As it turns out, it is possible to
prove:

Theorem 1 Let � � denote the proportion of the community
speaking Classical Portuguese (

� ���
) in the � th generation.

Then this evolves as� �
! 1 � 1 � � 1 �"� � 
 � �
where � is the number of examples drawn and 
 is as usual.

One can already see that the evolutionary properties for this
learning algorithm are different from the previous one. The
dynamics is always given by the same update rule irrespective
of the values of 
 and � � In fact, the evolution, which is
totally independent of � � is identical to the Case 1 of the
previous learning algorithm dynamics. Naturally, it has the
same equilibrium behavior as Figure 1.

Since a batch algorithm is presumably psychological unreal
(due to memory limitations), one could substitute, as we have
done, a memoryless algorithms, such as local gradient ascent
(Gibson and Wexler’s “Triggering Learning Algorithm” or
TLA, 1994). Due to reasons of space, we leave a detailed
presentation of the results of this modification to one side, and
simply note that one obtains yet a different historical dynamic.
It is possible to prove that in this case, the population evolves
according to the update rule:

� �5! 1 � 1 � 1
2
� 1 � � 1


 � �

where � � and � �
! 1 are the proportionof the population speak-
ing Classical Portuguese in generation � and � # 1 respectively.
As usual, � is the number of examples drawn. Here, note that
CP speakers can never be eliminated to less than 1

2 of the pop-
ulation. Consequently, one is able to see immediately that the
TLA does not have the rightevolutionary properties to explain
the change from Classical to European Portuguese. Second,
it is possible to show that there is exactly one (stable) fixed
point (between 1 � 2 and 1) to which such a system evolves,
for various values of � and 
 .

Conclusions: Letters from the Portuguese
As the case of Portuguese language change shows, individual
language change need not be the same as ensemble language
change. Differences in language learning strategies can lead
to differences in language change over time. The dynamical
systems mathematics is essential because intuitions can lead
one astray. To probe more deeply requires a new, more sophis-
ticated approach like the one adopted by evolutionary popu-
lation biologists. Mathematical modeling may be required to
tease out subtle differences between language-learning driven
language change — so much so that, to our minds, diachronic
language analysis now demands the same armamentarium ap-
plied to “cognitive” genotypes and phenotypes that population
biologists have brought to bear on the study of genotypic and
phenotypic change over time.
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