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We discuss the problem of characterizing the evolutionary dynamics of
linguistic populations over successive generations. Here we introduce
the framework of Cavalli-Sforza and Feldman (1981) for the treatment
of cultural evolution and show how to apply it to the particular case of
language change. We relate the approach to that of Niyogi and Berwick
(1995) and show how to map trajectories in one to those in the other.
In both models, language acquisition serves as the mechanism of trans-
mission of language from one generation to the next. For memory-less
learning algorithms and and the case of two languages in contact, we de-
rive particular dynamical systems under the assumptions of both kinds
of models. As an application of such computational modeling to histor-
ical change, we consider the evolution of English from the 9th century
to the 14th century A. D. and discuss the role of such modeling to judge
the adequacy of competing linguistic accounts for historical phenomena.
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1.1 The Problem of Language Change

A central concern for historical linguists is to characterize the dimen-
sions along which human languages change over time and explain why
they do so. Under the assumptions of contemporary linguistic theory,
change in linguistic behavior of human populations must be a result of a
change in the internal grammars that successive generations of humans
employ. The question then becomes: why do the grammars of successive
generations differ from each other? In order to answer this question, we
need to know how these grammars are acquired in the first place and
how the grammars of succeeding generations are related to each other.
If such a relationship is uncovered, one might then be able to systemati-
cally predict the envelope of possible changes and relate them to actually
observed historical trajectories.

Problems in historical or evolutionary linguistics have only recently
begun to attract computational attention. This is in contrast to some
other areas of linguistics, notably language acquisition, where for exam-
ple, a significant body of work exists regarding computational models of
grammatical inference under a variety of different assumptions (see, for
example, Wexler and Culicover, 1980; Osherson, Stob and Weinstein,
1986). At the same time, computational and mathematical work in
biological evolution has a long and rich tradition beginning with the pi-
oneering work of Fisher, Wright, Haldane and continuing to the present
day. In a treatise in 1981, Cavalli-Sforza and Feldman outlined a gen-
eral model of cultural change that was inspired by models of biological
evolution and has potential and hitherto unexploited applicability to the
case of language.

Indeed many motivating examples in Cavalli-Sforza and Feldman (1981)
were taken from the field of language change. However, the applicability
of such models to language change was not formally pursued there. In
this paper, we introduce their basic model and provide one possible way
in which the principles and parameters approach to grammatical theory
(construed in the broadest possible way) is amenable to their modeling
framework.

More recently, a framework for the computational characterization of
changing linguistic populations has also been developed in a series of
papers by Niyogi and Berwick (1995,1997,1998). We explore here the
formal connections between these two approaches for the case of two lin-
guistic variants in competition. In particular, we show how evolutionary
trajectories in one framework can be formally translated into the other
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and discuss their similarities and differences. To ground the discussion
in a particular linguistic context, we show the application of such models
to generate insight into possible evolutionary trajectories for the case of
diachronic evolution of English from the 9th century A.D. to the 15th
century A.D. Finally, we provide some extensions of the basic Cavalli-
Sforza and Feldman framework that might allow us to characterize the
effect of spatial (geographical) location on the linguistic interactions be-
tween individuals in a population and the evolutionary consequences of
such interactions.

The reader might ask — what is the role of formal modeling of the sort
described in this paper in gaining insight in historical or evolutionary
linguistics? From our perspective, these techniques provide research
tools to increase our understanding about the range of explanations for
historical phenomena. The formal model places constraints on the kinds
of informal, largely descriptive accounts of attested historical changes
which linguists develop. Tools of this sort therefore help us figure out
the plausibility of various accounts and rule out logical inconsistencies
that might be difficult to spot in a more informally developed treatment.

1.2 The Cavalli-Sforza and Feldman Theory of
Cultural Transmission and Change

Cavalli-Sforza and Feldman (1981) outline a theoretical model for cul-
tural change over generations. Such a model closely mimics the trans-
mission of genetic parameters over generations: except now, we have
“cultural” parameters that are transmitted from parents to children
with certain probabilities. In the model (hereafter referred to as the
CF model in this paper), the mechanism of transmission is unknown —
only the probabilities of acquiring one of several possible variations of
the trait are known.

We reproduce their basic formulation for vertical transmission (from
one generation to the next) of a particular binary valued trait. Assume
a particular cultural trait has one of two values. Some examples of traits
they consider are political orientation (Democrat/Republican) or health
habits (smoker/non-smoker) and so on. Let the two values be denoted
by H and L. Each individual is assumed to have exactly one of these
two values. However, such a value is presumably not innate but learned.

A child born to two individuals (mother and father) will acquire one of
these two possible values over its lifetime. The probability with which it
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Paternal Val. | Maternal Val. | P(ChildVal. = L) | P(Types) | Random Mating
L L bg P3 uf
L H bo P2 we(1 — uy)
H L b1 P1 (1 — uy)
H H bo Po (1= us)?

Table 1: The cultural types of parents and children related to each other
by their proportions in the population. The values depicted are for vertical
transmission and random mating.

will acquire each of these traits depends upon its immediate environment
~in the standard case of their model (though variations are considered!),
its parents. Thus one can construct table 1.2.

The first three columns of table 1.2 are self-explanatory. As one can
see easily enough, parental compositions can be one of 4 types depending
upon the values of the cultural traits of each of the parents. We denote
by b; the probability with which a child of the i¢th parental type will
attain the trait L (with 1 — b;, it attains H.) In addition, let p; be the
probability of the i¢th parental type in the population. Finally, we let
the proportion of people having type L in the parental generation be
u;. Here ¢ indexes the generation number and therefore proportion of
L types in the parental generation is given by u; and proportion of L
types in the next generation (children who mature into adults) is given
by usy1.

Under random mating, one sees that the proportion of parents of type
(L, L) ,i.e., male L types married to female L types is u?. Similarly one
can compute the probability of each of the other combinations.

Given this, they go on to show that the proportion of L types in the
population will evolve according to the following quadratic update rule:

ugy1 = Bul + Cus + D (1.1)

where B = b3—|—b0 —bl —bz, C = b2—|—b1 —2])0, and D = bo. In this

manner, the proportion of L types in generation ¢ + 1 (given by us41 )

1 Pure vertical transmission involves transmission of cultural parameters from par-
ents to children. They also consider (i) obligue transmission where members of the
parental generation other than the parents affect the acquisition of the cultural
parameters (ii) horizontal transmission where members of the same generation in-
fluence the individual child. We discuss in a later section the approach of Niyogi
and Berwick (1995) that involves oblique transmission of a particular sort and
different from the Cavalli-Sforza and Feldman (1981) treatment.
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is related to the proportion of L types in generation ¢ (given by uy).

A number of properties and variations of this basic evolutionary be-
havior are then evaluated (Cavalli-Sforza and Feldman, 1981) under dif-
ferent assumptions.

Thus, we see that evolution (change) of the cultural traits within the
population is essentially driven by the probabilities with which children
acquire the traits given their parental types. The close similarity of
this particular model? to biological evolution is clear: (1) trait values,
like gene-types are discrete (2) their transmission from one generation
to another depends (in a probabilistic sense) only on the trait-values
(gene-types) of the parents.

The basic intuition they attempted to capture in their model is that
cultural traits are acquired (learned) by children from their parents.
Thus, by noting the population mix of different parental types and the
probabilities with which they are transmitted one can compute the evo-
lution of these traits within the population. They had hoped to apply
this model to language. In the next section we show how to do this.

1.3 Instantiating the CF Model for Languages

In order to apply the model to the phenomena of language change, the
crucial point to appreciate is that the mechanism of language transmis-
sion from generation to generation is “language learning”, i.e., children
learn the language of their parents as a result of exposure to the primary
linguistic data they receive from their linguistic environment. Therefore,
in this particular case, the transmission probabilities b;’s in the model
above will depend upon the learning algorithm they employ. We outline
this dependence for a simplified situation corresponding to two language
types in competition.

1.3.1 One Parameter Models

Assume there are two languages in the world — L; and Ls. Such a
situation might effectively arise if two languages differing by a linguistic
parameter are in competition with each other and we will discuss later
the historical example of syntactic change in English for which this is a

2 To avoid misinterpretation, it is worthwhile to mention that extensions to contin-
uous valued traits have been discussed. Those extensions have less relevance for
the case of language since linguistic objects are essentially discrete.
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reasonable approximation. We consider languages to be subsets of X*
in the usual sense where X is a finite alphabet. Furthermore, underlying
each language L; is a grammar g; that represents the internal knowledge
that speakers of the language possess of it.

Individuals are assumed to be native speakers of exactly one of these
two languages. Furthermore, let speakers of Ly produce sentences with a
probability distribution P; and speakers of Ly produce sentences with a
distribution Ps. There are now four parental types and children born to
each of these parental types are going to be exposed to different linguistic
inputs and as a result will acquire a particular language with different
probabilities.

In the abstract, let us assume that children follow some acquisition
algorithm A (for a brief overview of the structure of learning theory,
see appendix) that operates on the primary linguistic data they receive
and comes up with a grammatical hypothesis — in our case, a choice
of g1 or g2 (correspondingly L; or Ls). Formally, let Dy be the set of
all subsets of X* of cardinality k. Each subset of X* of cardinality &
is a candidate dataset consisting of k sentences that might constitute
the primary linguistic data a child receives. Clearly Dy is the set of all
candidate datasets of size k. Then A is a computable mapping from the
set US2 Dy to {g1,92}. We now make the following assumptions.

1. Children of parents who speak the same language receive examples
only from the unique language their parents share, i.e., children of
parents speaking L; receive sentences drawn according to P; and
children of parents speaking L, receive examples drawn according to
Pz.

2. Children of parents who speak different languages receive examples
from an egqual mixture of both languages, i.e., they receive examples
drawn according to %Pl + %Pz.

3. After k examples, children “mature” and whatever grammatical hy-
pothesis they have, they retain for the rest of their lives.

Thus the learning algorithm A operates on the sentences it receives.
These sentences in turn are drawn at random according to a probability
distribution that depends on the parental type. We now define the
following quantity:

g(A, P k)= > I1P(w:) (1.2)

{weDr:A(w)=g1}i=1
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Paternal Language | Maternal Language P Prob. Child speaks L4
L1 L1 P1 b3 :g(A,P1,k)
Ly Lo 1P+ 1P | bo=g(A LP 4+ 1Pk)
Lo Ly §P1+§P2 by :g(A,5P1+5P2,k)
L2 L2 P2 bo :g.A, PQ,k)

Table 2: The probability with which children attain each of the language
types, L1 and L, depends upon the parental linguistic types, the probability
distributions P; and P, and the learning algorithm .A.

Recall that each element w € Dy, is a set of k sentences. In eq. 1.2 we
denote by w; the ith sentence of the set w. Therefore, g(A, P, k) is the
probability with which the algorithm A hypothesizes grammar g; given
a random 1.1.d. draw of k£ examples according to probability distribution
P. Clearly, g characterizes the behavior of the learning algorithm .4
if sentences were drawn according to P. It 1s worthwhile to note that
learnability (in the limit, in a stochastic generalization of Gold, 1967)
requires the following:

Statment 1. If the support of P is Ly then limy__.o g(A, P, k) =1 and
if the support of P is Ly then lim,_. o g(A, P, k) = 0.

In practice, of course, we have made the assumption that children
“mature” after k examples: so a reasonable requirement is that ¢ be
high if P has support on L; and low if P has support on Ls. Given this,
we can now write down the probability with which children of each of
the four parental types will attain the language L,. These are shown in
table 2.

Thus we can express the b;’s in the CF model of cultural transmission
in terms of the learning algorithm. This is reasonable because after all,
the b}s attempt to capture the fact that traits are “learned” —- in the
case of languages, they are almost certainly learned from exposure to
linguistic data.

Under random mating®, we see that the population evolves according
to equation 1.1. Substituting the appropriate g’s from table 2 above in
place of the b}s we obtain an evolution that depends upon P;,Ps,.A, and

3 We have only considered the case of random mating here for illustrative conve-
nience. The extension to more assortative forms of mating can be carried using
the standard techniques in population biology.
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k.

1.3.2 An Alternative Approach

In a recent attempt to explicitly characterize the problem of language
change, Niyogi and Berwick (1995,1997,1998) develop a model (here-
after, we refer to this class of models as NB models) for the phenomenon
making the following simplifying assumptions.

1. The population can be divided into children (learners) and adults
(sources).

2. All children in the population are exposed to sentences drawn from
the same distribution.

3. The distribution with which sentences are drawn depends upon the
distribution of language speakers in the adult population.

The equations for the evolution of the population under these as-
sumptions were derived. Let us consider the evolution of two-language
populations. At any point, one can characterize the state of the popula-
tion by a single variable (s; € [0, 1]) denoting the proportion of speakers
of L1 in the population. Further assume, as before, that speakers of
L1 produce sentences with distribution P; on the sentences of L and
speakers of Ly produce sentences with distribution Ps on the sentences
of L2 .

The evolution of s; over time (the time index ¢ denotes generation
number) was derived in terms of the learning algorithm A, the distribu-
tions P; and Ps, and the maturation time k. Essentially, this evolution
turns out to be the following:

sip1 = f(51) = 9(A, 5ePL+ (1 — 51) Pa, k)

The interpretation is clear. If the previous state was s;, then children
are exposed to sentences drawn according to s;P; + (1 — s¢)P2. The
probability with which the average child will attain L; is correspond-
ingly provided by g and therefore one can expect that this will be the
proportion of L, speakers in the next generation, i.e., after the children
mature to adulthood.

Niyogi and Berwick (1995,1997,1998) derive the specific functional
form of the update rule f (equivalently g) for a number of different
learning algorithms. In the next section, we show how these two ap-
proaches to characterizing the evolutionary dynamics of linguistic pop-
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ulations are related. Specifically, we show how the evolutionary update
rule f in the NB framework is explicitly related to the update rule in
the CF framework.

1.3.3 Transforming NB Models into the CF
Framework

Let the NB update rule be given by s;y1 = f(s¢). Then, we see imme-
diately that:

1. b3 = f(1)
2. by = by = f(0.5)
3. bg = f(0).

The CF update rule is now given by eq. 1.1. The update as we have
noted is quadratic and the coefficients can be expressed in terms of the
NB update rule f. Specifically, the system evolves as

st = (F(1) + £(0) = 2f(0.5)) si + (2£(0.5) — 2f(0)) s¢ + F(0) (1.3)

Thus we see that if we are able to derive the NB update rule, we can
easily transform it to arrive at the CF update rule for evolution of the
population. The difficulty of deriving both rules rests upon the difficulty
of deriving the quantitiy g that appears in both update rules. Notice
further that the CF update rule is always quadratic while the NB update
rule is in general not quadratic.

The essential difference in the nature of the two update rules stems
from the different assumptions made in the modeling process. Partic-
ularly, Niyogi and Berwick (1995,1997,1998) assume that all children
receive input from the same distribution. Cavalli Sforza and Feldman
(1981) assume that children can be grouped into four classes depending
on their parental type. The crucial observation at this stage is that by
dividing the population of children into classes that are different from
each other, one is able to arrive at alternate evolutionary dynamics. In
a later section we utilize this observation to divide children into classes
that depend on their geographical neighbourhood. This will allow us
to derive a generalization of the NB model for neighbourhoods. Before
proceeding any further, let us now translate the update rules derived in
Niyogi and Berwick (1995,1996) into the appropriate CF models. The
update rules are dervied for memoryless learning algorithms operating
on grammars. We consider an application to English with grammars
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represented in the principles and parameters framework.

1.4 CF Models for Some Simple Learning Algorithms

In this section we consider some simple online learning algorithms (like
the Triggering Learning Algorithm of Gibson and Wexler (1994); hence-
forth TLA) and show how their analysis within the NB model can be
plugged into eq. 1.3 to yield the dynamics of linguistic populations under
the CF model.

1.4.1 TLA and its Evolution

How will the population evolve if the learning algorithm 4 in question
is the Triggering Learning Algorithm* (or related memoryless learning
algorithms in general)? The answer is simple. We know how the TLA
driven system evolves in the NB model (from an analysis of the TLA
in Niyogi and Berwick, 1996). All we need to do is to plug such an
evolution into eq. 1.3 and we are done.

Recall that the TLA is as follows:

. Initialize: Start with randomly chosen input grammar.
. Receive next input sentence, s.
. If s can be parsed under current hypothesis grammar, go to 2.

I

. If s cannot be parsed under current hypothesis grammar, choose an-
other grammar uniformly at random.

5. If s can be parsed by new grammar, retain new grammar, else go

back to old grammar.

6. Go to 2.

It is shown in Niyogi and Berwick, 1996, that such an algorithm can
be analyzed as a Markov Chain whose state space is the space of possible
grammars and whose transition probabilities depend upon the distribu-
tion P with which sentences are drawn. Using such an analysis, the
function f can be computed. For the case of two grammars (languages)

4 The Triggering Learning Algorithm has been chosen here for illustrative purposes to
develop the the connections between individual acquisition and population change
in a concrete manner in both NB and CF models. Replacing the TLA by another
learning algorithms does not alter the spirit of the major points we wish to make
in this paper but rather the details of some of the results we might obtain here.
In general, acquisition algorithms can now be studied from the point of view of
adequacy with respect to historical phenomena.
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in competition under the assumptions of the NB model, this function f
is seen to be:

si(1—a) [b— s:(b— a)]*[(1 —b) + s¢(a+b—2)]
(1=0)+ si(b—a) 2[(1 = b) + s¢(b — a)]

f(st) = (1.4)
In eq. 1.4, the evolving quantity s; is the proportion of L; speakers
in the community. The update rule depends on parameters a,b and &
that need further explanation. The parameter a is the probability with
which ambiguous sentences (sentences that are parsable by both g; and
g2) are produced by L, speakers, i.e.,a =) o1 ~p. Pi(w); similarly, b
is the probability with which ambiguous sentences are produced by L,

speakers, i.e., b= P;(w). Finally, k is the number of sentences

weL NLsy
that a child receives from its linguistic environment before maturation.
It is interesting to note that the only way in which the update rule
depends upon P; and Ps is through the parameters a and b that are
bounded between 0 and 1 by construction.

It 1s not obvious from eq. 1.4 but it is possible to show that f is a
polynomial (in s;) of degree k. Having obtained f(s;), one obtains the
quadratic update rule of the CF model by computing the b;’s according
to the formulae given in the earlier section. These are seen to be as
follows:

k bk (1—a) a+b (a —b)

The following remarks are in order:

1. For k = 2, i.e., where children receive exactly two sentences before
maturation, both the NB and CF models yield quadratic update rules
for the evolution of the population. For the NB model, the following

is true: (i) for @ = b, there is ezponential growth (or decay) to one
1
2
are in equal proportion and they coexist at this level; (ii) for a # b,

fixed point of px = i.e., populations evolve until both languages
there is logistic growth (or decay) and in particular, if a < b then
there is one stable fixed point p*(a, b) whose value depends upon a, b
and 1s greater than % If @ > b then there is again one stable fixed
point p*(a,b) that is less than % Populations tend to the stable fixed
point from all initial conditions in logistic fashion. The value of p*
as a function of @ and b is shown in fig. 1.

2. For k = 2, the evolution of the CF model is as follows: (i) for a = b,

. . . _ 1
there is exponential growth (or decay) to one fixed point of p* = 5.



121. Theories of Cultural Evolution and their Application to Language Change

figure 1.1. The fixed point p*(a,b) for various choices of a and b for the NB
model with k = 2.

(ii) for a # b, there is still one stable fixed point whose value can be
seen as a function of @ and b in fig. 2. For b > a, the value of this
fixed point is greater than %, for a > b, the value 1s less than % While
the overall qualitative behavior of the two models for this value of £,
are quite similar, the value of p*(a,b) is not identical. This can be
seen from fig. 3 where we plot the difference (between pi g and pip)
in values of the fixed point obtained for each choice of a and b.

3. If one considers the limiting case where & — o0, i.e., where children
are given an infinite number of examples to mature, then the evolu-
tion of both the NB and the CF models have the same qualitative
character. There are three cases to consider: (i) for a = b, we find
that s;41 = s¢, i.e., there is no change in the linguistic composition;
(ii) for a > b, the population composition s; tends to 0 (iii) for @ < b,
the population composition s; tends to 1. Thus one of the languages
drives the other out and the evolutionary change proceeds to com-
pletion. However the rates at which this happens differs under the
differing assumptions of the NB and the CF models. This difference
is explored in a later section as we consider the application of the
models to the historical evolution of English syntax. It is worthwhile
to add that in real life, @ = b is unlikely to be exactly true — there-
fore language contact between populations is likely to drive one out
of existence.
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figure 1.2. The fixed point p*(a, b) for various choices of a and b for the CF
model with k = 2.

Additionally, the limiting case of large k is also more realistic since
children typically get adequate primary linguistic data over their
learning years in order to acquire a unique target grammar with high
probability in homogeneous linguistic communities where a unique
target grammar exists. In the treatment of this paper, we have al-
ways assumed that learners attain a single target grammar. Often,
when two languages come in contact, learners typically attain both
grammars in addition to a reasonable understanding of the social and
statistical distribution of the two grammars in question. This can be
handled within the framework we discuss here by requiring the learner
to actually learn (estimate) a mixture factor (A € [0, 1], say) that de-
cides in what proportion the two grammars are to be used. A value
of A = 0 or A = 1 would then imply that the learner had actually
attained a unique grammar. One can then analyze a population of
such learners to characterize their evolutionary consequences. We do
not discuss such an analysis here.

4. We have not yet been able to characterize the evolutionary behavior
of populations for arbitrary values of k.

From the preceding discussion we see that the evolutionary character-
istics of a population of linguistic agents can be precisely derived under
certain simplifying assumptions. We show how the differing assump-
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figure 1.3. The difference in the values of p* (a, b) for the NB model and the
CF model py g — pip for various choices of a and with k = 2. A flat surface
taking a value of zero at all points would indicate that the two were identical.
This is not the case.

tions of the NB model and the CF model yield dynamical systems with
different behaviors and how these models relate to each other.

1.4.2 A Historical Ezample

So far the development has been fairly abstract. To ground our discus-
sion in a particular context, let us consider the phenomena surrounding
the evolution of Old English to Modern English and its treatment within
both kinds of models.

One of the significant changes in the syntax of English as it evolved
from the 9th century to the 14th century is the change in word order.
Consider, for example, the following passage taken from the Anglo Saxon

Chronicles (878 A.D.) and reproduced in Trask (1996):

Her ... AFlfred cyning ... gefeaht wid ealne here, and hine
Here ... Alfred king ... fought against whole army and it
geflymde, and him aefter rad od pet geweorc, and paer saet

put to flight and it after rode to the fortress and there camped
XIIIT niht, and pa sealde se here him gislas and myccle
fourteen nights and then gave the army him hostages and great
adas, pet hi of his rice woldon, and him eac geheton
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oaths that they from his kingdom would [go] and him also promised
pet heora cyng fulwihie onfon wolde, and hi paet gelaston ...
and their king baptism receive would and they that did

The original text is in italics and a word for word translation (gloss)
provided immediately below each line of the passage. Some phrases
have been underlined to indicate the unusual word order prevalent in
the writing of the times. Sampling the historical texts over the period
from Old to Middle English, one finds that the early period shows three
major alternations (i) verb phrases (VP) may show Object-Verb (OV)
or Verb-Object (VO) order (ii) the inflectional head (I) may precede (I-
medial) or follow (I-final) the verb phrase (iii) there may or may not be
movement of the inflected verb to head of CP (complementizer position
in clauses) (following the notation of Government and Binding theory;
see Haegeman, 1991).

For the purposes of the discussion in this paper, we will collapse the
OV/VO and I-final/T-medial distinctions into a single head-complement
parameter in accordance with commonly made assumptions of the prin-
ciples and parameters approach to grammatical theory. The movement
of the finite verb to second position is related to the V2 parameter
— modern German and Dutch are +V2 while modern English is -V2.
Therefore, the two grammatical parameters at issue are:

1. The head-complement parameter: this denotes the order of con-
stituents in the underlying phrase-structure grammar. Recall from
X-bar theory that phrases X P have a head (X) and complement,
e.g. the verb phrase ate with a spoon and the prepositional phrase
with a spoon have as a head the verb afe and the preposition with
respectively. Grammars of natural languages could be head-first or
head-final. Thus X-bar phrase structure rules have the form (X and
Y are arbitrary syntactic categories in the notation below):
head-first: (i) XP — X' YP (ii)) X' — X
head-final: (i) XP —YP X' (i) X' — X

2. The V2 parameter: this denotes the tendency in some languages
of the finite verb to move from its base position to the head of the
complementizer (C' of CP) by V to I to C raising. The specifier
of C'P has to be filled resulting in the verb appearing to be in the
second position in linear order of constituents. Grammars of natural
languages could be +V2 or -V2. Thus
+V2: Obligatory movement of V to I to C and specifier of C'P filled.
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-V2: V2 movement absent.

Modern English is exclusively head-first and -V2. Old English seems
to be largely head-final and +V2. How did such remarkable changes
in grammars occur? There are several competing accounts for these
changes (see chapters by Kroch and Taylor; Lightfoot; and Warner in
Van Kemenade (1997) for discussions) but there seems to be some agree-
ment that there were two competing grammars — a northern Scandina-
vian based +V2 grammar and a southern indigenous -V2 grammar. The
first of these grammars was lost as the populations came into contact.
Invoking learnability arguments as an explanation for such a change,
Lightfoot (1997) writes: “Children in Lincolnshire and Yorkshire, as
they mingled with southerners, would have heard sentences whose ini-
tial elements were non-subjects followed by a finite verb less frequently
than the required threshold; if we take seriously the statistics from the
modern V2 languages and take the threshold to be about 30 % of ma-
trix clauses with initial non-subject in Spec of CP, then southern XP-Vf
forms, where the Vf is not I-final and where the initial element i1s not
a wh item or negative, are too consistently subject-initial to trigger a
V2 grammar.” [implying that the +V2 grammar was therefore lost over
time] These are the kinds of arguments that can be modeled precisely
and tested for plausibility within the framework we have discussed here.

We will not attempt in this section to do justice to the various ac-
counts of the historical change of English in a serious manner as the
subject of such a discussion is well beyond the scope of the current
paper. However, for illustrative purposes, we discuss below the evolu-
tionary trajectories of populations with two competing grammar types
that come into contact. The grammar types have been chosen to capture
the parametric oppositions that played themselves out over the course
of the historical evolution of English.

1.4.2.1 Case I +V2/-V2 for head-first grammars

Imagine that two linguistic populations came together and the two lan-
guages in competition differed only by one parameter — the V2 parame-
ter. Further assume that all other grammatical parameters of these two
languages were identical to modern English. Children growing up in the
mixed communities would hear sentences from both grammatical types.
Suppose they set (learnt) all other grammatical parameters correctly and
it was only in the V2 parameter that children differed from each other
in how they set it — 1.e., some acquired the +V2 grammar and some
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acquired the —V'2 grammar. How would the population evolve? Would
the +V2 grammar die out over time? What conditions must exist for
this to happen?

These questions can be addressed within the framework that we have
developed in this paper. To begin with, we need to identify the sets L;
and Ls. Following Gibson and Wexler (1994), we derive the set of degree-
0 sentences® (with no recursion) that are associated with the +V2 and
-V2 grammars. These are listed below where S = subject, V = verb, O1
= direct object; O2 = indirect object; Aux = auxiliary; Adv = adverb.
g1: -V2; Head-first; Spec-first

Li={SV,SVO,SVO0O102,SAux V,S Aux VO, S Aux V Ol
02, Adv SV, AdvSV O,Adv SV Ol 02 Adv S Auz V, Adv S Aux
V O, Adv S Aux VO1 02 }

The grammar underlying these sentences corresponds to that of mod-
ern English. For example, the sentence type (S Aux V O1 O2 ) maps to
actual sentences like John will eat beef in London.
ga: +V2; Head-first; Spec-first

Ly={SV,SVO,0VS SVO0102,01VS02 02VSO0OlLS
Aux V,; SAux VO, 0 Aux SV, S Aux VO1 02, 01 Aux SV 02, 02
Aux SV O1, AdvSV,AdvVSO,Adv VSOl 02 Adv Aux SV, Adv
Aux SV O, Adv Aux SV O1 02}

This grammar requires obligatory movement of the inflected verb to
second position (actually to C and the specifier of CP must be filled).
Thus, an example of an actual sentence (not following English word
order of course) corresponding to the sentence type Adv V.S O1 02 is
often saw we many students in London.

Given these lists of sentences, one can obtain by taking an intersection
of the two languages, the set of ambiguous types, i.e., sentence types that
may have different but valid parses under the two assumptions. We see
that

5 Of course, both I.; and Ly have infinite sentences each. Recall that the evolution-
ary properties of the population will depend upon the probability distributions P;
and P, with which sentences are produced. In practice, due to cognitive limita-
tions, speakers produce sentences with bounded recursion. Therefore P, and P
will have effective support on a finite set only. Furthermore, the learning algo-
rithm of the child A operates on sentences and a common psycholinguistic premise
is that children learn only on the basis of degree-0 sentences (Gibson and Wexler,
1994) and all sentences with recursion are ignored in the learning process. We
have adopted this premise for the purposes of this paper. Therefore only degree-0
sentences are considered in this analysis.
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LinLy={SV,SVO,SVO102,SAuxV,S Aux VO, S Aux V
01 02}

We have considered several variants of both the CF and NB models
for two languages in competition in the previous sections. Recall that
for large k, the qualitative behavior of the two models is similar and L,
would drive Ly out from all initial conditions if and only if @ < b. Here a
is the probability measure on the set of ambiguous sentences produced by
speakers of L; and b is the probability measure on the set of ambiguous
sentences produced by speakers of Ly. This situation would lead to the
loss of +V2 grammar types over time.

Under the unlikely but convenient assumption that P; and P, are
uniform distributions on degree-0 sentences of their respective languages
(L1 and Ls), we see that

Therefore, the +V2 grammar, rather than being lost over time would
tend to be gained over time. Shown in fig. 1.4.2.1 are the evolutionary
trajectories in the CF and NB models for various choices of @ and b.
Some further remarks are in order:

1. The directionality of change is predicted by the relationship of a with
b. While, uniform distributions of degree-0 sentences predict that the
V2 parameter would be gained rather than lost over time, the empir-
ical validity of this assumption needs to be checked. From corpora of
child-directed sentences in synchronic linguistics and aided perhaps
by some historical texts, one might try to empirically assess the dis-
tributions P; and Ps; by measuring how often each of the sentence
types occur in spoken language and written texts. These empirical
measures are being conducted at the present time and will be the
subject of a later paper.

2. The dynamcal systems that we have derived and applied to this par-
ticular case hold only for the case of memoryless learning algorithms
like the TLA. For other kinds of algorithms and their evolutionary
consequences, see Niyogi and Berwick, 1997.

1.4.2.2 Case II: OV/VO for +V2 grammars

Here we consider a head-first (comp-final) grammar in competition with
a head-final (comp-first) grammar where both are +V2 grammars that
have the same settings for all other parameters — settings that are the
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figure 1.4. Trajectories of V2 growth. Shown in the figure are the evolv-
ing trajectories of s; = proportion of +V2 grammars in the population over
successive generations. The solid curves denote the evolutionary trajectories
under the NB model; the dotted curves denote the trajectories under the CF
model. Two different initial population mixes are considered (a) 0.1 initial
+V2 speakers (b) 0.5 initial +V2 speakers. For each initial mix and each
model (CF and NB) the upper curve (faster change) corresponds to a choice
of a = 0.5 and b = 0.33 and a = 0.4 and b = 0.33 respectively. Notice that
the NB model has a faster rate of change than the CF model.

same as that of modern English. Therefore, one of the two grammars
(head-first setting) is identical to modern English except for the V2
parameter. It is also the same as g5 of the previous section. The other
grammar differs from modern English by two parameters.

As in the previous section, following Gibson and Wexler (1994) we can
derive the degree-0 sentences associated with each of the two languages.
We do this below:
g1: +V2; Head-first; Spec-first

Li={SV,SVO,0VS SVO0102, 01VS02 02VSO0lLS
Aux V,;SAux VO, 0 Aux SV, S Aux VO1 02, 01 Aux SV 02, 02
Aux SV O1,AdvSV,Adv VSO, Adv VSOl 02 Adv Aux SV, Adv
Aux SV O, Adv Aux SV O1 02}

This grammar is the same as g5 of the previous section.
ga: +V2; Head-final;, Spec-first

Ly={SV,SVO,0VS SVO0201,01VS02 02VSO0OlLS
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Aux V;SAux O V,;O Aux SV, S Aux 0201V, 01 Aux S 02V, O2
Aux SO1 V, Adv VS, AdvV SO, AdvVSO201, Adv Aux SV, Adv
Aux S O V, Adv Aux S 02 O1 V}

An example of a sentence type corresponding Adv V'S O2 Ol is often
saw we in London many students.

We can therefore straightforwardly obtain the set Ly N Ly as

LinLy ={SV,SVO,0VS,01VS0202VSO0OlSAuxV,
O Aux SV, Adv VS O, Adv Aux S V}

Assuming P, and P, are uniform distributions on the degree-0 sen-
tences of their respective languages, we see that

=g = b

Therefore, under the assumptions of both the NB and the CF models
there is no particular tendency for one grammar type to overwhelm the
other. Language mixes would remain the same. If for some reason,
a became slightly less than b, we see that the head-final (comp-first)
language would be driven out and only the head-first language would
remain. This would replicate the historically observed trajectory for the
case of English. The rate is faster for the NB model than it is for the
CF model.

1.4.2.3 A Final Note

Taking stock of our modeling results, we see that when a +V2 and a
-V2 grammar come together (other parameters being the same) there
is an inherent asymmetry with the -V2 grammar being more likely to
lose out in the long run. On the other hand when a head-first and
head-final grammar come together, there is no particular proclivity to
change — the directionality could go either way. The reason for this
asymmetry is seen to be in the asymmetry in the number of surface
degree-0 sentences that are compatible with each of the grammars in
question with +V2 grammars giving rise to a larger variety of surface
sentences and therefore ambiguous sentences (those parsable with both
+V2 and -V2 constraints) constitute a smaller proportion of the total
sentence types of such grammars.

In conclusion, however, it is worthwhile to reiterate again our motiva-
tion in working through this particular example of the syntactic change
in English. There are many competing accounts of how English changed
over the years. Among other things, these accounts differ in (i) the
precise grammatical characterization of the two grammars in compe-
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figure 1.5. Trajectories of head-first growth. Shown in the figure are the
evolving trajectories of s; = proportion of head-first grammars in the popu-
lation over successive generations. The solid curves denote the evolutionary
trajectories under the NB model; the dotted curves denote the trajectories
under the CF model. Two different initial population mixes are considered
(a) 0.1 initial head-first speakers (b) 0.5 initial head-first speakers. For each
initial mix and each model (CF and NB) the upper curve (faster change)
corresponds to a choice of @ = 0.4 and b = 0.6 and a = 0.47 and b = 0.53
respectively. Notice that the NB model has a faster rate of change than the
CF model.

tition (ii) the number of parametric changes that happened and their
description in the context of a grammatical theory (iii) the nature of the
learning mechanism that children employ in learning grammmars (e.g.
monolingual versus bilingual acquisition) and so on. However, these fac-
tors can be modeled and the plausibility of any particular account can
then be verified. To give the reader a sense of how this might happen
in a linguistically grounded manner, we worked through these examples
— not to make a linguistic point but to demonstrate the applicability
of this kind of computational thinking to historical problems.
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1.5 A Generalized NB Model for Neighbourhood
effects

The Cavalli-Sforza and Feldman model described in this paper assumes
that children can be divided into four classes depending upon their
parental types. The children of each class then receive input sentences
from a different distribution depending upon their parental type. The
Niyogi and Berwick approach on the other hand assumes that all chil-
dren in the population receive inputs from the same distribution that
depends on the linguistic composition of the entire parental generation.
In this section, we consider a generalization of both approaches with a
particular view to modeling “neighbourhood” effects in linguistic com-
munities.

The key idea here is that in multiple language communities speakers
tend to cluster in linguistically homogeneous neighbourhoods. Conse-
quently children growing up in the community might receive data drawn
from different distributions depending upon their spatial location within
the community. Imagine as usual a two-language population consisting
of speakers of Ly or Ly. We now let the parental generation of speakers
reside in adjacent neighbourhoods. Children receive sentences drawn
from different distributions depending upon their location in this neigh-
bourhood. At one end of the scale, children receive examples drawn
only from L;. At the other end of the scale, children receive examples
drawn only from L. In the middle — at the boundary between the two
neighborhoods as it were — are children who receive examples drawn
from both sources.

Let us develop the notion further. Let children of type a be those who
receive examples drawn according to a distribution P = a Py + (1 —«a) Ps.
Here P; is the probability with which speakers of L; produce sentences
and Ps is the probability with which speakers of Ly produce sentences.
The quantity « € [0, 1] is the proportion of L; speakers that an a-type
child is effectively exposed to. Children will be of different a types
depending upon their spatial location.

How do we characterize location? Let location be indicated by a one-
dimensional real-valued variable n in the interval [0, 1]. Let speakers be
uniformly distributed on this interval so that speakers of L, are close to
n = 0 and speakers of Ly are close to n = 1. Let the proportion of L
speakers in the population be s;. Therefore, all children located in [0, s;]
are in the L; speaking neighbourhood and all children located in [s;, 1]
are in the L speaking neighbourhood. Let us now define the mapping
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figure 1.6. Examples of A mappings between the location n and the o type
of the children occupying that location. Here the value of s; (proportion of L,
speakers) is taken to be 0.3 for illustrative purposes. Therefore the interval
[0,0.3] is the L1 speaking neighbourhood; the interval [0.3, 1] is the L» speaking
neighbourhood. For any location n the value of A(n) represents the proportion
of L, speakers the child occupying that location is exposed to.

from neighbourhood to a-type by @ = h(n) where A : [0,1] — [0, 1].
We leave undefined the exact form of h except noting that it should
possess certain reasonable properties, e.g., A(0) should be close to 1, h(1)
should be close to 0, h(s;) should be close to % and h be monotonically
decreasing.

Shown in fig. 1.5 are some plausible mappings h that mediate the
relation between location of the child in the neighbourhood and its a-
type. The z-axis denotes location. The y- axis denotes the a-type of a
learner. We now have learners distributed uniformly in location and a
mapping from location to a-type provided by h. One can therefore easily
compute the probability distribution of children by a-type. This is just
the probability distribution function for the random variable & = h(n)
where n is uniform. Let this distribution be Pp(a) over [0,1]. Now a
child (learner) of type « receives sentences drawn according to P =
aP; + (1 — a)Ps. According to our notation developed earlier, we see
that it therefore has a probability f(«) of attaining the grammar of L;.
(This is provided by an analysis of the learning algorithm in the usual
way, i.e., f(a) = g(A, aP1+ (1 — )Py, k)). Therefore, if children of type



241. Theories of Cultural Fvolution and their Application to Language Change

« are distributed in the community according to distribution P,(a) and
each child of type « attains L; with probability f(«), we see that in the
next generation, the percentage of speakers of L; is provided by eq. 1.5:

sH_l:/O Pr(a)f(a)da (1.5)

1.5.1 A Specific Choice of Neighbourhood Mapping

For purposes of illustration, let us choose a specific form for hA. In par-
ticular, let us assume that it is piecewise linear in the following way

(eq. 1.6; the solid line of fig. 1.5):

1 1-—
h(n)=1— —n for n < s;;h(n) =

h(O) = 1:(1) = 0:h(sy) = & o A=)

for n > s;(1.6)
Thus, clearly, h is parameterized by s;. For such an h, it is possible
to show that Py, is piecewise uniform — given by the following:

1 1
Pr(a) = 2s; if a > §§Ph(04) =2(l-s)ifa< §;Ph(oz) =0if a ¢ [0,1].(1.7)

In previous sections, we discussed the form of the NB update rule
F = g(A, st P+ (1 — s¢)Pa, k) for memoryless learning algorithms like
the TLA. From eq. 1.4, we see that it is a polynomial of degree k. Putting
this into eq. 1.5, we get the update rule with neighbourhood effects to
be

1/2 1
se1 = 2(1 — s¢)( i (a)da) + 2s4( » fla)da) (1.8)
Since « is a dummy variable in the above integral, the effect of the
neighbourhood is to reduce the update rule to a linear one. This is in
striking contrast to the original NB update rule (kth order polynomial)
and the Feldman update rule (quadratic). It is worthwhile to reflect on
a few aspects of such behavior.

1. The linear map implies an exponential growth (or decay) to a stable
fixed point whose value is given by

. 2 f,"* J(a)da
L+ 2(f, "% fla)da — [, f(a)do)

S
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2. Notice that s* = 0 requires f01/2 f(a)da = 0. Correspondingly, s* =
1 requires f11/2 fla)da = % Neither 1s very likely — therefore, no
language is likely to be driven out of existence completey. If one
chooses the update rule f for large k& (= co) one can compute these
quantities exactly. It is then possible to show that the fixed point s*
is never 0 or 1. In contrast, both NB and CF models result in one
language becoming extinct if @ # b.

Needless to say, the particular form of the update rule obtained with

such neighbourhood effects actually depends upon the functional map-
ping h. In general, however, this approach allows us to compute the
evolutionary trajectories of populations where children have arbitrary
a-types. It i1s worthwhile to recall the original CF and NB models
of the previous sections in this light. The CF models are derivable
from this perspective with a particular choice of Pn(a) which hap-
pens to be a probability mass function with Pn(a = 0) = s7; Py(a =
%) = 2s¢(1 — st); Po(e = 1) = (1 — s¢)%. The NB model of previous
sections is equivalent to choosing Pj(a) to be a delta function, i.e.,
Pr(a) = 6(a — s¢).
Remark Tt is important to recognize two aspects of the neighbourhood
model introduced here. First, the function h is not a fixed function but
depends upon the proportion s; of the L, speakers at any time. There-
fore, h changes from generation to generation (as s; evolves). Second,
the population of mature adults is always organized into two linguisti-
cally homogeneous neighbourhoods in every generation. Ofcourse, chil-
dren in a particular neighbourhood might acquire different languages.
Tt is implicitly assumed that on maturation, the children (now adults)
re-organize themselves into homogeneous neighbourhoods. It is this re-
organization into homogeneous neighbourhoods that prevents the elim-
ination of any one language from the system.

Another (more complete) way to characterize neighbourhood effects is
to treat the proportion of L; speakers in the ¢th generation as a function
that varies continuously with distance (n) in the neighbourhood. Tt
is this function that evolves from generation to generation. Without
additional simplifying assumptions, this treatment requires techniques
well beyond the scope of this paper and will be subject of future work.
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1.6 Conclusions

In this paper, we have discussed the basic model of Cavalli-Sforza and
Feldman (1981) for cultural transmission and change. We have shown
how this provides us with a framework in which to think about problems
of language evolution and change. Language acquisition serves as the
mechanism of transmission of language from parents to children. By
suitably averaging over a population we are then able to derive the
population dynamics, i.e, the evolutionary trajectories of the linguistic
composition of the population as a whole from generation to generation.

We have shown how the approach of Cavalli-Sforza and Feldman
(1981) relates to that of Niyogi and Berwick (1995, 1997) and how to go
back and forth between the two models. For the particular case of two
languages in competition, we have derived several particular dynamical
systems under varying assumptions. We have also considered the gen-
eralization of such models to explicitly take into account the effect of
spatial clustering of speakers into linguistic neighbourhoods and have
investigated the consequences of such neighbourhood effects.

The case of two languages in competition is of some significance since
historical cases of language change and evolution are often traceable to
a point in time when speakers of two language types came into contact
with each other. As a particular case of this, we considered the evolution
of English syntax from Old to Middle to Modern English. While the
various linguistic explanations for such a change were not considered in
a serious fashion, we demonstrated in this paper, how one might apply
the computational framework developed here to test the plausibility of
various accounts. In general, the possibility of pursuing such a strategy
in a serious manner for the study of language evolution and change
remains our main motivation for the future.

.1 Appendix: Language Learning

The problem of language learning (“logical problem of language acqui-
sition”) is typically formulated as a search by a learning algorithm for a
grammar that is close to the one that generates the sentences the learner
is exposed to. To make matters concrete, let us define the following ob-
jects that play an important role in the theory of language learning:

1. G : Target Class The target class consists of a class of grammarsg € G.
Each grammar gives rise to a corresponding language L € £ where
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all languages are subsets of ¥* in the usual way. A unique target
grammar g; € G is the grammar to which the learner is exposed via
examples and which the leaner must “learn”.

2. 8 : Ezamples Examples are sentences s € Ly where L; is the target
language. The learner is provided with a stream of examples drawn in
some manner. For our purposes here we will assume that examples are
drawn in 1.1.d. fashion according to a distribution P on the sentences
of the target language L;. In other words, P is a distribution on X*
that has support on L; — it puts zero measure on all s € L; and
non-zero measure on all s € L;.

3. 'H : Hypotheses Class The hypothesis class consists of a class of gram-
mars that the learning algorithm uses in order to approximate ele-
ments of the target class. For our purposes, we will assume that
H=gG.

4. A : Learning Algorithm The learning algorithm is an effective proce-
dure that maps sets of examples into elements of H, i.e., it develops
hypotheses on the basis of examples. Formally, let Dy be the set of
all subsets of X* of cardinality k. Each subset of ¥* of cardinality & is
a candidate dataset consisting of k£ example sentences that a learner
might receive. Clearly Dy is the set of all candidate datasets of size
k. Then A is a computable mapping from the set U2 Dy, to H.

Given this setup, the central question of learnability theory is whether
or not the hypothesis of the learning algorithm converges to the target
grammar as the number of examples k goes to infinity. Specifically, let
hi € H be the grammar that the learner hypothesizes after exposure to
k examples. Since the examples are randomly drawn and the learning
algorithm itself might be randomized, it is clear that hj is a random vari-
able. One can then define the probability that the learner’s hypothesis
hy, is the same as the target grammar. Let us call this p; as below:

pr = P(hy = g4)

The target grammar g¢; is said to be learnable if lim;__. o, pr = 1
for any distribution P with which examples are drawn. This simply im-
plies that “in the limit” as the number of examples tends to infinity, the
learner’s hypothesis will be the same as the target grammar, i.e., the
learner will converge to the target. This notion of convergence in the
limit was first introduced by Gold (1967) in a non-probabilisitic frame-
work which required that the learner converge to the target on all se-
quences of examples that included all sentences of the target. The treat-
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ment here is probabilistic in nature. For more information on this see
Osherson, Stob, Weinstein (1986); Wexler and Culicover (1980); Niyogi
(1997). If every grammar g € G is learnable, then the class of grammars
(G) is said to be learnable.

In a certain sense, linguistic theory attempts to describe and formu-
late classes of grammars G that contain the grammars of the natural lan-
guages of the world. Empirically, it is observed and believed that all such
naturally occuring languages are learnable. Therefore, any class G that
is proposed must be learnable. Learning theory investigates the ques-
tions that are associated with the learnability of classes of grammars.
It is important to recognize that the framework developed for learning
theory is actually very broad and therefore a wide variety of grammat-
ical theories and learning algorithms can be accommodated within the
same framework of analysis.

In the analysis of the TLA developed in Niyogi and Berwick (1996),
the class H = G consists of a finite number of grammars. The learning
algorithm can be modeled as a Markov chain with as many states as
there are grammars in H. Transition probabilities from state to state
depend upon the probability distribution P with which sentences are
drawn and set differences between the different languages in the family
L (equivalently G). Probabilities like p; can then be computed as a
function of the transition probability matrix and this is done in Niyogi

and Berwick (1996).
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