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1 Introduction

Over the last five years, we have seen an explosion of interest and activity in
computational models of language change and evolution (Niyogi and Berwick
1997; Clark and Roberts 1993; Yang 2000; Briscoe 2000; Hurford et al
1998; Galves and Galves 1996; Nowak and Krakauer 1999). The purpose
of this paper is to take stock of this situation, review some of the basic
models and consider extensions. Most significantly, it will be argued that
such computational thinking, properly executed, will play a critical role in
unraveling the complex processes that underlie the evolution of linguistic
populations with time.

At the heart of these models is the subtle interplay between language



learning and language change. For the last forty years, synchronic linguistics
has been driven by the so called “logical problem of language acquisition”
— the problem of how children come to acquire the language of their par-
ents. This has been investigated from several points of view. Linguists in
the generative tradition have proposed theories of universal grammar that
constrain the range of grammatical hypotheses that children might entertain
during language learning. Psycholinguists, developmental psychologists and
cognitive scientists have pursued a range of approaches from empirical stud-
ies of child language acquisition to formal analyses of the process (Pinker
1984; Wexler and Culicover 1980; Crain and Thornton 1998; Slobin 1985-
97). Computational work on this question has a rich history. Beginning with
the pioneering work of Gold (1967), computer scientists and mathematicians
have considered the formal difficulty of inferring a grammar (language) from
linguistic examples. Considerable analytical work exists on the subject and
a summary can be found in Osherson et al (1986). Simulations in the style
of artificial intelligence research have also been significant (see, for example,
Berwick 1985; Siskind 1992; Feldman et al 1990; Brent 1996).

Language acquisition may be viewed as the mechanism by which lan-
guage is transmitted from parent to child — and in fact, from one genera-

tion of language users to the next. Perfect language acquisition would imply



perfect transmission. Children would acquire perfectly the language of their
parents, language would be mirrored perfectly from one generation to the
next and languages would not change with time. Therefore, for languages to
change with time, children must do something differently from their parents.
This insight has been around for at least a hundred years as evidenced by

the following quote from the British phonetician Henry Sweet (1891).

....if languages were learnt perfectly by the children of each gen-
eration, then language would not change: English children would
still speak a language as old at least as AngloSaxon and there

would be no such languages as French or Italian.

(Sweet, 1891, pg. 75)

Thus there is a tension between language learning on the one hand and
language change on the other. Perfect language learning would imply no
change. At the same time, language learning cannot be so imperfect that
the learned language of the children does not resemble at all that of the
parents (linguistic environment). If, due to slight imperfections of language
learning, the linguistic composition of the population shifts just a bit, can
this slight shift lead eventually to a significant change over long time scales?

While language learning has come under intense computational scrutiny



for a while, computational work in language change is fairly recent. Over the
last five years, there has been a growing body of computational work that
explores the relationship between language learning and language change.
Let us begin by considering the simplest family of such models — those of

two languages in “competition” with each other.

2 A Preliminary Model

Our discussion is motivated by a syntactic' view of the world where lan-
guages are viewed as sets of grammatically well formed expressions and
therefore formally as subsets of ¥* where ¥ is a finite alphabet (denoting
the lexical items). Imagine a world with only two possible languages L1 and
Loy where each L; is a subset of ¥* in the usual way. In general, L and Lo
are not disjoint. Sentences belonging to both L; and Ly are ambiguous and
may be parsed according to the underlying grammar of each language.

We consider a case where each individual is a user of precisely one lan-
guage — this is the monolingual case. The language of the individual is

acquired during a learning period (over childhood) on the basis of expo-

!The general methodology is applicable to phonology just as well. One may view a
phonological grammar as defining a set of well formed phonological expressions. The set
of such well formed expressions may be defined using a notational system that comprises
of a phonological alphabet.



sure to linguistic examples provided by the ambient linguistic community.
To make matters simple, we divide the population neatly into coincident
generations and now consider two successive generations.

The state of any adult generation is simply described by a single variable
oy (the subscript ¢ denoting generation number). Here o, is the proportion
of individuals speaking language L; in generation ¢ — clearly, a proportion
1 — oy of the population consist of users of language Lo. Further, let users
of L; produce sentences with a probability distribution P; on the sentences
of L, and users of Ly produce sentences with a probability distribution P,
on the sentences of Ls. Thus a sentence s € X* will be produced with
probability P;(s) by a user of L; and with probability P»(s) by a user of Ls.
If s is not an element of Ly, clearly P;(s) = 0 and similarly, if s is not an

element of Lo, then P5(s) = 0.

2.1 Learning By Individuals

We begin by examining the acquisition of language by individuals in the
population. Language acquisition is the process of developing grammatical

hypotheses? on the basis of linguistic experience, i.e., exposure to linguistic

2We consider in general a grammatical hypothesis to be a set of rewrite or phrase
structure rules. These hypotheses therefore define a set of valid expressions in the usual
way. It is a matter of some debate whether children conjecture fully formed grammars



data during childhood. Within the purview of generative linguistics, this
is conceptually regarded as choosing an appropriate grammar from a class
of potential grammars G (Universal Grammar or UG) on the basis of pri-
mary linguistic data. In this example, we consider the case where there are
only two potential grammars —- those underlying the languages L1 and Lo
respectively.

Consider now a learning procedure (algorithm) to choose a grammar
based on linguistic examples. This can, in general, be characterized as a
mapping from linguistic data sets to the hypothesis set {L1,Ly}. To fix
notation, let Dy be the set of all data sets with just one example sentence,
and in general D,, be the set of all data sets containing n example sentences
each. Clearly, D; = £* and D, = (£*)". We can then let D = U;>1D; to be
the set of all finite-length data sets. The learning algorithm A4 is an effective
procedure (partial recursive function) from D to {Li,Ls}. This simply
means that the learning algorithm is an effective procedure (computable
by a Turing machine) that constructs linguistic hypotheses from example
sentences. Consider a d; € D;. Here D, is the set of all possible data sets of

size [ and d; is a particular data set of size [. Then if the learning algorithm

during the process of language acquistion or partial grammars. For our purposes, both
partial and full grammars are notationally represented by sets of rewrite rules and therefore
do not affect greatly the discussion that follows.



guesses L1 when this particular data set is presented to it, we will say that
A(d;) = Li. For some other data set (say d;) in D;, the algorithm might
guess Lo in which case we say A(d]) = Lo.

Now fix a probability distribution P on ¥* according to which sen-
tences are drawn independently at random and presented to the learner.
After k such examples are drawn, the learner’s data set can be denoted by
dy, = {s1,82,...,sK} where each s; is drawn according to the distribution P.
Clearly dj, is an element of Dy. In this setting, it is possible to define the

following object

Pk = P‘T‘Ob[.A(dk) = Ll]

In other words, pj is the probability with which the learning algorithm
will guess L1 after k randomly drawn sentences are presented to it. Now py
will in general depend upon the probability distribution P that generates
the data as well as the learning algorithm A. We will denote this dependence
by pi(A, P).

In this probabilistic setting, it is now possible to define the notion of
learnability. Learnability is the property of the learning algorithm to con-

verge to the target as the data goes to infinity. This simply means that if



the probability distribution P had support on L; so that only sentences of
L occured in the data sets of the learner (i.e., L; is the target language),

then

Pr(A, P =P) 200 1

Similarly, if the probability distribution P had support only on Lo so
that only sentences of Lo were presented to the learner, then py(A, P =
Py) =00 0.

Given this set up, a few remarks are worthwhile.

Remarks:

1. The mathematical framework has been created to make precise the
notion of learnability and to study the difficulty of inductive inference
of grammars from data. For example, Wexler and Culicover (1980),
Osherson, Stob, and Weinstein (1986), Pinker (1984) all present an ex-
plication of this framework in differing degrees of mathematical detail

and linguistic relevance.

2. Learners are treated as procedures that develop grammatical hypothe-
ses on the basis of linguistic experience. Part of the goal of language

learning theory is to explore various such procedures in order to dis-



cover the ones that are most like the ones that children presumably
use. In the previous discussion, learners are viewed as deterministic
procedures — this means that given the same data set (primary lin-
guistic data), all children would develop the same hypothesis. The
framework can easily be extended to consider randomized procedures
without affecting the generality of the arguments presented. We do

not consider such extensions here.

3. The basic framework for learning is applicable to situations where
there are multiple languages and to cases where learners conjecture

more than one language at a time.

2.2 Population Dynamics

The previous section focuses on how the individual learner develops gram-
matical hypotheses from example sentence to example sentence until it ma-
tures. The central question there is whether or not the learner’s hypothesis
gets closer and closer to the target and eventually converges to it as more
and more data become available. Of course, convergence to the target only
occurs as the number of data goes to infinity — and learners live only finite

lives. As a matter of fact, learners do not endlessly update their hypotheses



but “mature” after a point and live with their mature hypothesis thereafter.
Let us assume that maturation occurs after K examples have been presented
to the learner.

In this section, we consider the evolutionary implications at the popu-
lation level of learning procedures at the individual level. Let us begin by
considering a completely homogeneous population where all adult speakers
speak the language L;. Consider now the generation of children in this
community who attempt to learn the language of the adults. A typical
child will receive examples drawn according to a probability distribution P;.
Over its learning period, it will receive K examples and with probability
pi (A, P1) the typical child will acquire the language L;. With probability
1-pk (A, P1), however, the child might acquire the language Ls. Therefore,
when the generation of children mature into adulthood, the population of
new adults will no longer be homogeneous. In fact, a proportion px (A, P)
will be L; users and a proportion 1 — pg will be Loy users. In this fashion,
the linguistic composition of two successive generations may be related to
each other.

We need not have started with a homogeneous adult population. Imag-
ine now that the state of the adult population is denoted by «, where «,

is the proportion of L; users in the adult population. Now consider the
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generation of children. They will receive example sentences from the entire
adult population — which in this case is a mixed population. In particular,

they will receive examples drawn according to the distribution

P=q,P + (1 - Oéa)PQ

On receiving example sentences from this distribution, children proceed as
before. A proportion px (A, P) will acquire L;. Letting o, be the proportion

of children who grow up to be L; speakers, we see that

O = pK(Aa o P+ (1 - aa)PZ)

In this manner, we see that a. can be expressed in terms of «.

In this example, the linguistic composition of the population can be
characterized by a single variable ;. This denotes the proportion of the
population that consists of L; users in generation ¢. By considering the
behavior of the typical child and then averaging over the entire population

of children, we have related the linguistic composition of two successive
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generations as follows:

a1 = pr (A, P + (1 — o) Pa) (1)

In order to do this, we assumed

1. The population could be isolated into coincident generations.

2. Children receive data drawn from the entire adult population in a
manner that reflects the distribution of languages in the adult popu-

lation.

3. The probability of drawing sentences P, and P, do not change with

time.

4. The learning algorithm 4 constructs a single hypothesis language after

each example and after maturation ends up with a single language.

5. Population sizes are infinite.

We will return to a discussion of these assumptions later. Let us now
consider some examples where we make specific choices regarding the learn-
ing algorithm and derive the evolutionary consequences. In particular, the
functional relationship between o; and a;41, which is not transparent from

eqn. 1 will be derived for a number of different settings.
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2.3 Some Examples

A variety of dynamical maps can be obtained by different particular choices
for (i) the maturation time K and (ii) the learning algorithm .A. We consider

three different examples here.

2.3.1 A: Memoryless Learners

A memoryless learner is one whose hypothesis at every stage depends only
upon the current input sentence and the previous hypothesis it had. There
are a wide class of such algorithms and one in particular has received con-
siderable attention in the linguistic parameter setting literature. This is the
triggering learning algorithm (TLA) of Gibson and Wexler 1994. While the
algorithm works for any finite parameter space in general, the particular
instantiation for the two language case is as follows:

TLA (Triggering Learning Algorithm)

e [Initialize] Step 1. Start with an initial hypothesis (either L; or Lg)

chosen uniformly at random.

e [Process input sentence| Step 2. Receive a positive example sentence

s; at the i¢th time step.

e [Learnability on error detection] Step 3. If the current grammatical

13



hypothesis parses (generates) s;, then go to Step 2 to receive next

example sentence; otherwise, continue.

e [Single-step hill climbing] Step 4. Flip the current hypothesis and go

to Step 2 to receive next example sentence.

The population at any point in time can be characterized by a single
quantity (o for the tth generation) that describes the proportion of L;
users in the population. If children were TLA learners, then how would the
population evolve?

The precise nature of the evolution will depend not only upon the the
algorithm A (in this case, the TLA) but also the probability distribution
with which sentences are produced by L; and Lo users respectively. For
this case, it turns out that it is sufficient to characterize P, and P, by two

parameters a and b given as follows:

a = Pl[Ll ﬂLQ]; l—a= PQ[Ll \LQ]

and similarly

b= PQ[L1 N LQ]; 1-b= PQ[LQ \ L1]

Here Ly N Ly refers to the set of ambiguous sentences —- those that can

14



be parsed (generated) by the underlying grammars of both languages. Thus
a is the probability with which such ambiguous sentences are produced by
L1 users and b is the same for Ly users. If we now assume that K = 2,
i.e., the maturation time is short, it is fairly easy to show that the evolution

occurs according to the following update rule:

Theorem 1 The linguistic composition in the (t+1)th generation (cyi1) is
related to the linguistic composition of the tth generation (o) in the following
way:

Qg1 = Aa? + Bay + C

where A= 2((1-0)? - (1—a)?); B=b(1-b)+(1—a) and C = %.

A few remarks concerning this dynamical system are in order:
Remark 1. When a = b, the system has exponential growth. When a # b,
the dynamical system is a quadratic map (which can be reduced by a trans-
formation of variables to the logistic, and shares the same dynamical prop-
erties). We note that Cavalli-Sforza and Feldman (1981), using a different
formulation, also obtain a quadratic map in such cases for the example of
general ‘vertical’ cultural change.

Remark 2. The scenario a # b is much more likely to occur in prac-

tice — consequently, we are more likely to see logistic change rather than

15



exponential change.
Remark 3. Logistic maps are known to be chaotic. However, in our

system it is possible to show that:

Theorem 2 Due to the fact that a,b < 1, the dynamical system never enters

the chaotic regime.

Remark 4. We obtain a class of dynamical systems. The quadratic
nature of our map comes from the fact that K = 2. If we choose other
values for K we would get cubic and higher order maps. In general, it is
possible to show that for a fixed, finite K, the evolutionary dynamics is

given by

Theorem 3 If individual learners in a population of TLA learners have a

maturation time K, the population evolves according to

B+ 3(A-B)(1-A-DB)¥
A+B

Qi1 =

where oy is the proportion of L1 users in the tth generation and A = (1 —

ar)(1 —0b) and B = ay(1 — a).

Remark 5. The parameters a and b determine the evolution of the pop-

ulation and its stable modes. As we have mentioned before, they represent
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respectively the proportion of L; and Lo sentences respectively that are
ambiguous. It is conceivable that one might be able to estimate these pa-

rameters from synchronic or diachronic corpora.

2.3.2 A : Batch Error Based Learner

In contrast to the memoryless learner, a batch learner waits until the entire
data set of K examples has been received. Then, it simply chooses the
language that is more consistent with the data received.

For each language L;, one can define an error measure (denoted by e(L;))

as

where k; is the number of example sentences in the data set that is not
analyzable according to the grammar of L;. Then a simple decision rule is

L =arg Lr1111Ln2 e(L;)

This amounts to the following rule. Group the K example sentences of the
data set (PLD) into three classes: (A) those sentences that belong to L;
alone and are not analyzable by the underlying grammar of Lo; (B) those

sentences that belong to Ly alone and are not analyzable by the underly-
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ing grammar of Lq; (C) those sentences that are ambiguous and and are
analyzable (with different interpretations, perhaps) under the grammars of
both Ly and Lo. Let ni,n9,n3 be the number of examples of type A,B,C
respectively. Clearly, ni1 + no + ng = K. Choose L; if ni > no, otherwise
choose L.

For this learning algorithm, it is possible to show that the proportion of
L; users in two successive generations (a; and ayy1, respectively) is related

by the following update rule.

Qe+l = ) Cr iy msP1(02)™ pa(c) ™ ps(cw)™
(n17n21n3)‘n1 >=n3;zi n;=K

Here Cf nams = m%;,ns, is the multinomial coefficient and p1 () = (1 —

a); p2(at) = ara + (1 — ay)b; and p3(ar) = (1 — at)(1 - b).
In general, the nature of the population dynamics is different in this case

from the previous one.

2.3.3 A: Cue-Based Learner

A cue based learner examines the data set for cues to a linguistic parameter
setting. Let a set C C (L1 \ L2) be a set of examples that are cues to the

learner that L, is the target language. If such cues occur often enough in the
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learner’s data set, the learner will choose L1, otherwise the learner chooses

Ly. This follows the cue-driven approach advocated in Lightfoot (1997).
This approach is instantiated in the following procedure. Let the learner

receive K examples. Out of the K examples, say k are from the cue set.

Then, if

ﬁ >T
K
the learner chooses L1, otherwise the learner chooses Ls.

One can again determine the evolutionary dynamics of the population
based on such a learner. Let P;(C) = p, i.e., p is the probability with which
an L; user produces a cue. If a proportion oy of adults use Li, then we see

that the probability with which a cue is presented to a typical child is given

by pay and so the probability with which £ > K7 is given by

and therefore, we get

a1 =Y (po) (1 —pay) K
Kr<i<K

Here, oy is the proportion of L; users in the tth generation. Interestingly,
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for such learners, it is possible to show that the only stable configuration of
the population is a = 0, i.e., a homogeneous population of Lo users. Thus
a homogeneous population of Ly users will always remain stable and can
never change to a population of L; users. A homogeneous population of L,
users will never be stable and will always drift over time to a population of
Lo users. A change from Ly to L; is possible — a change the other way
is never possible. As we shall see later, this raises immediate complications
for Lightfoot’s explanation for the change from Old English +V2 grammars
to Modern -V2 grammars. A more nuanced form of the explanation will

become necessary.

3 Further Directions

The simple two-language models of the preceding sections are not without
significant linguistic applications. In many cases of language change, one
finds that there are two variants (dialects, grammars) differing by a signifi-
cant linguistic parameter that coexist in a population in varying proportions
at different points in time. Often, linguistic change leads to the gradual loss
of one variant from the population entirely (often following an S-shaped

pattern over time). For example, the loss of verb-second from grammars of
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Old English to that of Modern English is a much studied instance of pre-
cisely such a change (Lightfoot 1997; Kroch and Taylor 1997; Pintzuk 1991).
Other examples include the loss of verb-second (V2) from Old to Modern
French (Clark and Roberts 1993), the change in subordinate clause word
order in Yiddish considered by Santorini (1992) and so on.

At the same time, one needs to recognize the drastic simplifications that
have been made in order to formulate this first coherent model. It is worth-
while to reflect on some of these simplifying assumptions and the possibility

of relaxing them in more complex models of this process.

1. Multiple Languages: Clearly, there are more than two languages in
the world. The space G represents the hypothesis space that learning
algorithms operate on and draw grammatical hypotheses from over
their learning period. While this space G is in principle all of universal
grammar, in linguistic applications of a more specific nature, one might
consider a subset of G to be the more appropriate object to model and
study. For example, in studies of syntax, its acquisition and change, it
is meaningful to ignore the phonological components of UG that might
have no bearing on the phenomena at hand. Depending upon the sub-

module of syntax under study, other “irrelevant” modules might also
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be usefully ignored. Thus, the space G that is formulated in models of
language change is really a very low-dimensional projection of the high
dimensional space of UG. It is the linguist’s intuition and understand-
ing of the phenomena that provides the appropriate low-dimensional
projection. Indeed, linguists might differ on this matter, and the con-
sequences then need to be worked out. Having thus argued that in
most useful applications, the space G will be low dimensional, it might
still consist of more than two grammars (languages) and it is impor-
tant to extend such models to multilingual settings. The extension to
n-language families has already been considered (Niyogi and Berwick
1997; Yang 2000). Setting up the models for such cases is easy enough
— analytical solutions are harder to come by and one might need to

resort to simulations.

. Finite Populations: One reason we have been able to derive determin-
istic dynamical maps relating successive generations to each other is
the assumption of infinite population size that allows us to take en-
semble averages of individual behavior over the entire population. In
practice, of course, populations are always finite. If the population

sizes are large, then the assumption of infinite sizes may not be too
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bad. If, on the other hand, population sizes are very small, then one
might need to consider the implications of such small sizes more care-
fully. Let us consider briefly the effect of finite population sizes on the
two language models discussed in this paper. Recall that each individ-
ual child attains L; with probability px (A, agP1 + (1 — ag)P2). From
this we concluded that a proportion px of the children would end up
as L1 users. This statement is exactly true if there were an infinite
number of children. Imagine, instead, there were only N children in
the population. Each child could end up either as an L, speaker or
as an Lo speaker. In fact, with probability (px)”, all children would
acquire Ly; with probability (1 — px)? all would acquire Lo; and dif-
ferent intermediate mixes are possible with probabilities given by the
binomial distribution. Thus all evolutionary trajectories are possible,
the question is — which ones are likely or probable? The evolution is
characterized now as a stochastic process rather than a deterministic

dynamical system. The consequences of this can be worked out. The

details are beyond the scope of this paper.

. Generational Structure: In attempting to derive the relationship be-

tween successive generations, we have assumed that generations move
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in clean time steps. In practice, of course, the generational structure
is a little more complex than this. One might therefore need to divide
time into finer intervals and consider the cohort of learning children at
each such time interval. The primary linguistic data that this cohort
receives is now drawn from a more diverse group of older people in the
population. This group would consist of parents, grandparents, older
cohorts and so on. For example, in the two language models described

earlier, one might proceed as follows:

Let the state of cohort ¢ be described by a variable a; (as before,
where oy denotes the proportion of the cohort using the language L1 ).
Consider now the (¢ 4+ 1)th cohort of learning children. Assume that
they receive data drawn from the previous three cohorts (who may, for
example, be characterized as the cohort of young adults, parents, and
grandparents respectively) in equal proportions. Then the probability
distribution with which data is presented to the (¢ + 1)th cohort of

learners is given by
1 1 1
P = g(atP1+(1_at)P2)+§(at71P1+(1_at71)P2)+§(at72P1+(1_04t72)P2)

where we have assumed that all cohorts are equal in size and influence.
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Given this set up, it is easy to see that a;41 is now going to be given
by

a1 = pi (A, P)

and in this manner, a;y; will depend upon oy, 1, and a9 respec-
tively. This too is a dynamical system and can easily be analysed using

the traditional tools.

. Spatial Population Structure: We have assumed in the models that
speakers of both language types are evenly distributed throughout the
population. Further, the child learners all receive data from the entire
adult population. In other words, all children receive data drawn from
the same probability distribution and this distribution reflects the mix

of L, and L, speakers in the adult population as a whole.

Reality, as always, might be more complicated. Speakers of different
linguistic types might reside in different “neighborhoods”. Children
born in different neighborhoods might receive data drawn from dif-
ferent probability distributions that reflect the linguistic composition
of their neighborhood. For example, one might imagine an L; speak-
ing neighborhood and an Ly speaking neighborhood whose population

sizes are in the ratio oy : (1 — ay). Children born in the L; speaking
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neighborhood might receive data drawn mostly according to P; while
those born in the Lo speaking neighborhood might receive data mostly
drawn according to P». The evolutionary consequences of such a spa-
tial structure in the population need to be worked out and represents

an important direction of future research.

. Multilingual Acquisition: The learning algorithm A realizes a mapping
from linguistic data sets to grammatical hypotheses. In particular,
we have restricted the learner to having precisely one grammatical
conjecture at each point in time. Furthermore, at the end of the
learning period (i.e., after receiving K examples) it is assumed that

the learner will end up with precisely one language.

If the target distribution corresponds to a unique grammar, it is cer-
tainly reasonable to expect the learner to end up with exactly one
language. The case when the target distribution is mixed, i.e., not
consistent with a single unique target grammar, natural models of the
learning process should allow the possibility of multilingual rather than
monolingual acquisition. Thus, for example, in the two-language case
of this paper, one might allow the possibility that the learner acquires

both languages (in some ratio, perhaps). For the case of English, for

26



example, Kroch and Taylor (1997) argue that learners were effectively
bilingual having acquired both dialectal variations in different propor-
tions. Yang (2000) considers such a learning algorithm and explores

the evolutionary consequences.

6. Non-vertical and Other modes of Transmission: We have considered
vertical modes (from parent to child or from one generation to the
next) as the primary mode of transmission of language over time. It
is often remarked that the interaction of a cohort of language users
with each other in a social setting shapes the way language develops
in children and therefore the way it evolves over time. The effect
of children of the same generation on each other might be viewed
as a non-vertical (horizontal) mode of transmission of language. It
might therefore become necessary to consider such alternative modes
of transmission for a more complete understanding of the complexities

involved in such processes.

The effect of each of these assumptions can be systematically explored.
Together they constitute important directions of future work in this nascent
field of computational studies of language change. Some of these directions

have already begun to be explored. Others await further explication.
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4 Conclusions

What do we hope to learn from modeling of the sort presented in this paper?
Why do we expect that a phenomenon as complex as language change over
historical time is amenable to mathematical or computational analysis?

First, let us begin by accepting that the phenomena of linguistic change
are real, pervasive, and in many cases, present a linguistic and cognitive
puzzle of sorts. A compelling example for me is the case of syntactic change
in English. Examining, for instance, the following examples from English of
the ninth and tenth century leaves one in no doubt that there has been a
deep change in the syntactic grammars of English users over time. It is not
a word here, a nuance there that can be simply explained away by notions
of changing fads or sociological circumstance. Clearly, linguistic populations
restructured grammars over generational time.

pa Darius geseah paet he oferwunnen beon wolde

then Darius saw that [he conquered be would]

(Orosios 128.5)
& him aefterfylgende waes
and [him following was]

(Orosius 236.29)
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Nu ic wille eac paes maran Alexandres gemunende beon

now I will also [the great Alexander considering be/

What precisely is the nature of the syntactic change? What initiated
the change? Under what circumstances would the change have proceeded
to completion? These are the kinds of questions that need to be untangled.
Many complex cognitive phenomena tend to present puzzles and it is difficult
to reason our way through such puzzles by verbal argument alone. For
example, consider Lightfoot’s discussion of parameter resetting leading to

language change over time from Old to Modern English.

As somebody adopts a new parameter setting, say a new verb-
object order, the output of that person’s grammar often differs
from that of other peoples’s. This in turn affects the linguistic
environment, which may then be more likely to trigger the new
parameter setting in younger people. Thus a chain reaction may
be created, which may gradually permeate the speech commu-

nity.

(Lightfoot, 1991)

While the overall framework of analysis presented in Lightfoot (1991)

is powerful, there are many ”sub-theories” within the same framework that
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need to be precisely investigated. The parameter resetting argument fits
in quite naturally in our two-language model where the the two languages
in question differ by a linguistic parameter. Therefore, one will have to
work out the precise details of how often ambiguous sentences are uttered,
whether the drift resulting from parameter resetting can take the population
all the way so that one of the language types dies out altogether. Further,
Kroch and Taylor (1997) have argued that grammatical variation resides
not just in the population but in the individual as well. This suggests
a move towards bilingual populations with perhaps native language and
second language effects providing the necessary asymmetry for populations
to gradually change over time.

One might assume (i) multilingual acquisition (ii) trigger-based learning
(iii) cue-based learning. Each of these different acquisition algorithms pos-
sibly leads to different evolutionary consequences some of which might not
be compatible with the historical trends observed. Additionally, linguists
might also differ with respect to the grammatical characterization of the
difference between the variants of English in the tenth and eleventh century.
The different grammatical characterization would have different extensional
consequences, a different set of ambiguous sentences, leading to different

evolutionary consequences for the same learning algorithm.
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For example, Lightfoot (1997) argues for a cue-based learner in explain-
ing the loss of V2 from Old English to Modern English. The cue for +V2
grammars is taken to be sentences in non-subject-Vf (Vf being the finite
verb) form. Thus, he argues: “Children in Lincolnshire and Yorkshire, as
they mingled with southerners, would have heard sentences whose initial
elements were non-subjects followed by a finite verb less frequently than
the required threshold; if we take seriously the statistics from the modern
V2 languages and take the threshold to be about 30 percent non-subject-
Vi, then southern XP-Vf forms, where the Vf is not I-final and where the
initial element is not a wh item or negative, are too consistently subject-V
to trigger a V2 grammar” (Lightfoot 1997). As we have seen in the previ-
ous section, populations of cue-based learners are inherently asymmetric. If
cues existed only for a +V2 grammar but not for a -V2 grammar, then +V2
populations would never remain stable. Contact with a foreign population
is not necessary to instigate change. One must then ask, why would +V2
populations arise in the first place? Why have the modern +V2 languages
not been driven out under the drift of misconvergence of their own learners?
These inconsistencies are possible to spot only after employing some more
precise reasoning. One is therefore led to suggest that a cue-based learning

theory has to allow for cues for both parameter values (+V2 and -V2) so
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that case 2 (Batch Error Based Learner) of the learning models discussed
earlier is applicable. A more serious discussion of this issue is beyond the
scope of this paper.

The goal of computational modeling is to serve as a research tool with
which one might reason through the possibilities. Therefore, while empirical
studies of the sort conducted by historical linguists in the field remain an
essential component of the research program to clarify the data and the
phenomena at hand, such computational studies will become increasingly
important as we explore various plausible explanations for the phenomena.

As an example of similar reasoning tools, it is worthwhile to consider
again the mathematical landscape in evolutionary biology or in language
acquisition. At the outset, it is by no means clear that mathematical or
computational modeling is necessary or worthwhile in evolutionary biology
or language acquisition. Nevertheless, both fields have become mathema-
tized.

The acquisition of language by children is a complex task involving the
interplay between the genetic endowment the child brings to the table and
the linguistic and extra-linguistic input it receives from the environment.
One of the central facts that bears explanation is the ability of children

to generalize from finite experience to novel linguistic examples. Explana-
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tory positions vary widely from highly innatist (exemplified, perhaps, by
generative linguistics) to more learning oriented (exemplified, perhaps, by
connectionist accounts). To understand the difficulty of inductive inference,
to tease apart the influences of genetic endowment and environmental in-
puts, it has been necessary to employ computational and mathematical tools
in our reasoning. It is almost impossible to make progress otherwise.
Evolutionary biology is perhaps even more complex. The principles of
heredity and natural selection, the adaptive forces of competition and co-
operation in ecological systems, the emergence of global order from local
interactions in biological populations present an array of forces and prin-
ciples that are difficult a to understand by verbal reasoning. The drive to
remove seeming tautologies and internal inconsistencies led to the mathema-
tization of the discipline. The path from the highly theoretical but verbal
account presented in Darwin’s origin of species through the early pioneering
mathematical work of Fisher, Haldane, and Wright to the more compu-
tational simulations of recent times was highly successful in clarifying the
principles of the discipline. The similarities between evolutionary biology
and historical linguistics are many. The analogy of language with species,
the presence of variation in the population, the transmission of information

from one generation to the next are all notions that have been invoked in
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the historical linguistics literature. If we are to go beyond metaphor and
make precise the arguments of linguists as they study historical phenomena,
we have no choice but to pursue a computational path.

Only time will tell what lessons will emerge from such an enterprise.
We are only at the beginning of this subject of evolutionary linguistics and
many aspects of the problem will need to come under analysis before general
principles as well as particular details get sorted out. As we proceed, both
mathematical analysis and computational modeling will have a role to play.
However, it is critical to not be seduced by computational or mathemati-
cal niceties, to retain a close touch with linguistic reality, and to focus on
those aspects of the problem for which we believe a linguistic rather than
extralinguistic explanation exists. Linguists are surely the best judge of this

matter.
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