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Abstract Children will develop their parental
languages correctly, since language learners come
to obtain the one which they contact most in the
community. At the same time, children would
be affected by other languages, the influence of
which is proportional to the population of those
languages. In this paper, we revise the foregoing
evolutionary theory of language, that is differen-
tial equations of the population dynamics. We
propose that the transition rate in languages is
sensitive to the distribution of population of each
generation. In addition, we introduce the expo-
sure probability that is the measure of influence
from other languages. We show experimental re-
sults, in which we could observe the emergence
of creole. Furthermore, we analysed which lan-
guage would be dominant, dependent on the ini-
tial distribution of population, together with the
exposure probability.
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1 Introduction

Language acquisition is intrinsic for human intel-
ligence. One of the main purpose of language use
for human beings is to communicate with others.
Therefore, it is easy to consider that the language
learners come to obtain the language which they
hear most in the community, i.e., in most cases,
children will develop their parental languages cor-
rectly. However, because the learning term is lim-
ited, language learners need to acquire a plausi-
ble grammar from a finite number of sentences ut-
tered in the community during their training peri-
ods though they may not have enough samples to
determine grammar rules uniquely, as was argued
in Gold [5]. Nevertheless, children growing up in

the same speech community correctly deduce the
underlying grammatical rules and consistently de-
velop the same language.

Studies on simulating the evolution of language
have been often reported in recent years, where a
community of autonomous and active agents learns
a common grammar through the exchange of sen-
tences between them [2,6,12]. However, because
the number of agents is finite, the results are of-
ten hard to be generalized for us to explain the
phenomena in the real world. As opposed to this
approach, Komarova et al. [7] generalized an evolu-
tionary theory of language with the universal gram-
mar mathematically. They did not pay attention to
an ability of each agent but to the whole behaviour
of the population, and thus, this approach is differ-
ent from multi-agent models. In Komarova’s work,
given the principles in the universal grammar, the
search space for candidate grammars was assumed
to be finite. From this assumption, defining the
similarity and payoff between grammars, they rep-
resented the transition of population of grammars
as differential equations which they call the lan-
guage dynamics equations.

Because the population of the languages affects
language acquisition, observing the transition of
population diachronically is an essence for language
evolution. However, their model is too simplified
for the real situation. For example, the transition
ratio between grammars was fixed and they disre-
garded the influence from other language groups
upon children. We propose that the transition rate
in languages is sensitive to the distribution of pop-
ulation of each generation. Our purpose of this pa-
per is to modify the language dynamics equations
to ones more adaptable to the real world. Further-
more, we will show the process of creolization, as a
result of contact of distinct language groups.

In Section 2, we describe the language dynamics
equations and our modification of the equations. In



Section 3, we give a model with the modified equa-
tions. We describe our experiments in Section 4
and conclude in Section 5.

2 Population Dynamics of Grammar
Acquisition

In this section, we firstly explain the language dy-
namics equations proposed by Nowak et al. [11] and
by Komarova et al. [7]. Secondly, we mention the
problem of Niyogi’s model [9], and after that we
modify the equations.

2.1 Komarova’s Model

Both of Nowak’s and Komarova’s purposes are to
develop a mathematical theory for the evolution-
ary and population dynamics of grammar acquisi-
tion [7,11]. In Komarova’s model, given the princi-
ples in the universal grammar, the search space for
candidate grammars is assumed to be finite, that is
{G1,...,G,}. The population dynamics equations
are defined from (i) the similarity between gram-
mars as the matrix S = {s;;} and (ii) the prob-
ability that children fail to acquire their parental
language as the matrix @ = {g¢;;}. Individuals
reproduce children, the number of which is deter-
mined by the fitness such as: f;(t) = Z;»Z:]_(Sij +
sji)x;(t)/2, where x;(t) is the ratio of the popu-
lation of G speakers and 7 2;(t) = 1. For
simplicity, it is assumed that each child has only
one parent, namely, learns only one grammar. The
language dynamics equations are given by the fol-
lowing differential equations:

0 S g t)ale) — 60, ()
i=1

where ¢(t) = D1, fi(t)x;(t). The total population
size keeps constant by ‘—o(t)x;(t)’.

The situation is depicted in the following proce-
dure (See also Fig. 1):

1. Individuals leave offsprings proportional to
their fitness for each grammar, which is re-
garded as its communicability. Total distribu-
tion of children of G; speakers is f;x;.

2. They learn a language from their parents.
However, only children whose parents use G
in the ratio of g;; come to use G; correctly.
The others in the ratio of 1 — ¢;; flow out.

Fig. 1 Flow of population change

3. Some children whose parents use (; mistake
their target grammar for the other one, namely
G, in the ratio of g;;.

From the above interpretation, it is assumed that
only adult individuals talk to the other language
groups, while children communicate with only their
parents. In this circumstance, it may be difficult to
consider that the children mistake their parental
grammar for another one. In the next subsection,
we discuss the possibility of mistake connected with
Niyogi’s model [9].

2.2 Niyogi’s Model

Niyogi [9] proposed a model of language ac-
quisition with linguistically well-grounded gram-
mars together with the trigger learning algorithm
(TLA) [4]. He showed the parameter settings in
the grammars as a Markov structure through lan-
guage acquisition of children. Based on his results,
the possibilities in which the children do not learn
their target language, namely ¢;; > 0(i # j), can
be considered as follows:

A) There are some states in Markov structure, in
which children can not escape from the states
even if the children receive only correct exam-
ples of the target grammar, called an Absorb-
ing State in the Marcov chain.

B) Sufficient quantity of stimuli are not given
for children before fully acquiring the target
grammar. Any finite number of example sen-
tences is not proved to be enough to determine
uniquely the underlying grammar [5].

The matrix @ = {¢;;} depends on the matrix S =
{sij} because the latter concerns the transitivity
between grammars [7]. As above, the accuracy of
language acquisition also depends on the learning
algorithm. Therefore, Niyogi’s learning algorithm
is possible to cause g;; unnaturally high.



Fig. 2 Exposure probability « (p = 2)

2.3 Our Modification

Here, let us consider Niyogi’s two issues. With
regard to A), it is rather natural to regard that
children have the ability to escape from such local
traps. It is generally assumed that children acquire
their target grammars without error. Therefore
children should have a learning algorithm which
can attain to an arbitrary target grammar. As to
B), if a child has not been given enough example
sentences within her critical period of language ac-
quisition, she also cannot learn another human lan-
guage and would be ‘Genie’ a wolf-child [13]. From
the both reasons, the probability that children fail
to learn their parental language and learn another
language is quite low, i.e., ¢;; (¢ # j) should be very
near to 0.

Thus, we start our experiments with @ =~ I
(the unit matrix), admitting the slight possibility of
grammar transition. We contended that the () ma-
trix changes through generations, in regard to the
distribution of grammar populations, as we have
already shown by computer simulations [8]. Our
prime revision is to consider the probability a that
children are affected by the other language speakers
than their parents. Thus, the probability which the
children learn a language from their parents comes
to (1 — a). Note that « does not exclude children’s
parental language. We call a the exposure probabil-
ity. In Fig. 2, G, is the mother language. The chil-
dren are exposed to other languages at the rate of a.
Suppose the parental grammar of a child is G, the
shaded part of the figure denotes the distribution
in which the child is exposed to the mother lan-
guage. Although G; speakers seem to occupy the
most part in the distribution of population in the
community, the language that is most frequently
exposed to the children is the parental one, i.e.,
G, = Gy, for the value of o is small. However, in
general, if « is large enough, the language for the
most frequent exposure to a child may differ from
her parental one.

Since the distribution of speakers changes in

time, and the @ matrix depends on it, the
(Q matrix should include the time parameter ¢,
that is Q(X(t)) = {g,(t)}, where X(t) =
(w1(t), 22(t), ..., 2,(t)). We call Q(X(t)) the mod-
ified accuracy matriz. Together with the S ma-
trix and a given «, a learning algorithm determines
Q(X(t)). Thus, the new language dynamics equa-
tions are as follows:

dxc;—p - Zqij (@) fi(t)zi(t) — o(t);(t)
i—1

3 The Population-Based Model

In this section, we explain the modified language
dynamics equations, eqn (2), by introducing a set
of grammars and a learning algorithm.

3.1 The Grammars

We adopt the same set of grammars as Niyogi [9],
that is a three-parameter syntactic subsystem de-
scribed in Gibson et al. [4]. Thus the set has ex-
actly eight grammars, generating languages from
L(Gy) to L(Gs). Tt includes two parameters from
X-bar theory. Specifically, they are concerned with
specifier-head relations, and head-complement re-
lations in phrase structures. The following produc-
tion rules correspond to the parameters:

XP — Spec X' (p1=0)or X' Spec (p1 =1),
X' — Comp X' (p2=0)or X' Comp (p2 =1),
X - X

The third parameter concerns the verb movement.
In German and Dutch root declarative clauses, it is
observed that the verb occupies exactly the second
position. This Verb-Second phenomenon might or
might not be present in the world’s languages, and
this variation is captured by means of the V2 pa-
rameter. Table 1 provides the unembedded (degree-
0) sentences from each of the eight languages ob-
tained by setting the three parameters.

We do not provide different vocabularies for each
grammar, because we suppose that the same words
are shared among languages. Individuals would ac-
quire foreign words when necessary in the multi-
lingual community. To make languages simple,
each word category in the table, for example, S,
V and so on, has only one word. Namely, each cat-
egory directly stands for the corresponding word.



Table 1 The Languages (cited from [4,9])

Language [Spec,Comp, V2] Degree-0 unembedded sentences
L(G1) [1,1,0] “VS” “VOS “VO102S” “AUX VS “AUX VO S” “AUX V 01 02S” “ADVV S
“ADV V O S” “ADV V 01 02 S8” “ADV AUX V §” “ADV AUX V O §” “ADV AUX V 01 02 &
L(G2) [1,1,1] “SV” SV .O” “OV S’ “SV.0O102” “O1 V028’ “O2V 018’ “SAUX V” “SAUX V O”
“O AUX V S” “S AUX V O1 02” “O1 AUX V 02 8” “O2 AUX V O1 8” “ADV V S” “ADV V O §”
“ADV V 01 02 8”7 “ADV AUX V S” “ADV AUX V O S” “ADV AUX V O1 02 §”
L(G3) [1,0,0] “VS” “OV S “0201V S “VAUX S” “OV AUX S” “O2 01 V AUX S” “ADV V §”
“ADV O V §” “ADV 02 01 V §” “ADV V AUX §” “ADV O V AUX §” “ADV 02 O1 V AUX §”
L(G4) [1,0,1] “SV” “OVS” “SVO” “SV0O201” “O1VO0O28” “O2V 018’ “SAUX V” “SAUX O V”
“O AUX V S” “S AUX 02 01 V” “O1 AUX 02V §” “O2 AUX O1 V §” “ADV V §” “ADV V O §”
“ADV V 02 01 §” “ADV AUX V S” “ADV AUX O V S” “ADV AUX 0201V §”
L(G5) [0,1,0] “SV” “$SV O” “SV 01 02" “SAUX V? “SAUX V O” “S AUX V O1 02” “ADV SV’

(English) “ADV SV O” “ADV SV O1 02” “ADV S AUX V” “ADV S AUX V O” “ADV S AUX V O1 02"

L(Ge) [0,1,1] “SV” “$SVO” “OVS” “SV 0O102” “O1 VS 02 “O2V S 01” “S AUX V” “S AUX V O”
“O AUX S V” “S AUX V 01 02” “O1 AUX SV 02” “O2 AUX SV O1” “ADV V §”
“ADV V.S O” “ADV V S 01 02” “ADV AUX S V” “ADV AUX SV O” “ADV AUX SV 01 02

L(Gr) [0,0,0] “SV? SO0 V? “S0201V” “SV AUX” “S 0201V AUX” “ADV S V” “ADV S O V”
(Bengali) “ADV S 02 O1 V” “ADV SV AUX” “ADV S O V AUX” “ADV S O2 O1 V AUX”

L(Gs) [0,0,1] “SV” SV O” “OVS” “SV 02017 “O1 VS O02 “O2V S 01” “S AUX V” “S AUX O V”
(German, “O AUX S V” “O1 AUX S 02 V” “O2 AUX S O1 V” “ADV V §” “ADV V S O” “ADV V S 02 O1”

Dutch) “ADV AUX S V” “ADV AUX S O V” “S AUX 02 01 V” “S O V AUX” “ADV AUX S 02 O1 V”

3.2 The Similarity Matrix

Generally, the S matrix is uniquely calculated when
the grammars and the probability for each sentence
are given. Suppose that an individual who uses G;
utters a sentence in L(G;) with a uniform proba-
bility, then s;; is the number of common sentences
between L(G;) and L(G;) divided by the number
of sentences in L(G;). In this sense, every diagonal
element, that is s;;, is always 1, and s12 is 6/12 in
Table 1.

3.3 The Learning Algorithm

We give the learning algorithm with the following
restrictions:
e New born children do not have any particular
grammar, thus we do not give any initial values
for the parameters.

e Children who contact only with their parents
must obtain the parental (target) grammar. It
is not guaranteed in TLA; it depends on the
transitivity of the grammars.

e The learning period should be given enough for
the estimation of the target grammar.

We introduce the simplest learning algorithm
which satisfies the above restrictions. Children are
required to accumulate the number of acceptable
sentences from each grammar. The learning algo-
rithm becomes as follows (See also Fig. 3):

1) A child receives a sentence uttered by an adult.
2) For each grammar, if a sentence is acceptable

for the child, the grammar scores a point in
her memory.

Acceptability of sentences
for each grammar

G1G3G3G4G5GeG7 Gy

- ‘

0101
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o

Fig. 3 The simplest learning algorithm

3) 1) and 2) are repeated until the child receives
a fixed number of sentences that is regarded as
enough for the estimation of the grammar.

4) The child adopts the grammar with the
counter of the highest score.

In case a child talks only with her parents, the
grammar of the child would be G- by the second
restriction of the learning algorithm, as:

argmex{nsps}
J

= argmaxs,; (=p),

J

.
Il

where 7 denotes the number of sentences the child
receives, and p is the index of the parental gram-
mar. Because s,; is regarded as the acceptability of
G when the number of sentences of G, are given,



Nsp; is the expected value of the score for G; when
7 is sufficiently large.

In general, a child has chances to talk with other
adult individuals in proportion to the populations.
The expected grammar of the child should be G-
by such learning algorithm that:

<k

§° = argmax{) _nsiz(t)}
J k

= argr_nax{z SkjTk (t)}

J k

Similarly, because the child listens to sentences
from all the individuals in the community, the
expected value of the counter for G; becomes
>k M5kjxk(t). Then the child would adopt a gram-
mar of the highest score. Here, we introduce the
exposure probability «a, that prescribes the ratio a
child talks to people other than her parents. Thus,
the choice of grammar would depend on the linear
combination of the above two equations, i.e., the
estimated grammar of the child is G+ such that:

jro= argr_nax{ozz skjzE(t) + (1 — a)sp; (3)
J k

3.4 The Modified Accuracy Matrix

Suppose first that there are only two grammars G
and G2 and a child whose parental grammar is G,
the child acquires G7 when

{04(511331 (t) + 82171 (t)) + (1 — 04)811}
> {OZ(Slngg(t) + Sggxg(t)) + (]. — a)slg}.

Because the right-hand side of the above is un-
known to an individual and simply regarded uni-
form between 0 and 1, the probability of the choice
of G would be the left-hand side itself. In the sim-
ilar way, the probability that the child ¢ chooses G
in n candidate grammars is supposed to be:

Py = {ad sian(t) + (1 —a)s;}" ™l (4)
k

Hence, the probability in which a child whose par-
ents have G; learns G, that is ;;(t), is as follows:

(a Zk SkjTk (t) + (1 _ a)sij)n—l

- Zl(a Zk sk (t) + (1 — a)sy)r—1°
(5)

7;;(X (1))

4 Experiments

In this section, we show the experimental result
of the language dynamics equations of population-
based transition mentioned in Section 2.3 and 3.

Variables in eqn (2) are the distribution of popu-
lations X (¢) = (z1(t), z2(t),...,z,(t)) and the pa-
rameter is the exposure probability a.

4.1 Population Dynamics toward Creoliza-
tion

In Fig. 4, we show the result of the population dy-
namics. We gave initial distributions of populations
as x1(0) = 0.32,23(0) = 0.32,25(0) = 0.36, and
other z;(0)’s were set to 0. The exposure probabil-
ity « is examined at the range from 0 to 1.

In case a = 0, children learn a language only
from their parents. In fact, Fig. 4(a) represents that
a population of G5 given at the initial state even-
tually occupies the distribution in the community.
Because the modified accuracy matrix @ = {g;;} is
constant in eqn (2), the system behaves the same
as eqn (1), that is proportional to the similarity
between grammars and to the distribution of pop-
ulation. In consequence, both of z1 and x5 decrease
in accordance with the diminishing fitness.

According to the increase of «, x5 rises gradu-
ally though x2(0) = 0 (See Fig. 4(b)). This means
that some individuals come to speak a grammar
that no one spoke at the initial state. Because the
value of ¢12 in eqn (2) especially rises for large «, x1
comes to flow into z2. This is the emergence of cre-
ole. The result shows that the individuals tend to
choose a grammar of the highest communicability
in the community rather than the parental (target)
grammar. In case Fig. 4(b), that is o = 0.627, be-
cause xy did not increase any longer after x; and
x5 mostly flowed out, the language G2 declined and
eventually disappeared.

However, at this sheer boundary of o = 0.628,
the language G2 comes to be dominant (See
Fig. 4(c)). In a series of the experiments, G2 keeps
dominant and stabler while o comes near to 1 (See
Fig. 4(d)). Moreover, these two figures represent
that the higher a makes the convergence shorter.
From the definition of «, it is admitted the condi-
tion of @ = 1 is the easiest for creole to emerge.
From the viewpoint of population dynamics, creole
is defined as such a grammar G, that:

z.(0) =0, z.(t) > 6., (6)

where x. denotes the distribution of the population
of G., and 6. denotes a certain threshold to be re-
garded as creole [1,3]. Thus, we can regard our
experimental result is a creolization.
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Fig. 5 Regions of the dominant grammar

4.2 Regions of the Dominant Grammar

In Section 4.1, we could represent an example of
creolization. The occurrence of creole depends on
the initial value of the distribution and the expo-
sure probability «. Actually, the a value and the
distribution of population decide which language
would be dominant, regardless whether creolization
occurs or not. The next experiment aims at draw-

ing a map as to which language would be dominant
in various initial values and the parameter values.

In order to show the boundary conditions clearly,
we parameterize the population rate of Gs, that is
x5(t) from 0 to 1. The other two groups z;(t) and
x3(t) are set to be equal as follows:

21(0) = 23(0) = (1 — 25(0))/2.

In this a-z5(0)-space, we could detect boundaries
between which of two different languages become
dominant. The result is shown in Fig. 5. In the
figure, solid lines denote the boundaries between
would-be dominant languages. Creole(G2) appears
while the other grammars are existent at the initial
stages. The asterisk in Fig. 5 corresponds to the
case of Fig. 4(c).

Looking the map closely, we could see the cre-
olization in the right-middle area as the value of «
becomes higher. In the upper region of the figure,
G5 comes to dominant because x5(0) is high. When
the x5(0) value is low, G1 and G3 share the region,
because the x1(0) and x3(0) are equivalently given
at the initial stage. Because (7 is more similar
to Gy (creole) than Gs, that is s12 = s91 = 6/12



against s13 = s31 = 2/12, 1 often comes to high
together with xo, for G; earns more fitness than
Gs when x5 increases. Once creole emerges at an
a value on a fixed x5(0), it has never disappeared
while « is larger than the value. Thus, the condi-
tion of aw = 1 is the easiest for creole to emerge.

In summary, the transition is strongly affected
by the similarity between grammars, the distribu-
tion of population, and the exposure probability «.

5 Conclusions

In this paper, we have argued that language ac-
quisition is strongly affected by the population of
the languages in the community. First, we dis-
cussed that the language dynamics equations pro-
posed by Komarova et al. [7] has the problem that
the probability transition matrix @ is given as con-
stant through generations. Next in the study of
Niyogi [9], we mentioned what phenomena are re-
flected in g;; > 0 (i # 7).

Considering the above, we proposed that (i)
@ = {¢;j} must be sensitive to the distribution of
population at each generation, and also (ii) ) must
be quite near to the unit matrix, that is, ¢; ~ 1
and g;; >~ 0 where ¢ # j. From these observations,
we revised the language dynamics equations, intro-
ducing z;(t)’s that is the population rate at each
generation and the exposure probability «. In or-
der to show the adequateness of our equations, we
have shown experimental results. That is, when «
is rather large, a new language appears that is most
communicative for every individual. We regarded
this phenomena as the emergence of creole. Next,
we searched for the boundary conditions in which
creole emerges, in the two-dimensional space of a
and the ratio of the most populous language.

The relationship among languages is expressed
by the S matrix in the present population dynam-
ics. If we assumed that the value for each element
of the S matrix is continuous, we could further pa-
rameterize 7 X 7 = 49 variables which consist of
elements of the S matrix except to the diagonal el-
ements. Namely, Fig. 5 would merely denote a two-
dimensional surface of a body in the 51-dimensional
space. Furthermore, the other 7 candidate param-
eters instead of 25(0) are regarded as the vertical
axis like Fig. 5. Incidentally, we have found some
combinations of elements of the S matrix in which
creole never occur with any distribution of popu-
lation, although they have not been well explained
yet. We need to study in further generalized con-
ditions, to clarify the boundary conditions of cre-
olization.
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